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Abstract. Use of artificial intelligence systems in forecasting financial markets requires 
a reliable and simple model that would ensure profitable growth. The model presented in 
the paper combines Evolino recurrent neural networks with orthogonal data inputs and 
the Delphi expert evaluation method for its investment portfolio decision making process. 
A statistical study demonstrates the reliability of the model and describes its accuracy. 
Capabilities of the model are demonstrated using a trading simulation.
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1. Introduction

Artificial intelligence methods have become very important in making financial market 
predictions. The following elements are of major importance: the selection of the input 
data, the selection of the forecasting tool, and the correct use of the output data. As 
investors are searching for profitable growth, they require the development of a stable 
and reliable forecasting model.
Kimoto et al. (1990) proposed a stock market prediction system with modular neural 
networks; Wang and Leu (1996) used ARIMA-based neural networks. The application 
of neural networks to stock market prediction was presented by Kulkarni (1996). The 
accuracy of the prediction depended on neural networks and the input selection. 
Stock prices have also been forecasted using evolutionary systems. Kim and Han (2000) 
proposed a new hybrid of a genetic algorithm with artificial neural networks. The ge-
netic algorithm not only searches for the optimal or near-optimal solutions of the con-
nection weights in the learning algorithm, but also looks for the optimal or near-optimal 
thresholds of the feature discretization. Hussan et al. (2007) proposed and implemented 
a fusion model by combining the hidden Markov model, artificial neural networks (NN), 
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and genetic algorithms to forecast the behaviour of financial markets. The weighted 
average of the predictions was used to forecast stock prices and increase the accuracy 
of the model. Choudhry and Garg (2008) proposed a hybrid machine learning system 
based on genetic algorithms and support vector machines for stock market prediction, 
using the correlation between the stock prices of different companies.
Prediction systems based on neuro-fuzzy sets have also been used to predict financial 
markets. Ang and Quek (2006) proposed a model, which synergizes the price difference 
forecast method with a forecast bottleneck-free trading decision model. Chiang and Liu 
(2008) developed a fuzzy rule based system, where the clustering technique and the 
simplified and wavelet (Chang, Fan 2008) fuzzy rule based systems were integrated for 
forecasting. The system proposed by Agrawal et al. (2010) used an adaptive neuro-fuzzy 
inference system for making decisions based on the values of some technical indicators. 
Among the various technical indicators available, the system used the weighted moving 
averages, divergence, and RSI (relative strength index). In the paper (Quek et al. 2011), 
a novel stock trading framework based on a neuro-fuzzy associative memory architec-
ture was proposed. The architecture incorporated the approximate analogical reasoning 
schema to resolve the problem of discontinuous responses and inefficient memory uti-
lization with uniform quantization in the associative memory structure.
Suppose it is known that p is an element of some set of distributions P. Choose a fixed 
weight ωq for each q in P such that the ωq add up to 1 (for simplicity, suppose P is 
countable). Then construct the Bayesmix M(x) = ∑q ωqq(x), and predict using M instead 
of the optimal but unknown p. How wrong could this be? The recent work of Hutter 
provides general and sharp loss bounds (Hutter 2001): Let LM(n) and Lp(n) be the total 
expected unit losses of the M-predictor and the p-predictor, respectively, for the first 
n events. Then LM(n)−Lp(n) is at most of the order of √Lp(n). That is, M is not much 
worse than p. And in general, no other predictor can do better than that. In particular, 
if p is deterministic, then the M-predictor will not make any more errors. If P contains 
all recursively computable distributions, then M becomes the celebrated enumerable 
universal prior. The aim of this paper is to construct a model that could make predictions 
with a small enough difference M(t) − p(t) for some fixed time t.
Schmidhuber et al. (2005) introduced a general framework of sequence learning algo-
rithms, EVOlution of recurrent systems with LINear outputs (Evolino). Evolino uses 
evolution to discover good recurrent neural network hidden node weights, while using 
methods such as linear regression or quadratic programming to compute the optimal lin-
ear mappings from the hidden state to the output. In some cases, quadratic programming 
is used to maximize the margin. Evolino-based Long Short-Term Memory (LSTM) can 
solve tasks that Echo State nets cannot. 
The block diagram of an LSTM recurrent neural network is shown in Figure 1.
The Evolino recurrent neural network forms an LSTM network with N = 4n memory 
cells, where N is the total number of neurons and n is the number of memory cells. The 
genetic evolution algorithm is applied to each quartet of memory cells separately. The 
cell has an internal state S together with a forget gate (GF) that determines how much 
the state is attenuated at each time step. The input gate (GI) controls access to the cell 
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by the external inputs that are summed into the 
unit, and the output gate (GO) controls when 
and how much the cell fires. The dark nodes 
represent the multiplication function and the 
linear regression Moore-Penrose pseudoinverse 
method is used to compute the output (light 
blue circle). A detailed description of the Ev-
olino RNN algorithm can be found in (Schmid-
huber et al. 2005, 2006).
Input selection is always important for adapt-
ing artificial intelligence systems to forecasting. 
In the paper by Maknickas and Maknickiene 
(2012), a statistical research of the orthogonal-
ity of inputs was made. The tools of financial 
prediction were found by searching for depen-
dencies between the time series of various fi-
nancial indicators or for series that have been 
exploited.
Suppose 
                                                                                                                                                      
                   ( ) ( )| | ,n f n g n = ε∑            (1)

where the absolute value of the scalar multiplication of vectors ɛ describes the degree 
of orthogonality (true orthogonality cannot be reached for the time series of financial 
markets). The prediction of one time series output has been obtained by two mostly 
orthogonal time series inputs.
The output of one part of an AI system can be the input for another part. Some outputs 
can describe the distribution of predictions and can be analysed. We chose the method 
applied to expert panel opinions.
The Delphi method was examined in detail by Dalkey (1969). Its use of a panel’s 
opinion has many different modifications. One of them, the fuzzy Delphi, was used for 
sales forecasting by Chang and Wang (2006) and integrated with artificial NN for stock 
market forecasting by Kuo et al. (1996).
Trading in a foreign exchange market is not only related to profitability but also to the 
investment risk. Therefore, in order to diversify the risk, it is necessary to create an 
investment portfolio. The portfolio optimization problem and optimal portfolio selection 
methods are considered in (Rutkauskas 2005; Rutkauskas, Stasytyte 2008; Rutkauskas 
et al. 2009a, 2009b).
The aims of our article are to present the Evolino recurrent neural network prediction 
model, coordinated and tailored to profitably trade in the currency market, taking invest-
ment risk into account. This article focuses more on the model and its reliability and ac-
curacy; it also aims to show the wide scope of investment opportunities. A good forecast-
ing tool will allow focusing more on research and justification of economic processes. 

Fig. 1. LSTM network
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2. Forecasting tools 

2.1. Delphi method

The Delphi method is based on the assumption that group judgements are more valid 
than individual judgements. Our observations on the Evolino recurrent neural network 
prediction (Rutkauskas et al. 2010) made it clear that some of the predictions are very 
accurate, while some others are contradictory, unstable, and must be rejected. The Del-
phi method makes it possible to achieve a certain consensus or clustering of forecasts. 
The steps of classical Delphi method are:

1) The group of experts receives a questionnaire and expresses their prognoses using 
numeric values, argues their assessments, and completes the questionnaire.

2) The answers are arranged in the ascending order and the media Me and quartiles 
Q1, Q3 are calculated. After determining the upper and lower quartiles, the range 
between the two averages Q1Me and Q3Me is considered the most desirable in-
terval. The compatibility of the predictions is calculated, such as whether there is 
a consensus of the experts. The experts are then familiarised with the results and 
the arguments and prognoses are made again.

3) The second step is then repeated. Theoretically, the Delphi process can be continu-
ously iterated until a consensus is reached. In practice, the number of iterations is 
limited by the time available for decision making.

In our method, experts are not people and they can’t argue, but several Evolino recur-
rent neural networks can make predictions and the compatibility of their prediction can 
be calculated. 

2.2. Compatibility of neural net predictions

The expert group evaluation of the performance can be considered sufficiently reliable 
only if the expert evaluation possesses good compatibility of the responses. Therefore, 
it is necessary to assess the compatibility of the expert assessments and calculate the 
interquartile coefficient. The variation of the responses is taken to be the difference be-
tween the first and third quartiles, Q3−Q1. The interquartile coefficient is the quotient 
of the variation response by the median:  

  Q3 Q1 .q
Me
−

=   (2)

The interquartile coefficient ranges from 0 to +1 and is close to zero when the distribu-
tion has very little variation. In neural network assessment, as in human-expert evalua-
tions, one expert’s estimates may be better than that of the group as a whole.

2.3. Reliability of forecasting

Time series methods use historical data as their basis. Suppose that, for t = 1, ..., N, y(t) 
is the actual value at time t, ŷ(t) is the forecast value at time t, and then ɛ(t) is the fore-
cast error at time t, where e(t) = y(t)− ŷ(t). With the purpose of testing the reliability 
of the model, we will calculate Pearson’s correlation coefficient r between y(t) and ŷ(t):
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This coefficient will help verifying the accuracy and reliability of the model.

2.4. Profitability and risk of financial forecasting

We assume that the individual investor, having a certain initial capital, wants to invest 
in the instruments available for a particular period T. Investing the initial capital of V0 
in a set of instruments, the investor shapes an investment portfolio p. Suppose that at 
the end of the selected period, the investor will realize the entire investment portfolio, 
in other words, liquidate it into cash, the amount of which will be denoted by V1. The 
purchase and liquidation will be at market prices, which depend on the interaction of 
the supply and demand in the market. Naturally, the investor wants to maximize the 
final value of profitability of the invested funds (Rutkauskas 2006) during the period T, 
which is determined by the following formula:

 0

1  0    ,V V Dr
V

− +
=   (4)

where D is the current income of the portfolio for the period T. There are many options 
for choosing the investment portfolio, but we will explore only three: 1) conservative – 
even distribution of risk; 2) moderate – the objective of the optimal profit with reason-
able risk; 3) aggressive, in order to maximize profits with low risk. The most referenced 
risk/return measures used in finance are the standard deviation and the Sharpe ratio:

  ( )
  

  ,x f

x

r r
S x

−
=

σ
  (5)

where x is the investment, rx is the average rate of return of x, rf  is the best available 
rate of return of a risk-free security, and σx is standard deviation of rx. 

The risk levels of the strategies should be proportional to their Sharpe ratios. Strategies 
with zero predicted Sharpe ratios should be ignored. Those with positive ratios should 
be ‘held long’, and those with negative ratios ‘held short’. If strategy X has a positive 
Sharpe ratio that is twice as large as that of strategy Y, twice as much risk should be 
taken with X as with Y. The overall LSTM network scale of all the positions should, in 
turn, be proportional to the investor’s risk tolerance (Sharpe 1994).

3. Basic architecture and simulation of the prediction algorithm

During the initial model testing stage, we have given a lot of attention to prediction of 
various market parameters. We studied stock prices, indexes, various resource prices, 
and chose a narrow area of research, namely, exchange rate forecasting.

The accuracy of prediction was investigated with the python program using the follow-
ing steps:

Journal of Business Economics and Management, 2013, 14(2): 403–413



408

Data step. Getting historical data on financial markets from Meta Trader-Alpari. For 
prediction, we chose EUR/USD (Euro and American Dollar), EUR/JPY (Euro and Japa-
nese Yen), USD/JPY (American Dollar and Japanese Yen), EUR/CHF (Euro and Swiss 
Franc) exchange rates and their historical data for the first input, and for the second in-
put, two years historical data for XAUUSD (gold prices in American dollars), XAGUSD 
(silver prices in American dollars), QM (Oil prices in American dollars), and QG (gas 
prices in American dollars). At the end of this step, we had the basis of historical data.
Input step. The python script calculated the ranges of orthogonality of the last 80–140 
points of the exchange rate historical data chosen for prediction, and an adequate inter-
val from the two years historical data of XAUUSD, XAGUSD, QM, and QG. A value 
closer to zero indicates higher orthogonality of the input base pairs. Eight pairs of data 
intervals with the best orthogonality were used for the inputs to the Evolino recurrent 
neural network.
Prediction step. Eight Evolino recurrent neural networks made predictions for a selected 
point in the future. At the end of this step, we had eight different predictions for one 
point of time in the future.
Consensus step. The resulting eight predictions were arranged in the ascending order, 
and then the median, quartiles, and compatibility were calculated. If the compatibility 
was within the range [0; 0.024], the prediction was right. If not, then step 3 was re-
peated, sometimes with another ‘teacher’ if the orthogonality was similar. At the end of 
this step, we had one most probable prediction for the chosen exchange rate.
Investment portfolio step. Repeating steps 1–4 for the other exchange rates allowed 
having a set of exchange rate forecasts and building an investment portfolio. The first 
portfolio was made from the four exchange rates (EUR/USD, EUR/JPY, USD/JPY, 
EUR/CHF), and the investment amount was divided equally at every step of the invest-
ing. The second portfolio was made from the four same exchange rates but the amount 
invested was divided by the projected percentage gain. The third choice of investment 
portfolio consisted of that exchange rate whose projected growth rate was the highest. 
The basic architecture of the prediction algorithm is shown in Figure 2.
With the aim of verifying the accuracy and reliability of the model predictions, a statis-
tical analysis of the model was carried out. The validation of the prediction was meas-
ured by the correlation between the predicted values and the real values in the future. 
Different exchange rates in the first input and different historical data in the second 
input guaranteed a random selection of data inputs for the model. Figure 3 shows the 
distribution of 200 Pearson’s correlation coefficients. 
All tests were made in the time period from 12/2011 to 06/2012. The choice of the 
period was not specifically planned. 
Values of the correlation coefficient equel 1 were received in 30% of all tests, which 
means an excellent prediction. Correlation coefficient within the range [0.6; 1] was 68% 
of all tests, which means a very good prediction, and within the range [0; 1] – 77%, 
which means that it is a very good predictor of the direction of change, which is very 
important for investors as well. And only 23% negative correlation coefficients were 
received in the statistical research of the model.
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Prediction simulation
Having several different exchange rate forecasts allows an investor to choose differ-
ent investment portfolios and reduce the investment risk, thus increasing its reliability. 
Three investment portfolios have been tested:

Fig. 2. Scheme of the model

Fig. 3. Statistical analysis of the model’s accuracy (200 tests)
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Conservative. The first portfolio was made from four exchange rates (EUR/USD, EUR/
JPY, USD/JPY, EUR/CHF) with the investment amount divided equally at every step of 
investing (3 days in our research). The investor, having four predictions from the model, 
can choose one from the three operations: buying – if the exchange rate increases, sell-
ing – if the exchange rate decreases, and keeping – if the prediction has some doubt, 
such as a very high variation. Every operation with exchange rates has some damage, 
which equals to 0.02 of the operation.
Moderate. The second portfolio was made from the same four exchange rates. The 
investor, having four predictions from the model, in order to maximize profits, divided 
the initial investment amount by the projected percentage gain. 
Aggressive. The third portfolio was made from the same exchange rates but the entire 
amount was invested in only one exchange rate, which had the greatest predicted profit. 
The comparison of this portfolio’s percentage profit of two variants in the time period 
12/2011–06/2012 is shown in Figure 4.
The credibility of the model’s forecast, building investment portfolios by the pro-
jected gain, increases the profitability of the investment from 12–15% to 20–25% and 
27–35% in 40 trading days with the different degrees of risk. The standard deviation 
describes the portfolio risk and the Sharpe ratio indicates the expected differential 
return per unit of risk associated with the differential return. The risk free rate was put 
at 3% per year. The ratios of the different portfolios are compared in Table 1. The first 
column gives names of pairs of different portfolios, and two single currency prediction 
tests without portfolio for comparison. At the second column are standard deviation 
averages for the entire period. The third column provides Sharpe ratio averages for 
the entire period.
After selecting three different levels of riskiness of the investment portfolios, all port-
folios had a good positive Sharpe index and the aggressive portfolio had a very good 
Sharpe index (greater than 1). Using only one exchange rate (EUR/USD and USD/JPY) 
resulted in a standard deviation of 0.61–0.62, and a Sharpe ratio of 0.73. Investments 
based on the knowledge of the prediction of the recurrent neural network ‘team’ become 
more reliable and more profitable. The increased reliability of the model provides a 
decision maker with big investment opportunities and the freedom of choice. 

Fig. 4. The percentage of profit growth in two different variants
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4. Conclusions

The model developed, based on the Evolino recurrent neural network and on expert meth-
ods, is simple to use and is a good tool for an investor. The reliability of this model, 
measured by the correlation coefficient, is high enough for profitable trading in the finance 
market. The credibility of the model’s forecast increases the profitability of the investment. 
The model allows an investor to make different investment portfolios, based on the 
choice of different investment strategies with different levels of risk.
This model has a great potential for various investment portfolios and investment strat-
egy choices. It can be easily adapted to trading of other financial indicators or stocks.

References
Agrawal, S.; Jindal, M.; Pillai, G. 2010. Momentum analysis based stock market prediction using 
adaptive neuro fuzzy inference system, in Proceedings of the International MultiConference of 
Engineers and Computer Scientists, vol. 1, March 17–19, 2010, Hong Kong. Newswood Limited, 
526–531.
Ang, K.; Quek, C.; 2006. Stock trading using RSPOP: a novel rough set-based neuro-fuzzy ap-
proach, IEEE Trans. Neural Netw. 17(5): 1301–1316. http://dx.doi.org/10.1109/TNN.2006.875996
Chang, P.-C.; Fan, C.-Y. 2008. A hybrid system integrating a wavelet and tsk fuzzy rules for stock 
price forecasting, IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and 
Reviews 38(6): 802–815. http://dx.doi.org/10.1109/TSMCC.2008.2001694
Chang, P.-C.; Wang, Y.-W. 2006. Fuzzy delphi and back-propagation model for sales forecasting 
in pcb industry, Expert Systems with Applications 30(4): 715–726. 
http://dx.doi.org/10.1016/j.eswa.2005.07.031
Chiang, P.; Liu, C. 2008. A tsk type fuzzy rule based system for stock market prediction, Expert 
Systems with Applications 34(1): 135–144. http://dx.doi.org/10.1016/j.eswa.2006.08.020
Choudhry, R.; Garg, K. 2008. A hybrid machine learning system for stock market forecasting, 
World Academy of Science, Engineering and Technology 39: 315–318.
Dalkey, N. C. 1969. The delphi method, Tech. Rep. RM-5888-PR. RAND Corporation.
Hussan, M.; Nath, B.; Kirley, M. 2007. Fussion model hmm, ann and ga for stock market forecast-
ing, Experts Systems with Applications 33: 171–180. http://dx.doi.org/10.1016/j.eswa.2006.04.007

Table 1. Portfolio indicators

Portfolio Standard
Deviation Average

Sharpe
Ratio Average

Conservative I 0.32 0.78
Conservative II 0.53 0.60
Moderate I 0.48 0.90
Moderate II 0.63 0.80
Aggressive I 0.71 0.81
Aggressive II 0.72 1.07
Without portfolio I 0.61 0.73
Without portfolio II 0.62 0.73

Journal of Business Economics and Management, 2013, 14(2): 403–413

http://dx.doi.org/10.1109/TNN.2006.875996
http://dx.doi.org/10.1109/TSMCC.2008.2001694
http://dx.doi.org/10.1016/j.eswa.2005.07.031
http://dx.doi.org/10.1016/j.eswa.2006.08.020
http://dx.doi.org/10.1016/j.eswa.2006.04.007


412

Hutter, M. 2001. General loss bounds for universal sequence prediction, in ICML 2001, Ed. by 
Morgan Kaufmann. June 28 – July 1, 2001, Williams College, Williamstown, MA, USA. ACE 
210–217. ISBN 1-55860-778-1.
Kim, K.; Han, I. 2000. Genetic algorithms approach to feature discretizationin artificial neu-
ral networks for the prediction of stock price index, Expert Systems with Applications 19(2): 
125–132. http://dx.doi.org/10.1016/S0957-4174(00)00027-0
Kimoto, T.; Asakawa, K.; Yoda, M.; Takeoka, M. 1990. Stock market prediction system with 
modular neural networks, in International Joint Conference on Neural Networks, vol. 1, June 
17–21, 1990, San Diego, CA, USA. IEEE Press, 1–6.
Kulkarni, A. S. 1996. Application of neural networks to stock market prediction, Tech. rep. [on-
line], [cited 12 June 2012]. Available from Internet: www.machine-learning.martinsewell.com 
Kuo, R.; Lee, L.; Lee, C. 1996. Integration of artificial neural networks and fuzzy delphi for stock 
market forecasting, in IEEE International Conference on Systems, Man, and Cybernetics, vol. 2. 
14–17 Oct., 1996, Beijing, China. IEEE Press, 1073–1078. 
http://dx.doi.org/10.1109/ICSMC.1996.571232 
Maknickas, A.; Maknickiene, N. 2012. Influence of data orthogonality to accuracy and stability 
of financial market predictions, in IJCCI 2012: 4th International Joint Conference on Computa-
tional Intelligence, Barcelona, Spain, 5–7 October, 2012. Setubal: INSTICC, 616–619. 
Quek, C.; Guo, Z.; Maskell, D. L. 2011. A novel fuzzy associative memory architecture for stock 
market prediction and trading, International Journal of Fuzzy System Applications 1(1): 61–78. 
http://dx.doi.org/10.4018/ijfsa.2011010105
Rutkauskas, A. 2005. Portfelio sprendimai valiutu kursu ir kapitalo rinkose, Business: Theory 
and Practice 6(2): 107–116.
Rutkauskas, A. 2006. Adekvačiojo investavimo portfelio anatomija ir sprendimai panaudojant 
imitacines technologijas, Ekonomika 75: 52–76.
Rutkauskas, A.; Maknickiene, N.; Maknickas, A. 2010. Approximation of dji, nasdaq and gold 
time series with evolino neural networks, in The 6th International Scientific Conference Busi-
ness and Management 2010, May 13–14, 2010, Vilnius, Lithuania. Vilnius: Technika, 170–175.
Rutkauskas, A.; Stasytyte, V. 2008. Stratification of stock profitabilities – the framework for 
investors’ possibilities research in the market, Intellectual Economics 1(3): 67–72.
Rutkauskas, A.; Stasytyte, V.; Stankeviciene, J. 2009a. Profit, riskness and reliability – three-
dimensional base for investment decisions management, in Modeling and Analysis of Safety and 
Risk in Complex Systems: Proceedings of the Ninth International Scientific School, July 7–11, 
2009, Saint-Petersburg, Russia. MASR, 105–110.
Rutkauskas, A.; Stasytyte, V.; Borisova, J. 2009b. Adequate portfolio as a conceptual model of 
investment profitability, risk and reliability adjustment to investor’s interests, Economics and 
Management 14: 1170–1174.
Schmidhuber, J.; Gagliolo, M.; Wierstra, D.; Gomez, F. 2006. Evolino for recurrent support vec-
tor machines, in European Symposium on Artificial Neural Networks, April 26–28, 2006, Bruges, 
Belgium. arXiv preprint cs/0512062, 593–598.
Schmidhuber, J.; Wierstra, D.; Gomez, F. F. 2005. Evolino hybrid neuroevolution/optimal linear 
search for sequence learning, in Proceedings of the 19th International Joint Conference on Ar-
tificial Intelligence, July 30 – August 5, 2005, Switzerland: Morgan Kaufmann Publishers Inc, 
466–477.
Sharpe, W. 1994. The sharpe ratio, The Journal of Portfolio Management 21(1): 49–58. 
http://dx.doi.org/10.3905/jpm.1994.409501
Wang, J.; Leu, J. 1996. Stock market trend prediction using arimabased neural networks, in IEEE 
International Conference on Neural Networks, vol. 44, June 3–6, 1996, Washington DC, USA. 
IEE Service Center, 2160–2165.

N. Maknickiene, A. Maknickas. Financial market prediction system with Evolino neural network and Delphi method

http://dx.doi.org/10.1016/S0957-4174(00)00027-0
http://dx.doi.org/10.1109/ICSMC.1996.571232
http://dx.doi.org/10.4018/ijfsa.2011010105
http://dx.doi.org/10.3905/jpm.1994.409501


413

Nijolė MakNiCkiENė. Assistant, Master in Physics at Vilnius University, Quantum Electronics 
(Dipl.-Phys.) 1986. Recently assistant at the Department of Financial Engineering of Vilnius Gedimi-
nas Technical University. Author of 1 peer-reviewed research paper, and 4 contributions to internation-
al conferences. Research interests: capital markets, researching chaotic processes by a neural network.

Algirdas MAKNICKAS. Dr, Graduated in Physics at Vilnius University (Dipl.-Phys.) 1986, Dr techn. 
(Ph.D.) at VGTU in 2009. Recently associate professor at the Department of Information Technolo-
gies of Vilnius Gediminas Technical University and senior researcher at the Institute of Mechanical 
Sciences of Vilnius Gediminas Technical University. Author of 9 peer-reviewed research papers, and 
more than 15 contributions to international conferences. He has participated in several EU-funded 
projects. His recent research interests include: theoretical investigation of particulated solids, software 
engineering, algorithm theory, chaos forecasting theory.

Journal of Business Economics and Management, 2013, 14(2): 403–413




