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Abstract. In today’s competitive global economy, businesses must adjust themselves 
constantly to ever-changing markets. Therefore, predicting future events in the market-
place is crucial to the maintenance of successful business activities. In this study, sales 
forecasts for a global furniture retailer operating in Turkey were made using state space 
models, ARIMA and ARFIMA models, neural networks, and Adaptive Network-based 
Fuzzy Inference System (ANFIS). Also, the forecasting performances of some widely 
used combining methods were evaluated by comparison with the weekly sales data for 
ten products. According to the best of our knowledge, this study is the first time that the 
recently developed state space models, also called ETS (Error-Trend-Seasonal) models, 
and the ANFIS model have been tested within combining methods for forecasting retail 
sales. Analysis of the results of the single models in isolation indicated that none of them 
outperformed all the others across all the time series investigated. However, the empirical 
results suggested that most of the combined forecasts examined could achieve statistically 
significant increases in forecasting accuracy compared with individual models and with 
the forecasts generated by the company’s current system.

Keywords: sales forecasting, neural networks, exponential smoothing, ARIMA, ARFIMA, 
ANFIS, combined forecasts, retail sales.
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Introduction

Retail businesses are forced to use their resources efficiently and to make sound strate-
gic decisions for the future in order to survive and increase their revenues, especially 
as conditions become ever more competitive. Since all forecasts entail at least some 
degree of uncertainty, businesses need to make estimates with the aim of minimising 
uncertainty. Businesses must make predictions encompassing many variables, such as 
raw-material requirements, optimal stock levels, borrowing requirements, and personnel 
requirements. However, in order for any of these to be estimated, it is necessary first to 
predict the level of demand that will pertain in the market and, accordingly, the com-
pany’s prospective sales. Thus, market demand forecasts are a necessary precursor of 
all other estimates required by a given operation. Accurate forecasts allow appropriate 
targeting of the company’s activities (such as production, finance, R&D, purchasing, 
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and marketing) and facilitate them in reaching their targets (Mentzer, Bienstock 1998). 
Also, sales forecasting is of great importance to companies making strategic decisions 
regarding their future investments. For instance, sales amounts are used in combination 
with margin forecasts to evaluate a company’s future income, and used together with 
turnover forecasts to assess a company’s future assets (Curtis et al. 2014).
Retailing can be defined as consisting in the whole process of marketing goods and 
services directly to end users. As such, it can be thought of as a bridge between the 
producer and the final consumer. The capability of retailing managers to predict future 
sales volumes correlates with increased customer satisfaction, reduced resource waste, 
increased sales revenues, and more efficient and effective production plans (Chen, Ou 
2011). Barksdale and Hilliard (1975) have studied the relationship between retail stocks 
and sales, and have concluded that the successful management of stock depends pri-
marily on accurate prediction of retail sales. Accurate forecasting of future retail sales 
can contribute to gains in the efficiency and efficacy of operations carried out in retail 
businesses and supply chains. Therefore, forecasts play a crucial role in business man-
agement and strategic planning. The management decisions taken at every level of a 
business are either directly or indirectly related to the forecasts it has made. Without 
useful predictions, planning and control activities cannot be accomplished effectively. 
Poor forecasting adversely affects the capacity of organisations and companies to meet 
their goals, as it results in problems such as increased stock costs and inability to meet 
demand, which can in turn lead to losses of market share (Agrawal, Schorling 1997).
Given the essential role of retail sales and the utmost importance of forecasting them 
accurately, this study seeks to model sales volumes by using time series techniques. 
Time series sales-forecasting models can be divided into two categories: linear models 
and nonlinear models. Among the linear models, exponential smoothing methods (Gard-
ner 2006) and the autoregressive integrated moving averages (ARIMA) model (Box, 
Jenkins 1970) have numerous effective applications (Schilling, Jarrett 2008; Nurunnabi 
2012; Çatik, Karçuka 2012). Consequently, they have played special roles in sales fore-
casting for a long time. ARFIMA (Autoregressive Fractionally Integrated Moving Aver-
age) is a long-memory version of an ARIMA model. The ARFIMA model allows for the 
series to be fractionally integrated and thereby captures the long memory of the series. 
Many time series exhibit long-range dependence and ARFIMA models sometimes pro-
duce significantly better forecasts than non-ARFIMA models in various financial and 
macroeconomic data sets, as well as aggregate retail sales (Bhardwaj, Swanson 2006; 
Aye et al. 2015). It would therefore be interesting to compare their usefulness with other 
methods used in this study.
The artificial neural networks (ANN) model has stood out in the field of nonlinear 
modelling as a result of its beneficial properties, such as the capacity to model any 
functional form at the desired level, without having to assume any relationships in 
advance (Cybenko 1989). Hence, the ANN model has attracted the attention of many 
researchers and practitioners, who have identified a number of ANN forecasting appli-
cations that exhibit the potential to produce better forecasts (Adhikari, Agrawal 2014; 
Claveria, Torra 2014; Keles et al. 2016; Lolli et al. 2017). There are various types of 
ANN model such as Support Vector Machine (SVM), Radial Basis Function Neural 
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Networks (RBFNN), and the ANFIS model successfully implemented in the economic 
time series forecasting applications (Kim 2003; Shen et al. 2011; Bagheri et al. 2014). 
However, as far as we know, the ANFIS model has not been applied yet for forecasting 
retail sales. The ANFIS is a neuro-fuzzy approach proposed by Jang (1993). It integrates 
the benefits of the ANN model (learning ability of complex relationships between input 
and output data) and fuzzy systems (modelling ability of human knowledge and infer-
ence processes in the case of uncertain and noisy data). Thus, the disadvantages of both 
methods of artificial intelligence can be overcome using this hybrid system. ANFIS has 
led to significant results in various forecasting applications (Boyacioglu, Avci 2010; 
Yazdani et al. 2012; Svalina et al. 2013; Lotfi et al. 2016).
Another way of obtaining more accurate forecasts is to use combination methods, which 
are based on the use of more than one model to produce forecasts. While a single 
method can be any forecasting approach which has its own unique mechanism to pro-
duce forecasts, combination methods combine only the forecasts of each selected single 
method. Hybrid methods differ from combination methods in the context of using single 
methods. Hybrid methods integrate single methods with the intent of overcoming the 
drawbacks of each single model. Also, in many studies the term “ensemble” is used in 
place of “combination”. Actually, the two methods do exactly the same job but under 
different names. Researchers from the field of machine learning use “ensemble” while 
researchers from statistics use “combination”. We prefer “combination” in this study. 
The idea behind combining techniques is that each model’s approach to identifying pat-
terns is different, and combining the predictions of these single models to form the final 
forecast can provide advantages, as the combination can capture a broader cross section 
of patterns in the data (Zhang 2003). In light of the benefits that combined forecasts 
offer, many studies relating to retail sales forecasting have focused on methods involv-
ing the integration of some artificial intelligence techniques into neural networks, or 
on combining neural networks with traditional models, in order to improve forecasts 
(Chen, Ou 2011; Lu 2014; Du et al. 2015; Yang, Li 2016). However, it should be kept 
in mind that using combining methods is not a panacea. They require estimating mul-
tiple parameters based on the forecast values, especially when sophisticated combining 
methods are employed. Hence, this second round of the parameter estimation process 
can adversely affect the accuracy of the combined forecasts. Another drawback of us-
ing combining methods can be encountered when it is known in advance that one of 
the single forecasting methods significantly outperforms others. In that case, the best 
single method may have better performance than combining methods. The motivation 
for including combining techniques in this study derives from numerous published stud-
ies in the literature (Clemen 1989; De Menezes et al. 2000), which have asserted the 
superiority of combined methods over component models. 
The objectives of this study are threefold. In the first place, methods such as state space 
models and the ANFIS model have not yet been examined for retail sales forecasting. 
Therefore, this study’s original contribution to the existing literature is for the first time 
to investigate the forecasting performances of these models for retail sales. Secondly, 
the study analyses forecasts of the sales quantities of a retail furniture store in order to 
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evaluate the forecasting performance of five methods: namely, state space models, the 
ARIMA model, the ARFIMA model, the ANN model, and the ANFIS model. Based 
on the observed accuracy of each of these forecasting techniques, employees in the 
relevant departments can derive a general understanding of which forecasting methods 
conform best with which product sales, and thereby identify opportunities to ameliorate 
the existing supply chain system. Thirdly, we aim to determine which of the most com-
monly employed combined methods generates the greatest statistical improvements in 
the forecast accuracy of the relevant series; this will be assessed in terms of several 
error measures. As a consequence, the study should enable companies to identify which 
combining methods can be used more or less confidently to forecast the sales quantities 
of given products.

1. Literature review

There are numerous studies in the literature that employ quite different methods, from 
fairly simple ones to complex hybrids, to model sales data in order to forecast future 
sales. In this section we review some of them, in chronological order.
Ansuj et al. (1996) analysed a medium-sized enterprise’s sales data for the period from 
January 1979 to December 1989, in terms of both the ARIMA model with interven-
tions and the ANN model. They reached the conclusion that the ANN model’s forecasts 
were superior to those generated by the ARIMA model. Alon et al. (2001) conducted a 
comparative study of ANN models and traditional methods, including ARIMA models, 
Winter’s exponential smoothing, and multivariate regression for aggregate retail sales in 
the US. They found that ANN models outperform their traditional counterparts, and that 
exponential smoothing is a viable method under relatively stable economic conditions. 
Frank et al. (2003) modelled women’s apparel sales using single seasonal exponen-
tial smoothing, Winters’s three-parameter model and the ANN model, referring to four 
years’ sales data. The obtained results indicated that the ANN model performs better 
than the other two models in terms of R2 evaluation statistics. These three studies have 
concluded that ANN models outperform the classical methods used predominantly in 
sales forecasting. Apart from the aforementioned studies, Aburto and Weber (2007) 
exploited a two-stage hybrid methodology to establish a replenishment system for a 
Chilean supermarket. They found that the hybrid method produces better forecasts than 
both component models – namely, the ARIMA and ANN models – and concluded that 
their new system results in fewer sales failures and lower inventory levels.
In another study by Au et al. (2008) investigated the performance of evolutionary neural 
networks for sales forecasting in fashion retailing, and compared their performance with 
that of a fully connected neural network and the seasonal ARIMA model. This study 
indicated that evolutionary neural networks produce more accurate forecasts than fully 
connected networks, and show still greater gains in accuracy over the seasonal ARIMA 
model in some cases. Pan et al. (2013) proposed a hybrid method that integrates em-
pirical mode decomposition with a neural network (EMD-NN) to forecast retail sales. 
They claimed that this EMD-NN exhibits superiority over the classical ANN model and 
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seasonal ARIMA, and that the proposed hybrid method can result in better performance 
especially when economic conditions are volatile. Taking a different approach from pre-
vious studies, Dwivedi et al. (2013) compared the performances of a neuro-fuzzy mod-
elling approach, ANFIS, with ANN and linear regression, and found the ANFIS method 
to be best. Aye et al. (2015) assessed the performance of 26 models, including ARIMA, 
ANN, and ARFIMA, in forecasting South Africa’s aggregate seasonal retail sales. They 
noted that, contrary to previous findings, the ANN model widely employed nonlin-
ear model in the literature of sales forecasting is consistently outperformed by other 
nonlinear models. They also give an extensive literature review on sales forecasting. 
Ramos et al. (2015) drew comparisons between the performance of state space models 
and the ARIMA model in forecasting retail sales of some women’s footwear products. 
The results implied that there is no significant difference in performance between these 
two models for one-step and multi-step forecasts, when automatic algorithms are im-
plemented. Fabianová et al. (2016) analysed refrigerator sales from a retail store. This 
study has an advantage over previous studies in modelling the input data uncertainty, to 
find the probability of achieving the level of total revenue by Monte Carlo simulation, 
and used sensitivity analysis to identify the variables that most influenced the target. 
Kolassa (2016) took discrete predictive distributions into consideration to forecast daily 
retail sales and explained why forecast accuracy measures are inappropriate for count 
data. Ma et al. (2016) proposed a four-step methodological framework to examine the 
case of SKU level retail store sales forecasting with both intra- and inter-category pro-
motional information. The obtained results indicated that most of the improvements 
were achieved by exploiting the intra-category information rather than the inter-category 
information. They provided a detailed review on sales forecasting. Finally, Jiménez 
et al. (2017) suggested a novel feature selection methodology to obtain more accurate 
forecasts for online sales and to find out the relevant features of the sold products that 
affect the sales.

2. Forecasting and combining methods under investigation

In this section, we focus on describing the single models and forecast combination 
methods employed in this analysis. First, the relationship between state space models 
and exponential smoothing methods is presented. Next, ARIMA, ARFIMA, ANN, and 
ANFIS modelling processes are briefly explicated. Finally, the existing literature relat-
ing to combined forecasts and the most commonly used methods is summarised. As 
stated by Ahmed et al. (2010), for each considered model there are myriads of varia-
tions proposed in the literature, and it would be a hopeless task to consider all existing 
varieties. Therefore, we considered the basic version of each model. A short description 
of the models investigated in the paper is as follows:

2.1. The single models
2.1.1. State space models for exponential smoothing
Exponential smoothing methods have been employed for more than five decades, ow-
ing to their simplicity and to the property that they do not require complex calculations 
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(Granger, Newbold 2014). This is especially advantageous in the frequently encountered 
cases that require a forecasting technique that is reliable and capable of producing fore-
casts for many variables in the shortest time possible. Exponential smoothing methods 
consist in determining separately the forms taken by the two components of the data: 
namely, trends and seasonality. By taking different trend and seasonality structures into 
account, it is possible to define five trend components and three seasonal components, 
yielding fifteen combinations, each of which represents a different exponential smooth-
ing method. These methods, presented in Table 1, are denoted by a pair of letters (T,S) 
specifying the forms of their components. Some of these methods are very popular, 
and are generally known by their special names such as simple exponential smoothing, 
denoted by (N,N); Holt’s linear method, denoted by (A,N); the additive Holt-Winters 
method, denoted by (A,A); and the multiplicative Holt-Winters method, denoted by 
(A,M). 

Table 1. All the combinations of trend and seasonality components 

Trend Component
Seasonal Component

N (None) A (Additive) M (Multiplicative)

N (None) N, N N, A N, M

A (Additive) A, N A, A A, M

Ad (Additive damped) Ad, N Ad, A Ad, M

M (Multiplicative) M, N M, A M, M

Md (Multiplicative damped) Md, N Md, A Md, M

Though they have been used for many years, exponential smoothing methods had not 
been placed within a statistical framework until the recent emergence of new methodo-
logical developments. Following a study by Ord et al. (1997) that linked state space 
formulations with exponential smoothing methods, Hyndman et al. (2002) extended 
the approach and provided likelihood calculations, model selection criteria, and com-
putations of prediction intervals for all the methods under consideration. The detailed 
theoretical foundation of this approach is presented in a book by Hyndman et al. (2008). 
Each exponential smoothing method corresponds with two state space models: one with 
additive errors and one with multiplicative errors. Although the point forecasts obtained 
by the models are the same, they give rise to different prediction intervals. With the 
intent of differentiating between models with additive and multiplicative errors, a third 
component – in addition to trend and seasonality – is included in the analysis. Adding 
this error component raises the number of state space models under investigation to a 
total of 30. To distinguish different state space models, the acronym ETS (Error-Trend-
Seasonal or ExponenTial Smoothing) is used. Thus, the meaning of ETS (A,A,N) is that 
the model is composed of additive errors, additive trends and no seasonality.
State space models are formed by two groups of equations. The first group comprises 
measurement (or observation) equations that define the observed data. The second group 
comprises state (or transition) equations that define how the unobserved components or 
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states (level, trend, seasonal) change over time (Hyndman, Athanasopoulos 2014). To 
illustrate this, the state space equations of the ETS model (A,Ad,A) are given as follows:

                                      1 1 ;− − −= + f + + et t t t m ty l b s   (1)

 Level: 1 1 ;− −= + f + aet t t tl l b  (2)

                                       Growth: 1 ;−= f + bet t tb b  (3)

                                       Seasonal: ,−= + get t m ts s  (4)

where yt, lt, bt, and st denote the observed value, the series level, the slope, and the 
seasonal component of the series at time t, respectively, and m represents the period of 
seasonality. et is normally an independently distributed random variable with zero mean 
and variance s2. Smoothing parameters are represented by the symbols a, b, f, and g. 

There are certain restrictions on the values that the smoothing parameters can take: some 
are traditional constraints, intended to produce weighted averages from the equations, 
while others are imposed in order to obviate numerical instabilities when estimating the 
model. More details regarding the estimation process of the smoothing parameters and 
the selection of initial states to maximise the likelihood function can be found in a book 
written by Hyndman et al. (2008). 

2.1.2. ARIMA and ARFIMA models
The ARIMA modelling procedure introduced in a pioneering study conducted by Box 
and Jenkins (1970) has been one of the linear models most commonly used in time 
series forecasting. ARIMA models are based on identifying the structure of the autocor-
relations in the data. It is assumed that the variable to be forecasted consists of a linear 
combination of its own lagged values and errors. This assumption also indicates the 
weakness of ARIMA models: they cannot capture nonlinear patterns. However, they 
have achieved considerable success in many forecasting applications (Fildes, Makrida-
kis 1995). The ARIMA model consists in an advanced theoretical approach that includes 
an iterative three-step model-building process: model identification, parameter estima-
tion and diagnostic checking.
A non-seasonal ARIMA model can be expressed by the following equation:

 
' ' '

1 1 1 1 ,− − − −= + f +…+ f + q +…+ q +t t p t p t q t q ty c y y e e e  (5)

where '
ty  and te  are the differenced series, and random error is specified at time t. The 

equation contains the lagged values of the differenced series and errors on the right-hand 
side. ( ),  1,2, ,f = …ic i p  and ( ) 1,2, ,q = …j j q  are the model parameters to be estimated 
after determining the values of p and q. 

The abbreviation ARIMA (p,d,q) is used to represent different models. p, d, q denotes 
the order of the autoregressive part, the degree of first differencing, and the order of the 
moving average part, respectively. When estimating more complex models, using the 
backward shift operator B provides an advantage in expressing and understanding them. 
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The equation given above can be expressed by means of the notation of the backward 
shift operator B, defined by 1−=t tBy y , as follows:

 ( )( )11 1− f −…− f − = +dp
p tB B B y c (1+ 1 ) .q +…+ q eq

q tB B  (6)

Or in a more simple yet equivalent formulation:

 ( )( ) ( )1 ,f − = + q ed
p t q tB B y c B   (7)

where ( )fp B  and ( )qq B  are polynomials of the orders p and q, and et is a white-noise 
process with zero mean and variance s2.
Similarly, a long-memory model, denoted by ARFIMA (p,d,q), can be written using 
operator notation:

 ( )( ) ( )1 ( ) ,f − − μ = q ed
p t q tB B y B   (8)

where ( )1− dB  is the fractional differencing operator defined by:

 
( ) ( )

( ) ( )0
1

1

k
d

k

k d B
B

k d

∞

=

Γ −
− =

Γ + Γ −∑ , (9)

with ( ).Γ  indicating the gamma function. The parameter d can take any real value. 
The stochastic process yt is covariance stationary for 0.5<d . In that case, Hosking 
(1981) showed that the autocorrelation of an ARFIMA process decays hyperbolically. 
When 0 0.5< <d , the process displays long memory. For 0.5 0− < <d  the process is 
said to exhibit intermediate memory, and for 0.5≥d  the process is mean reverting, 
hence there is no long memory.
Having determined an appropriate model order (i.e., the values of p, d, q), the param-
eters are then estimated so as to maximise the log likelihood of the related model. For 
further information regarding this procedure, see Montgomery et al. (2015). 

2.1.3. Artificial neural networks
ANN models are inspired by the way the human brain works and are essentially a very 
simplified version of it, imitating its parallel processing capabilities using mathemati-
cal artificial neurons distributed in parallel layers. Though primitive versions of neural 
networks first emerged back in the early 1940s, the pioneering study by Rumelhart 
et al. (1986) has expanded their use widely in almost every field of scientific endeav-
our, and has made them a serious rival to classical statistical methods. In contrast to 
traditional time series models, ANNs constitute a model-free and data-driven approach 
which entails two significant features: namely, flexibility and generalisability. The trade-
off for these appealing features is ANNs’ lack of any systematic methodology by which 
uncertainties regarding model construction and parameter setting could be overcome. 
ANNs comprise an input layer, one or more hidden layers, and one output layer, each of 
which contains the corresponding neurons. ANNs with a single hidden layer are gener-
ally preferred, as they are less liable to produce an overfitted model that fits well with 
in-sample data, but performs poorly in terms of generalisation to out-of-sample data 
(Zhang et al. 1998). It is worth noting that feedforward multilayer networks, also known 



811

Journal of Business Economics and Management, 2017, 18(5): 803–832

as multilayer perceptrons (MLPs), are used in the scope of this study. For time series 
forecasting, the relationship between the output (yt) and the inputs ( 1 2, , ,− − −…t t t py y y

 
) 

has the following mathematical representation:

 0 0
1 1

,                                                                   (10) −
= =

 
= + + + e  

 
∑ ∑
q p

t j j ij t i t
j i

y w w f w w y
  

(10)

where, w0 and w0j ( )1,2, ,= …j q  are the biases on the neurons, wj ( )1,2, ,= …j q  
and ( )1,2, , , 1,2, ,= … = …ijw i p j q  are the connection weights between the layers of the 
model, ( ).f  is the activation (transfer) function of the hidden layer, p is the number of 
input neurons, and q is the number of hidden neurons.
The ANN model represented in Eq. (10) basically performs a nonlinear functional map-
ping from the lagged values ( 1 2, , ,− − −…t t t py y y ) to the future value yt, which is ex-
pressed as below. Therefore, the ANN model can be regarded as a general nonlinear 
autoregressive model:

 ( )1 2, , , , ,− − −= … + et t t t p ty g y y y w   (11)

where w consists of all parameters, and g is a function specified by the network archi-
tecture.
The number of input neurons, or lagged observations, is probably the most important 
factor in time series forecasting because it determines the autocorrelation structure of 
the time series, while the number of hidden neurons plays a key role in determining 
the degree of nonlinearity and flexibility possessed by a given ANN model (Zhang 
et al. 2001; Aras, Kocakoc 2016). Readers interested in a more detailed description 
and mathematical computations of ANN models can refer to a book written by Hagan 
et al. (1996).

2.1.4. Adaptive network-based fuzzy inference system (ANFIS)
Among neuro-fuzzy systems, the ANFIS draws more attention because of its outstand-
ing features. It uses a feed-forward network to generate fuzzy decision rules regarding 
the problem at hand, where the parameters of the membership functions are adjusted 
by means of the relationship between input and output data to be learned. The ANFIS 
employs a Takagi-Sugeno type fuzzy system in which the output is a real number. It 
consists of two sets of parameters, namely, premise parameters (nonlinear parameters) 
belonging to the fuzzy inference membership functions and consequent parameters (lin-
ear parameters) belonging to output functions. The ANFIS’s general architecture, with 
two inputs and one output, is presented in Figure 1. The tasks of each layer within the 
ANFIS architecture are as follows (Jang 1993):
Layer 1: This layer is formed by linguistic nodes, each of which corresponds to a lin-
guistic input variable. Fuzzy membership functions are used to generate the outputs of 
these adaptive nodes described in Eq. (12):

 ( )1, ,= μi AiO x  for 1,2=i ;  ( )1, 2 ,−= μi BiO y  for 1,2=i , (12)

where x and y represent inputs, Ai and Bi denote the linguistic labels for the inputs, and 
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( )μAi x  and ( )μBi y  are the chosen membership functions. The membership function 
most often used is a bell-shaped function presented in the following equation:

 

( ) ( )
2

2, exp ,−

  − μ μ = −    

i i
Ai Bi

i

x cx y
a

  (13)

where ai and bi are the parameter set called premise parameters.
Layer 2: Each node in this layer multiplies the incoming signals to produce the output 
as follows:

 ( ) ( )2, 2. −= = μ μi i Ai BiO w x y  for 1,2,3,4=i , (14)

where the node output iw  is the firing strength of a rule.
Layer 3: The ith node in this layer normalises its firing strength by calculating the ratio 
of the ith node firing strength to the sum of all firing strengths:

 3, 1 2 3 4/ ( )= = + + +i i iO w w w w w w  for 1,2,3,4.=i  (15)

Layer 4: Each node i indicated by a square node in this layer has the following node 
function:

 ( )4, .= = + +i i i i i i iO w f w p x q y r  for 1,2,3,4=i , (16)

where pi, qi and ri are the parameters set called consequent parameters.
Layer 5: This layer is composed of one fixed node indicated by a circle. The task of this 
single node is to compute the overall output as follows:

 
5, overall output.= = = =

∑∑ ∑
i ii

i out i i
ii i

w f
O f w f

w
 (17)

Fig. 1. ANFIS architecture with two inputs and four rules
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2.2. Forecast combination methods
The study of Bates and Granger (1969) is the first to mention the combining of meth-
ods for business forecasting. A large number of studies have observed that combined 
forecasts exhibit better performance than both component models and single models 
(Clemen 1989; Makridakis 1989). Combining different models or methods as much as 
possible may pave the way to attaining more accurate forecasts. This claim has been 
supported by both theoretical and empirical findings (Wallis 2011; Bordignon et al. 
2013; Firmino et al. 2015). There are many studies that promote different aspects of 
combining for time series data. Granger (1989), Clemen (1989) and Wallis (2011) gave 
detailed reviews of the developments of their times. Wallis (2011) also investigated the 
impact of forecasters’ different information sets on the original point forecast combina-
tion result, and properties of different methods of combining density forecasts. De Gooi-
jer and Hyndman (2006) emphasized the place of combining in forecasting, and briefly 
list the literature. Yu et al. (2005) presented combining as a dilemma, since selecting the 
models to be combined is a tedious task. They proposed a a double-phased procedure of 
time series forecasting to decide whether to select a single model or to combine models. 
Zou and Yang (2004) addressed the idea that combining (or mixing) forecasts from very 
similar models is also important, and that combining has great potential to reduce the 
variability that arises in the forced action of selecting a single model.
The difficulty faced by combining methods is in determining how, specifically, single 
models should be combined so as to result in more accurate forecasts. Many methods 
of resolving this difficulty have been proposed. There are a number of sophisticated sta-
tistical approaches, but it has been observed that simple methods tend to yield forecasts 
better than or nearly as accurate as sophisticated ones (Stock, Watson 1999; Armstrong 
2001). Armstrong (2001) suggested that simple combining methods would be a reason-
able approach when the problem in question involves substantial uncertainty. Some 
attractive features of simple combining methods are that they are easy to understand 
and implement, less prone to mistakes, and do not depend on any assumptions: these 
features have made them a frequently applied component of the forecaster’s toolbox. 
The combining methods taken into consideration by this study are briefly described as 
follows.
Simple Mean: All forecasts at time t generated by single models are assigned the same 
weight. Many studies have shown that this is an efficient and robust method (Jose, 
Winkler 2008; Timmermann 2006).
Trimmed Mean: This averages forecasts of single models, but excludes the highest t % 
and lowest t % of the forecasts. The benefits of a 20% trimmed mean are extensively 
examined in Jose, Winkler (2008), Wilcox (2012).
Simple Median: This method is formed as the median of the forecasts generated by 
single models. The median combination is less prone to be affected by extreme values 
than the simple mean combination, so it tends to produce good results (Stock, Watson 
2004; Wallis 2011).
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Least Square Weights: In this method (LS weights), the forecasts generated by single 
models are regressed against the actual values. After that, the coefficients from the 
resulting regression are employed as the weights of the single models in combination 
(Granger, Ramanathan 1984; Timmermann 2006).
Mean Square Error Weights: The method of MSE weights, devised by Stock and Watson 
(1999), uses the MSE values computed from the period of model estimation of single 
models to calculate the weights of single models, via Eq. (18), as seen below:

 
( ) ( )

1
1 / / 1 /

=
= ∑

n kk
i i j

j
w MSE MSE , (18)

where k denotes the power to be raised. If k is set to k = 0, it places equal weight on 
single models. When k is increased, more emphasis is put on those models performing 
well. k = 1 is the most popular choice (Armstrong 2001).
Mean Square Error Ranks: The method of MSE ranks, proposed by Aiolfi and Tim-
mermann (2006), sorts single models into clusters with respect to their MSE values by 
a k-means algorithm, then forecasts are pooled within each cluster. Finally, this method 
determines the weights of each cluster in combination so as to be inversely proportional 
to the models’ ranks. This combination method can be expected to be more robust than 
the methods of LS weights and MSE weights, because it is less sensitive to outliers 
(Timmermann 2006).

3. Empirical study

3.1. Data description and experimental setup
The retail sector has a rapidly changing and growing structure, and retail areas are 
expanding every year in Turkey. The sales forecasting application conducted in this 
study is based on the weekly sales data of an international furniture company, which 
has operated in Turkey’s retail sector for many years. It is one of the leading companies 
in its sector, preferred by many customers. The company is required to formulate effec-
tive plans in order to survive in Turkey’s market, which is characterised by high levels 
of uncertainty and challenging competition. Like many other companies, this company 
exploits historical data to forecast future sales with the aim of minimising the adverse 
effects of fluctuations in sales.

Table 2. Description of the series under investigation

Series Products Series Products

Data 1 Three-seat sofa bed Data 6 Paper napkin

Data 2 Drawer mat, transparent Data 7 Armchair cushion

Data 3 Pendant lamp Data 8 Photo frame

Data 4 Coffee table Data 9 Slatted bed base

Data 5 Tea towel Data 10 Cord set



815

Journal of Business Economics and Management, 2017, 18(5): 803–832

The sales data of ten products selected from different product groups are investigated in 
this study. Table 2 gives information regarding these data sets and the corresponding de-
scription for each. The selection of products was based on both the differences between 
products in terms of randomness of sales patterns (see Fig. 2) and expert opinions from 
the retailer’s sales department on their difficulty of forecasting the sales. 

Fig. 2. Time plots of the series
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The data was obtained weekly, starting 2 January 2012 and ending 2 May 2015, giving 
a total of n = 174 observations, as illustrated in Figure 2. The forecasting models are 
estimated through the first 144 observations. The the last 30 observations of each series 
are reserved so they can be used to calculate forecast evaluation statistics, revealing the 
models’ unseen-data generalisation accuracy. For the ANN and ANFIS models, the first 
144 observations are divided into two parts to make room for a validation set. The last 
30 of these observations are reserved for validation purposes when constructing these 
models. There are some missing values in several data sets, as certain products were 
out of stock for one or more weeks at certain times. Missing sales are predicted by the 
average of the sales of the previous five weeks. Since these lacunae never affect more 
than a few weeks’ worth of data for any one product, the missing values’ impact on this 
analysis is very low. Details concerning the model construction and parameter selection 
processes employed for the single models are discussed in the following paragraphs.
The statistical framework provided by state space models enables us to employ well-
known information criteria for model selection. For this study, the AIC corrected for 
small-sample bias (AICC) given below is utilised in order to select the model with the 
smallest AICC among 30 possible ETS models: 

 AICC = AIC 
( )( )2 1 2

  
+ +

+
−

k k
T k

, (19)

where T denotes the total number of observations kept for model building, and k is 
the sum of the number of parameters and initial states used for the model estimation 
procedure.
30 possible models, some of the ETS model combinations – namely, ETS(M,M,A), 
ETS(M,Md,A), ETS(A,N,M), ETS(A,A,M), ETS(A,Ad,M), ETS(A,M,N), ETS(A,M,A), 
ETS(A,M,M), ETS(A,Md,N), ETS(A,Md,A), and ETS(A,Md,M) – can cause numeri-
cal instabilities (Hyndman, Khandakar 2008). As such, these ETS models are excluded 
from consideration. The ets function from the forecast package in the R programming 
language is used to estimate all possible ETS models.
Building ARIMA models requires that one assumes homoscedasticity and stationarity 
for the series prior to embarking on the modelling procedure. If and when the time series 
exhibits heteroscedasticity, a Box-Cox transformation is employed to stabilise variance 
for the analysis. In regards to whether the stationarity assumption holds, we made use 
of unit root tests based on a null hypothesis of no unit root. We did not adopt unit root 
tests with the null hypothesis that a unit root exists, because those tend to produce 
the result that more differences than necessary are taken to make the series stationary. 
Keeping the number of differences as small as possible improves the quality of forecasts 
and leads to narrower prediction intervals (Smith, Yadav 1994). In keeping with this, 
the degree of first differencing d is determined by means of successive KPSS unit root 
tests (Kwiatkowski et al. 1992). This means that if we find a unit root for the series, 
then the KPSS test is performed on the differenced series at that time, and this process 
is repeated until the result of the test is insignificant. To find the degree of seasonal dif-
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ferencing D, the Canova-Hansen test (Canova, Hansen 1995) is applied. Once the orders 
of D and d have been found, in turn, via the aforementioned tests, the values of p, q, 
P and Q are determined by an information criterion. In order to select the appropriate 
ARIMA model, an AICC formulation (formed as described below) has been employed in 
the scope of this study. The model with the lowest AICC value of all candidates is cho-
sen as the final ARIMA model. Even if the final ARIMA model appears to be the best 
with respect to the AICC value, the residuals from the chosen model must be checked 
to ensure that they are not distinguishable from a white-noise series. We have used a 
portmanteau test (the Ljung-Box test) for this purpose:

 AICC = AIC 
( )( )2 1 2

 ,
2

+ + + + + + + + + +
+

− − − − − −

p q P Q k p q P Q k
T p q P Q k

 (20)

where k = 1 if c ≠ 0 and k = 0 if c = 0. 
The paremeters of the ARFIMA(p,d,q) model were estimated by the exact maximum 
likelihood estimation procedure in this study. Firstly, the Hydman and Khandakar (2008) 
algorithm was exploited to determine the p and q parameters, after which the Haslett and 
Raftery (1989) algorithm was employed to calculate the maximum likelihood estimators 
of all parameters of the full ARFIMA(p, d, q) model including d. All computations for 
the ARIMA and ARFIMA models were implemented via the Arima and arfima functions 
from the forecast package in R. 
As for the details of the experimental design formed for the ANN models, the back-
propagation algorithm was implemented, as it is the most popular and widely used. 
There were two motivations for using a validation set for a neural network. The first 
is to halt iterations when neural networks start to lose their generalisation ability. Sec-
ondly, in selecting the final ANN model it is useful to identify which has the smallest 
error measure on the validation set. The general choices made for the activation func-
tions are as follows: no activation function for the neurons of the input layer, nonlinear 
activation functions (logistic or hyperbolic) for the hidden neurons, and the linear func-
tion for the single output neuron in order to obviate the unwanted effects a nonlinear 
activation function would have on the predicted output (Zhang et al. 1998). The logistic 
function is employed as the activation function for all hidden neurons. The selection 
of appropriate numbers of hidden neurons and input neurons is data-dependent, and 
there is no generally accepted rule to determine these parameters. Hence, experiments 
are often carried out to determine these parameters. To this end, the numbers of input 
neurons and hidden neurons are varied from one to ten, with the result that 100 differ-
ent models are considered for this analysis in the ANN model building process. One-
step-ahead forecasts are the focus of this study. Owing to the choice of one-step-ahead 
forecasting, the output layer is made up of only one output neuron. Each of the ANN 
models is replicated 30 times using different random initial weights. In total, 3000 
neural networks are constructed to model each time series. All the ANN models were 
trained using the Levenberg-Marquardt optimisation algorithm, with assistance from the 
MATLAB software package.
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According to the KPSS test performed in the ARIMA models, data series 2, 4, and 9 
are not stationary. Some studies have demonstrated that forecast accuracy is improved 
by converting a non-stationary series into a stationary series prior to modelling with 
neural networks (Nelson et al. 1999; Zhang, Qi 2005). Therefore, the differenced series 
are used to build the ANN and the ANFIS models for these data sets. For the ANFIS 
models, an initial Sugeno-type fuzzy inference system was generated using membership 
functions and rules were extracted from data clusters found by fuzzy c-means clustering. 
After many trials, some parameters related to the ANFIS model were determined in a 
way to minimise the validation error. The types of membership function were selected 
as gaussian for the input nodes and linear for the output node. The best cluster size for 
each of the lagged values was found to be 2. The value of the exponent for the fuzzy 
partition matrix was specified as 2. The maximum number of the training epoch was set 
at 30. The selected training algorithm for the ANFIS model was a hybrid method that 
used the backpropagation algorithm to compute the parameters of the input membership 
functions and the least squares method to compute the parameters of the output member-
ship function. All ANFIS computations were carried out in MATLAB.

3.2. Forecast evaluation statistics
It is a well-known fact that there is no consensus on the best error measure for fore-
casting (Makridakis et al. 1982; Armstrong, Fildes 1995). As such, a variety of differ-
ent forecast evaluation statistics are employed to evaluate the forecast accuracy of the 
ten time series in this study: Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percent-
age Error (sMAPE), and Theil’s U, respectively: 
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where yt is the observation value at time t, ˆty  denotes the forecast value at time t, and 
n is the number of data points in the test set. 
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RMSE and MAE are widely used scale-dependent error measures, whereas MAPE and 
sMAPE are scale-independent error measures, which have the advantage of enabling 
comparisons between the forecast performance of different data sets. However, when 
yi = 0s for any i in the period of interest, MAPE and sMAPE bear the risk of producing 
infinite or extreme values. Theil’s U, developed by Theil (1966), is a relative accuracy 
measure which also penalises models with large errors. It allows comparisons to be 
made between the model under investigation and the naive method. If the U value 
equals 1, there is no difference between a naive forecasting and the model used. If the 
U value is greater than 1, it means that using the model would be pointless because the 
naive method would lead to better forecasts. If the U value is less than 1, the forecasting 
model is superior to the naive method.

3.3. Results
Two values are taken into consideration by the retailer – namely, AWS (Average Weekly 
Sales) and EWS (Expected Weekly Sales) – to predict future sales quantities and to de-
termine the reorder points for its products. These are the outputs of the current system, 
which are supplied to the employees responsible for the operational activities of stock 
control. AWS is computed with the help of the exponential smoothing method, using 
the prespecified a value once the weekly sales have been realised. In other words, AWS 
represents an average of a product’s weekly sales and is used as an input for calculating 
EWS values, whereas EWS represents a product’s expected weekly sales and is used by 
the company as its final forecast for sales of the product in question. The stock plan-
ners simply enter weekly sales data into the system, and it returns the AWS and EWS 
values. To assess the relative effectiveness of the forecasts in use, the forecasts given by 
the AWS and EWS values are compared with the results of the forecasting techniques 
examined in this study. Hence, we have thirteen different forecasts in total for each time 
series regarding sales of the product in question; that is, two forecasts produced by the 
system under investigation (AWS, EWS), five single models (ETS, ARIMA, ANN, 
ARFIMA, ANFIS), and six combining methods (Simple mean, Trimmed mean, Simple 
median, LS weights, MSE weights, and MSE ranks).
Table 3 contains the details of the selected forecasting models for each of the time se-
ries. We used ANN(I×H×O) and ANFIS(I×T×O) notations to represent the number of 
lagged values of the series (I), hidden nodes (H), output nodes (O), and the total number 
of nodes (T) used in the ANFIS model. As can be seen from the table, d parameters for 
the ARFIMA models lie in the range 0 > d > 0.5 for Data 1, 3, 7, and 9. Hence, one can 
say that sales quantities for these data sets exhibit a long memory.
The forecasting performance of the aforementioned techniques for all the series are pre-
sented in Tables 4–8 in terms of RMSE, MAE, MAPE, sMAPE, and Theil’s U statistics, 
computed on the test sets. Bold type is used in these tables to emphasise the forecasting 
methods that exhibit the lowest values in terms of any of the error measures. As the 
tables show, no single forecasting technique is the best for all data sets with respect to 
all statistics considered. This observation supports the generally accepted principle that 
no individual forecasting model is the best for all situations under all circumstances 
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(Makridakis et al. 1982; Chatfield 1988). It should be noted that the Theil’s U values 
obtained for Data 4 are all higher than 1, except in the case of the ARIMA and ARFIMA 
models. This means that the naive method leads to better forecasts for Data 4. When 
we look at the time series plot regarding this data set, it can be seen that the last 30 ob-
servations – which form the test set – have different patterns than those of all the other 
observations. The fact that the forecasting techniques did not incorporate these different 
patterns into their estimating process may explain their inferior forecasting performance 
relative to the naive model for this data set.
The tables demonstrate that the combined forecasts – whichever method is used – tend 
to outperform the worst forecasts of the single models, in terms of all forecast evalua-
tion statistics for all the data sets considered. Hence, the risk of choosing a poorly per-
forming single model might be minimised by means of combination methods. Granger 
(1989) has observed that when the component models are suboptimal, the combining 
method can outperform its component models. With regards to the selection of the final 
model for each of the single models in this study, we cannot guarantee that the selected 
models are optimal. Information criteria were used to select the final model for the 
ETS, ARIMA and ARFIMA models, and the ANN and ANFIS models selected were the 
models with the lowest error value on the validation set. Therefore, it is to be expected 
that the overall performances of the combining methods should be superior to those of 
the single models. The obtained results confirm this expectation, except in the case of 
Data 7. For this series, the selected ETS is probably the optimal model: it has exhibited 
clear superiority over all other single models and combining methods, in terms of all 
the forecast evaluation statistics considered.
Also, to investigate the impact of change in forecasting path on the accuracy of the 
studied methods, five forecasting horizons, i.e. h = 6, 12, 18, 24, 30, each of which had 
a different starting point, were considered, as in Çatik and Karçuka (2012). In other 
words, to obtain forecasts, for instance, for h = 6, all models were re-estimated using 

Table 3. Forecasting models selected for the ten time series under investigation

Time Series ETS ARIMA ARFIMA ANN ANFIS

Data 1 ETS(A,N,N) ARIMA (3, 0, 0) ARFIMA (1, 0.17, 0) 2×1×1 2×17×1

Data 2 ETS(A,N,N) ARIMA (0, 1, 4) ARFIMA (3, 0.00, 2) 3×4×1 2×17×1

Data 3 ETS(A,N,N) ARIMA (1, 0, 3) ARFIMA (0, 0.33, 3) 3×1×1 2×17×1 

Data 4 ETS(M,N,N) ARIMA (0, 1, 1) ARFIMA (2, 0.00, 0) 2×6×1 2×17×1

Data 5 ETS(A,N,N) ARIMA (1, 0, 1) ARFIMA (1, 0.00, 1) 1×1×1 5×32×1

Data 6 ETS(A,N,N) ARIMA (3, 0, 0) ARFIMA (3, 0.00, 0) 1×8×1 5×32×1

Data 7 ETS(A,N,N) ARIMA (1, 0, 0) ARFIMA (1, 0.22, 0) 2×1×1 3×22×1

Data 8 ETS(M,N,N) ARIMA (1, 0, 3) ARFIMA (1, 0.00, 3) 1×2×1 1×12×1

Data 9 ETS(M,A,N) ARIMA (0, 1, 1) ARFIMA (1, 0.06, 2) 2×2×1 2×17×1

Data 10 ETS(A,N,N) ARIMA (3, 0, 2) ARFIMA (3, 0.00, 2) 2×10×1 2×17×1
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168 observations and the last six weeks were reserved for out of sample forecasting 
comparison. The results of these comparisons are presented separately for single and 
combining methods in Figure 3. The mean ranks of the forecasting methods computed 
from the RMSE statistics were taken into consideration to examine the effect of the 
different forecasting paths on the methods considered. The mean ranks computed from 
other error statistics are similar to the one reported here, therefore they are not included 
here to save space. As can be seen in Figure 3, the patterns are somewhat mixed. There 
is no clear evidence of any effect of the different forecasting paths on the forecasting 
performances for the single methods. But it does show that the ANFIS is the most 
volatile method across different forecasting horizons. As for the combining methods, 
there is an increasing trend for the LS method. It can be said that this method is only 
effective in short forecasting horizons.

Table 4. Forecasting results of the single models and combining methods for Data 1 and 2

Techniques
Data 1 Data 2

RMSE MAE MAPE sMAPE Theil-U RMSE MAE MAPE sMAPE Theil-U

AWS
EWS
ETS

7.38
7.84
6.96

5.74
6.21
5.29

63.68
71.12
55.51

39.22
42.51
36.55

0.86
1.01
0.60

146.9
136.4
90.07

108.6
102.1
68.39

24.87
22.65
15.06

20.38
18.90
14.06

1.76
1.44
0.86

ARIMA 6.84 5.36 54.47 37.05 0.54 84.25 63.94 14.45 13.02 0.84

ANN 6.80 5.20 52.79 36.05 0.51 87.50 65.12 14.76 13.25 0.89

ARFIMA 6.72 5.28 53.54 36.50 0.53 92.42 70.48 15.78 14.41 0.90

ANFIS 6.84 5.23 51.29 37.40 0.71 87.66 66.29 14.66 13.59 0.83

Simple mean 6.74 5.26 55.87 36.44 0.56 86.98 63.03 14.56 12.83 0.85

Trimmed mean 6.80 5.29 55.58 36.58 0.56 85.63 61.27 14.04 12.51 0.82

Simple median 6.73 5.24 54.44 36.21 0.53 85.41 61.10 13.85 12.45 0.79

LS weights 7.00 5.27 55.00 36.43 0.53 91.60 70.42 16.14 14.25 0.96

MSE weights 6.74 5.23 55.02 36.25 0.55 84.25 62.44 14.23 12.76 0.81

MSE ranks 6.72 5.20 53.45 36.08 0.52 84.67 62.24 14.26 12.71 0.82

Note: Bold numbers indicate the best forecasting techniques in terms of the error measure considered.

Fig. 3. Graph of the mean ranks of the methods for five forecasting horizons
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Table 5. Forecasting results of the single models and combining methods for Data 3 and 4

Techniques
Data 3 Data 4

RMSE MAE MAPE sMAPE Theil-U RMSE MAE MAPE sMAPE Theil-U

AWS
EWS
ETS

76.67
98.04
72.70

61.57
79.14
57.19

23.00
26.40
19.48

19.38
23.18
18.54

1.06
1.11
0.89

18.53
28.55
17.19

15.67
24.01
15.42

37.78
56.17
33.49

30.13
44.96
29.19

1.33
2.18
1.03

ARIMA 72.70 57.47 19.67 18.23 0.85 16.89 15.24 32.78 28.70 0.99

ANN 76.62 57.65 20.87 18.13 0.95 25.40 18.88 37.00 32.13 1.24

ARFIMA 77.80 60.58 21.15 19.06 0.94 17.46 15.58 31.13 28.98 0.98

ANFIS 71.27 55.51 20.04 17.49 0.86 19.63 16.48 33.37 29.91 1.05

Simple mean 66.63 52.54 18.71 16.67 0.81 17.33 15.49 34.56 29.47 1.11

Trimmed mean 67.51 52.00 18.64 16.49 0.81 17.29 15.60 33.69 29.39 1.04

Simple median 68.01 52.60 18.80 16.69 0.82 17.35 15.61 33.16 29.25 1.02

LS weights 85.49 72.64 24.54 21.88 0.98 31.95 22.37 43.14 36.34 1.57

MSE weights 66.45 51.28 18.27 16.31 0.80 18.00 15.89 33.87 29.60 1.03

MSE ranks 66.67 51.29 18.22 16.32 0.80 18.53 16.08 33.85 29.72 1.03

Note: Bold numbers indicate the best forecasting techniques in terms of the error measure considered.

Table 6. Forecasting results of the single models and combining methods for Data 5 and 6

Techniques
Data 5 Data 6

RMSE MAE MAPE sMAPE Theil-U RMSE MAE MAPE sMAPE Theil-U

AWS
EWS
ETS

568.2
659.6
380.5

434.0
536.3
305.5

34.10
38.22
22.52

29.62
32.74
21.22

2.31
2.13
1.06

71.01
85.94
72.23

61.99
67.57
60.83

21.15
21.91
18.74

18.66
19.02
18.27

0.98
1.07
0.90

ARIMA 363.7 281.5 19.64 19.57 0.96 73.52 60.60 19.08 18.08 0.87

ANN 342.7 261.1 17.87 18.07 0.88 69.69 56.35 17.66 16.79 0.83

ARFIMA 369.4 287.3 20.31 20.00 0.98 70.35 56.54 17.81 16.89 0.81

ANFIS 383.9 314.2 21.46 22.08 1.03 72.08 59.73 18.72 17.93 0.87

Simple mean 364.8 296.8 21.40 20.83 1.03 66.15 55.84 17.94 16.70 0.80

Trimmed mean 358.0 281.5 19.65 19.67 0.96 67.64 56.12 17.84 16.79 0.80

Simple median 356.3 281.2 19.59 19.64 0.95 69.35 57.82 18.26 17.29 0.82

LS weights 369.9 276.5 18.14 19.12 0.93 301.9 268.5 53.9 44.87 2.62

MSE weights 359.0 281.8 19.92 19.64 0.97 68.87 56.96 18.01 17.06 0.82

MSE ranks 359.7 282.0 19.85 19.65 0.97 68.50 56.62 17.93 16.94 0.81

Note: Bold numbers indicate the best forecasting techniques in terms of the error measure considered.
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Table 7. Forecasting results of the single models and combining methods for Data 7 and 8

Techniques
Data 7 Data 8

RMSE MAE MAPE sMAPE Theil-U RMSE MAE MAPE sMAPE Theil-U

AWS
EWS
ETS

17.39
11.11
9.99

12.01
9.47
7.91

53.69
35.12
28.72

34.20
31.64
26.23

1.88
0.93
0.81

134.6
126.7
102.4

116.5
100.6
73.16

41.20
34.44
23.61

34.10
29.74
22.13

1.13
1.16
0.83

ARIMA 12.35 10.12 43.31 31.85 1.01 114.3 82.26 25.63 25.37 0.95

ANN 11.92 9.39 39.77 29.77 0.94 108.3 70.13 20.10 21.57 0.90

ARFIMA 10.70 8.43 34.59 27.30 0.85 108.7 73.15 22.42 22.00 0.89

ANFIS 11.16 8.35 34.81 26.81 0.86 105.3 67.27 19.47 20.67 0.89

Simple mean 10.59 8.62 36.38 28.15 0.90 101.3 71.61 22.81 21.76 0.83

Trimmed mean 10.51 8.38 35.21 27.35 0.86 102.7 69.39 21.50 21.02 0.84

Simple median 10.59 8.38 35.55 27.44 0.87 105.7 69.65 21.27 21.04 0.86

LS weights 11.34 9.12 39.27 29.38 0.97 109.0 72.96 21.92 22.38 0.91

MSE weights 10.64 8.59 36.15 27.99 0.88 101.9 69.26 21.42 20.99 0.83

MSE ranks 10.86 8.66 36.47 28.04 0.88 102.1 69.71 21.65 21.14 0.83

Note: Bold numbers indicate the best forecasting techniques in terms of the error measure considered.

Table 8. Forecasting results of the single models and combining methods for Data 9 and 10

Techniques
Data 9 Data 10

RMSE MAE MAPE sMAPE Theil-U RMSE MAE MAPE sMAPE Theil-U

AWS
EWS
ETS

17.03
19.38
17.33

13.80
13.90
14.53

25.58
24.09
25.90

22.70
23.79
23.52

0.95
1.05
0.95

32.93
66.73
35.43

24.98
46.35
30.06

15.53
23.53
17.09

13.76
21.62
16.43

0.88
1.25
0.87

ARIMA 16.95 12.89 21.30 21.02 0.90 35.36 27.58 16.96 14.96 0.85

ANN 16.88 13.79 22.66 21.86 0.89 41.35 34.00 20.16 17.79 0.99

ARFIMA 16.95 12.42 19.99 20.19 0.88 35.65 27.94 17.07 15.17 0.86

ANFIS 17.07 13.75 22.35 21.82 0.89 36.60 28.67 17.20 15.35 0.94

Simple mean 15.95 12.66 21.57 20.61 0.86 34.24 28.00 16.60 15.05 0.83

Trimmed mean 16.24 12.87 21.68 20.90 0.87 34.39 27.69 16.62 14.97 0.84

Simple median 15.91 12.33 20.69 20.12 0.85 34.92 27.31 16.46 14.77 0.84

LS weights 19.70 13.53 19.68 22.78 1.03 39.11 31.20 19.14 16.58 0.97

MSE weights 16.32 13.32 22.58 21.47 0.87 35.01 28.49 17.03 15.33 0.86

MSE ranks 16.21 13.12 22.30 21.25 0.87 35.20 28.61 17.14 15.39 0.86

Note: Bold numbers indicate the best forecasting techniques in terms of the error measure considered.



824

S. Aras et al. Comparative study on retail sales forecasting between single and combination methods

It cannot be judged from Tables 4–8 whether there is a statistically significant differ-
ence in performance between the single and combining methods when considering all 
data sets, even if it is possible to apply some interpretations. To identify the best overall 
performance attained by the methods under investigation, statistical tests are performed 
on the five performance criteria described above. For this purpose, Friedman’s test – a 
non-parametric alternative to one-way ANOVA with repeated measures – is performed 
for all evaluation statistics. This test evaluates the null hypothesis (H0) – that is, the 
hypothesis that the forecasting performances of the methods under examination do not 
differ with respect to the corresponding error measure – against the alternative hypoth-
esis (H1) that there are differences in performance among them (Hollander et al. 2013). 
The Friedman’s test results that were obtained are presented in Table 9. In this table, 
p-value is the probability that the H0 hypothesis is true. Based on these small p-values, 
all H0 hypotheses are rejected with a 95% confidence level. This means that the various 
forecasting methods exhibit statistically different performances with respect to RMSE, 
MAE, MAPE, sMAPE, and Theil’s U statistics when all data sets are taken into account.

Table 9. Results of the Friedman’s test statistics in terms  
of forecast evaluation measures

Friedman statistics
c

2 p-values

RMSE 70.05 0.00000

MAE 50.70 0.00001

MAPE 40.64 0.00006

sMAPE 52.92 0.00000

Theil-U 62.59 0.00000

After finding statistically significant differences in forecasting performances, identifying 
the source of these differences is of importance for this study to determine specifically 
which forecasting methods exhibit which specific differences. A multiple-comparison 
test can provide this information. Multiple-comparison procedures identify which fore-
casting methods are significantly different from which others, drawing on the differences 
between the mean ranks of the methods in question. Detailed information about these 
procedures is given in a book by Hochberg and Tamhane (2009). The results of the 
multiple-comparison procedures employed in this study are demonstrated in Figure 4. 
The value of the mean rank of each forecasting method is represented by a circle, and 
the line extending out from each circle represents the comparison interval. The per-
formances of two forecasting methods are significantly different if their intervals are 
disjoint. Conversely, overlapping intervals indicate that the relevant forecasting perfor-
mances do not differ significantly. When multiple-comparison tests are performed, the 
risk of making type-I error increases. To avoid this kind of error, the Bonferroni method 
(Corder, Foreman 2014) is exploited in this study. 



825

Journal of Business Economics and Management, 2017, 18(5): 803–832

Generally speaking, these figures provide statistical comparisons of RMSE, MAE, 
MAPE, sMAPE and Theil’s U across different forecasting techniques and the EWS 
and AWS methods. These comparisons indicate that the forecasting performances of 
all the techniques considered are superior to those of the forecasts produced by the 
retailer’s existing system, for all ten products investigated. Though there are some dif-
ferences in performance among the combining methods, it is apparent that combined 
forecasts improve forecast accuracy with respect to all the error measures considered 
across all the series. In particular, some combining methods provide statistical proof 
of this superiority. Examination of Figure 4 reveals clearly that there are no statisti-
cally significant differences in performance among the single models. If a comparison 
is made between the combining methods and the single models, it can be seen that the 
combining methods – other than the least-square weights – generally tend to produce 
more accurate forecasts. 

Discussion and conclusions

In today’s market conditions, with competition increasing day by day and shortened 
product life spans, companies need to be fast, flexible and agile in order to compete. 
This ultra-competitive environment means that the power is now in the hands of the 
end consumer, so businesses that are able to anticipate the customer’s wishes will al-
ways be one step ahead. Companies striving to maintain their market presence must 
be able to analyse and interpret market movements and variations in customers’ needs 
well in advance, enabling them to direct their business activities appropriately. It is 
now a necessity for businesses to anticipate the goods or services that will be requested 
by customers, and to make the necessary preparations for supplying them in advance. 
Accordingly, researchers have turned their attention to demand forecasting methods, 
and have already developed an array of methods for that purpose. In this study, we 
have presented an experimental analysis of five single models and of the most popular 
methods of combining forecasts, as applied to sales forecasting for a furniture retailer 
operating in Turkey. Based on the findings reported in this study, some remarkable 
conclusions may be drawn. 

Fig. 4. Results of the multiple-comparison procedures in terms  
of RMSE, MAE, MAPE, sMAPE, and Theil’s U
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First, in time series applications it is almost impossible to know in advance which fore-
casting model will perform best for a given data set. This corresponds with the generally 
accepted fact that no single model is the best for all situations under all circumstances. 
For this reason, the meaning of ‘best’ can be interpreted in various ways, such as that 
the best model is the model whose forecasts both perform well and exhibit little vari-
ability in performance, whichever time series is analysed. From this point of view, the 
empirical results obtained in this study indicate that combining methods can be called 
‘best’ performer in this context and can confidently be used to forecast the sales of any 
product of a retail company, as they typically produce robust forecasting performances 
whichever time series is considered. This study also found that the existing forecasts 
of the company could be statistically improved by using combining methods, except 
the LS weights combining method. This had the worst overall performance among the 
combining methods examined, and even performed worse than the single methods. A 
possible reason for this is that the combining method of LS weights is the most elaborate 
method requiring the estimation of many parameters. This finding supports the claim 
in the literature that simple combining methods tend to produce forecasts better than 
the sophisticated ones. When the combining methods employed in the scope of this 
study are examined, it is seen that they consist of three simple methods (simple mean, 
trimmed, median) and three more sophisticated ones (LS weights, MSE weights, MSE 
ranks). It is observed that simple methods yield similar performances or even better than 
more complicated combining methods, and this finding is in line with the widely accept-
ed claim in the existing literature. Second, it is observed that making use of only a single 
model involves more risk of producing inaccurate forecasts than is associated with the 
use of combining methods. This conclusion indicates that combining forecasts is less 
risky than choosing any single forecasting model. This study accordingly suggests that 
the tendency of combination methods to produce more accurate, safer forecasts should 
be taken advantage of by retail sector decision makers when planning related activities. 
Third, it has been claimed by a number of studies that, when different single models 
are considered, using combined forecasting methods tends to result in better forecasts 
than using any given single model, and that this allows one to avoid the necessity of 
identifying specifically which individual model might in fact be the best for the given 
application. A variety of different forecasting models were analysed in this study, and 
we have reached the similar conclusion with the existing literature that it is unnecessary 
to identify the best for single models when seeking to improve the forecast accuracy 
achieved by combined forecasts. Another claim suggests that a combination of very 
similar models affects forecasting performance positively. This study uses both quite 
different models such as the ETS, the ANN and the ANFIS and similar models such as 
the ARIMA and the ARFIMA, producing close forecasts under certain circumstances. 
Hence, it takes advantage of the truth part of two claims in the literature. Finally, it 
should be noted that no clear differences in sales forecasting performance were observed 
among the single models under examination. This conclusion was proven statistically 
by means of the non-parametric tests carried out. Among the single models, the ETS 
and the ANFIS models were applied to forecasting retail sales for the first time in this 
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study. It found that these models produce forecasts that are comparable with the more 
frequently used ones. Most of the studies in the literature come to the conclusion that the 
ANN model exhibits better performance than traditional techniques such as the ARIMA 
models and exponential smoothing methods. Contrary to the common finding, this study 
has not found that there is a statistically significant difference in performance between 
the ANN model and traditional forecasting techniques when the overall forecasting 
performance is taken into consideration for all data sets used.
Some limitations of the study can be described to guide future research. One limitation 
is that the study does not include any macroeconomic variables informing about the 
economic conditions and purchasing power in the country where the study is carried 
out, and any indicators summarising the conditions in the relevant sector. The other 
limitation is that the company has disclosed the details of its existing forecasting system 
and information regarding promotional strategies that affect the sales of a given product 
substantially. Lastly, even if the results of the study have shown that it is possible to 
attain statistically more accurate sales forecasts by using the methods in the study, a 
decision support platform which collects all of the abovementioned methods and helps 
the people in charge in determining stock level is not built into the scope of this study. 
For future research directions, similar studies could be made in relation to products with 
pronounced seasonal sales patterns, and products of companies operating in a range of 
different sectors and markets. In addition, there are some recently developed neural net-
work types such as emotional neural networks, deep neural networks, etc. that have not 
been examined for sales forecasting. Hence, the performance of these neural networks 
may be investigated. Further, the forecasting process should take into account the effects 
of the exogenous variables apart from the lagged values of the series to be forecast, as 
well as qualitative assessments describing the company’s turnover and the share of and 
position in the market on the forecasts.
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