Share:


Numerical investigation of the effects of geometrical parameters on the vortex separation phenomenon inside a Ranque-Hilsch vortex tube used as an air separator in a helicopter’s engine

Abstract

Air separators are fitted to helicopter engine intakes to remove potentially harmful dust from the influent air. Their use is necessary in desert environments to eliminate the risk of rapid engine wear and subsequent power deterioration. However, their employment is concomitant with an inherent loss in inlet pressure and, in some cases, auxiliary power. There are three main technologies: vortex tubes, barrier filters, and integrated inlet particle separators. In this work, a vortex tube is investigated numerically. The study was conducted on the number and axial angle of inlet nozzles. Two and three-dimensional models are investigated at a steady state condition then the standard k-ε turbulence model is utilised for determining the flow and temperature fields. The finite volume method base on a Computational Fluid Dynamic (CFD) model is verified through the comparison with experimental data and numerical results of a vortex tube, reported in literature sources. Increasing the number of inlet nozzles, increases the sensitivity of the temperature reduction and the highest possible temperature reduction can be obtained. A vortex tube with an axial angle inlet nozzle of yields better performance. The numerical simulation results indicated that the CFD model is capable of predicting the vortex separation phenomenon inside a Ranque-Hilsch vortex tube with different geometrical parameters.

Keyword : vortex separation phenomenon, air separator, Ranque-Hilsch vortex tube, inlet nozzle, cold and hot outlet, CFD

How to Cite
Bazgir, A., and N. Nabhani. “Numerical Investigation of the Effects of Geometrical Parameters on the Vortex Separation Phenomenon Inside a Ranque-Hilsch Vortex Tube Used As an Air Separator in a Helicopter’s Engine”. Aviation, Vol. 22, June 2018, pp. 13-23, doi:10.3846/aviation.2018.2414.
Published in Issue
Jun 19, 2018
Abstract Views
52
PDF Downloads
20
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aljuwayhel, N., Nellis, G., & Klein, S. (2005). Parametric and internal study of the vortex tube using a CFD model. International Journal of Refrigeration, 28(3), 442-450. https://doi.org/10.1016/j.ijrefrig.2004.04.004

Bazgir, A. (2017a, September). Ranque-Hilsch vortex tube: A numerical study. 2nd International Conference of Science and engineering In the Technology Era, Brussels, Belgium.

Bazgir, A. (2017b). Numerical investigation of flow pattern inside different counter-flow Ranque-Hilsch vortex tube refrigerators. 3rd International Conference on Innovation In science and Technology, Berlin, Germany.

Bazgir, A., Heydari, A. (2018). Energy conversion (efficiency) of straight counter-flow Ranque-Hilsch Vortex Tube (RHVT) by using optimized turbulence model. In Proceedings of ACN International Conference. Istanbul, Turkey.

Bazgir, A., Nabhani, N. (2018). Investigation of temperature separation inside various models of Ranque–Hilsch vortex tube: Convergent, straight, and divergent with the help of computational fluid dynamic approach. Journal of Thermal Science and Engineering Applications, 10(5), 051013.

Behera, U., Paul, P., Dinesh, K., & Jacob, S. (2008). Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 51(25), 6077-6089. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.029

Behera, U., Paul, P., Kasthurirengan, S., Karunanithi, R., Ram, S., Dinesh, K., & Jacob, S. (2005). CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 48(10), 1961-1973. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.046

Bovand, M., Valipour, M. S., Dincer, K., & Tamayol, A. (2014). Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 65(1), 176-183. https://doi.org/10.1016/j.applthermaleng.2013.11.045

Bramo, R. A., & Pourmahmoud, N. (2011). CFD simulation of length to diameter ratio effects on the energy separation in a vortex tube. Thermal Science, 15(3), 833-848. https://doi.org/10.2298/TSCI101004008B

Chang, K., Li, Q., Zhou, G., & Li, Q. (2011). Experimental investigation of vortex tube refrigerator with a divergent hot tube. International Journal of Refrigeration, 34(1), 322-327. https://doi.org/10.1016/j.ijrefrig.2010.09.001

Eiamsa-ard, S., & Promvonge, P. (2007). Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 50(5), 821- 832. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.018

Eiamsa-ard, S., & Promvonge, P. (2008a). Numerical simulation of flow field and temperature separation in a vortex tube. International Communications in Heat and Mass Transfer, 35(8), 937- 947. https://doi.org/10.1016/j.icheatmasstransfer.2008.04.010

Eiamsa-ard, S., & Promvonge, P. (2008b). Review of Ranque–Hilsch effects in vortex tubes. Renewable and Sustainable Energy Reviews, 12(7), 1822-1842. https://doi.org/10.1016/j.rser.2007.03.006

Eiamsa-ard, S., Wongcharee, K., & Promvonge, P. (2010). Experimental investigation on energy separation in a counter-flow Ranque–Hilsch vortex tube: Effect of cooling a hot tube. International Communications in Heat and Mass Transfer, 37(2), 156-162. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.013

Farouk, T., & Farouk, B. (2007). Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 50(23), 4724-4735. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.048

Fröhlingsdorf, W., & Unger, H. (1999). Numerical investigations of the compressible flow and the energy separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 42(3), 415-422. https://doi.org/10.1016/S0017-9310(98)00191-4

Hilsch, R. (1947). The use of the expansion of gasses in a centrifugal field as cooling process. Review of Scientific Instruments, 18(2), 108-113. https://doi.org/10.1063/1.1740893

Kazantseva, O., Piralishvili, S. A., & Fuzeeva, A. (2005). Numerical simulation of swirling flows in vortex tubes. High Temperature, 43(4), 608-613. https://doi.org/10.1007/s10740-005-0102-8

Khodorkov, I., Poshernev, N., & Zhidkov, M. (2003). The vortex tube – a universal device for heating, cooling, cleaning, and drying gasses and separating gas mixtures. Chemical and Petroleum Engineering, 39(7-8), 409-415. https://doi.org/10.1023/A:1026336813155

Konzen, R. B. (1971). Gas-Vapor separation in a Ranque-Hilsch vortex tube. The American Industrial Hygiene Association Journal, 32(12), 820-825. https://doi.org/10.1080/0002889718506544

Liu, X., & Liu, Z. (2014). Investigation of the energy separation effect and flow mechanism inside a vortex tube. Applied Thermal Engineering, 67(1), 494-506. https://doi.org/10.1016/j.applthermaleng.2014.03.071

Lucca-Negro, O., & O’doherty, T. (2001). Vortex breakdown: a review. Progress in Energy and Combustion Science, 27(4), 431-481. https://doi.org/10.1016/S0360-1285(00)00022-8

Park, W.-G., & Pouraria, H. (2014). Numerical investigation on cooling performance of Ranque–Hilsch vortex tube. Thermal Science, 18(4), 1173-1189.

Pouraria, H., & Zangooee, M. (2012). Numerical investigation of vortex tube refrigerator with a divergent hot tube. Energy Procedia, 14, 1554-1559. https://doi.org/10.1016/j.egypro.2011.12.1132

Riu, K.-J., Kim, J.-s., & Choi, I.-S. (2004). Experimental investigation on dust separation characteristics of a vortex tube. JSME International Journal Series B Fluids and Thermal Engineering, 47(1), 29-36. https://doi.org/10.1299/jsmeb.47.29

Saidi, M., & Valipour, M. (2003). Experimental modeling of vortex tube refrigerator. Applied Thermal Engineering, 23(15), 1971-1980. https://doi.org/10.1016/S1359-4311(03)00146-7

Skye, H., Nellis, G., & Klein, S. (2006). Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration, 29(1), 71-80. https://doi.org/10.1016/j.ijrefrig.2005.05.004

Valipour, M. S., & Niazi, N. (2011). Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. International Journal of Refrigeration, 34(4), 1109-1116. https://doi.org/10.1016/j.ijrefrig.2011.02.013

Van Patten, R., & Gaudio, R. (1969). Vortex tube as a thermal protective device. Aerospace Medicine, 40(3), 289-292.

Williams, A. (1971). The cooling of methane with vortex tubes. Journal of Mechanical Engineering Science, 13(6), 369-375. https://doi.org/10.1243/JMES_JOUR_1971_013_057_02

Xue, Y., Arjomandi, M., & Kelso, R. (2012). Experimental study of the flow structure in a counter flow Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 55(21), 5853-5860. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.081

Xue, Y., Arjomandi, M., & Kelso, R. (2013a). Experimental study of the thermal separation in a vortex tube. Experimental Thermal and Fluid Science, 46, 175-182. https://doi.org/10.1016/j.expthermflusci.2012.12.009

Xue, Y., Arjomandi, M., & Kelso, R. (2013b). The working prin - ciple of a vortex tube. International Journal of Refrigeration, 36(6), 1730-1740. https://doi.org/10.1016/j.ijrefrig.2013.04.016