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Abstract. This study proposes an artificial intelligence (AI) model to predict the compressive strength and splitting 
tensile strength of rubberized concrete. This Evolutionary Multivariate Adaptive Regression Splines (EMARS) model 
is a hybrid of the Multivariate Adaptive Regression Splines (MARS) and Artificial Bee Colony (ABC) within which 
MARS addresses learning and curve fitting and ABC implements optimization to determine the fittest parameter settings 
with minimal prediction error. K-fold cross validation was utilized to compare EMARS performance against four other 
benchmark data mining techniques including MARS, Back-propagation Neural Network (BPNN), Radial Basis Function 
Neural Network (RBFNN), and Genetic Programming (GP). Comparison results showed EMARS to be the best model 
for predicting rubberized concrete strength and study results demonstrated EMARS as a reliable tool for civil engineers 
in the concrete construction industry.
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Introduction

There has been increased research interest in rubberized 
concrete in recent years. Rubberized concrete offers sev-
eral benefits, including: 1) Environmental Friendliness. 
Traditional concrete aggregate is partially replaced by 
rubber from waste tires, a major source of environmen-
tal damage worldwide (Gesoğlu et al. 2010; Son et al. 
2011); 2) Economy. Waste tires are relatively inexpensive 
and widely available. Waste tires have previously been 
considered as a partial replacement for coarse aggregate 
in mortar mixtures (Topçu, Sarıdemir 2008; Zheng et al. 
2008) and Khaloo et al. (2008) stated that using rub-
ber aggregate can provide a 25% volume benefit; and  
3) Technological Advancement. The presence of rubber in 
concrete results in higher resilience, durability, and elas-
ticity (Topçu, Avcular 1997). Rubberized concrete was 
found to provide good aesthetics, acceptable workability,  
and a smaller weight per volume than standard concrete.

In practice, rubberized concrete has been used in 
various applications. It is suitable for architectural ap-
plications that require light unit weight (e.g. nailing con-
crete, false façades, stone backing, interior construction), 
low-strength-concrete applications (e.g. sidewalks, drive-
ways, and certain road construction applications), and/
or high plastic-energy absorption (e.g. shock absorbers, 
crash barriers around bridges).

Using rubber in concrete reduces concrete strength 
(Khatib, Bayomy 1999). However, adding silica fume can 
diminish this reduction because silica fume increases the 
homogeneity and decreases the overall number of large 
pores in the cement paste (Güneyisi et al. 2004). Adding 
silica fume also results in denser interfaces between the 
cement paste and coarse aggregates (Bentur, Cohen 1987). 
In sum, while enhancing certain concrete properties, using 
rubber and silica fume in concrete significantly compli-
cates the process of modeling concrete strength due to 
the potentially nonlinear mapping relationships between 
concrete ingredients and its strengths (Yeh 1998).

Clearly, a wide experience-based knowledge of the 
concrete composition versus strength relationship can 
help civil engineers understand the nature of concrete 
and how to optimize concrete mixtures (Yeh 1998). To 
minimize time and construction costs, accurate prediction 
of rubberized concrete strength is essential to pre-design 
and quality control success in real project applications.  
Also, determining the level of importance of each input 
variable is essential to adjusting the mix proportion in 
order to obtain the required strength and to providing 
civil engineers insight into the impact of input variables 
on the concrete strength output value. 

To fulfill this challenging task, this study proposes a 
new novel artificial intelligence (AI) model that hybrid-
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izes Multivariate Adaptive Regression Splines (MARS) 
and Artificial Bee Colony (ABC). A number of studies 
have demonstrated that performances obtained by hy-
bridized AI techniques are superior to those achieved 
by employing a single technique (Yang, Yau 2000). 
Cheng and Wu (2009) successfully built hybrid AI tech-
niques and effectively applied them in the construction 
industry; Sánchez-Lasheras et al. (2012) integrated 
self-organizing map and MARS to accurately forecast 
corporate bankruptcy; and Lee and Chen (2005) used a 
combination of artificial neural networks and MARS to 
estimate credit scores. 

MARS is a nonlinear and non-parametric regression 
methodology (Friedman 1991). One of MARS’ greatest 
advantages is its ability to explore the complex nonlinear 
relationships between a response variable and predictor 
variables by fitting data into a series of predictor variable 
spline functions. MARS has been demonstrated particu-
larly effective in handling prediction problems and been 
successfully employed in credit scoring (Lee et al. 2006), 
computer wholesaling (Lu et al. 2012), paper manufac-
turing (García Nieto et al. 2012), public water supply 
issues (Vidoli 2011), and engineering software (Zhou, 
Leung 2007). Many studies have further demonstrated 
the superiority of MARS over other data techniques 
(Leathwick et al. 2006; Samui 2012). However, to the 
best knowledge of the authors, MARS has not yet been 
applied to problems in the concrete industry.

In order to build a MARS model, users must select 
the following tuning parameters: maximum number of 
basis function Mmax, penalty parameter (smooth param-
eter) d and maximum interaction between variables mi. 
It is worth noticing that these parameters control model 
complexity and generalization. Andalib and Atry (2009) 
stated that these parameters are important features to 
building a MARS model. Therefore, obtaining the op-
timal set of parameters for MARS is a crucial task; as 
proper parameter settings can help guarantee MARS pre-
diction accuracy. Friedman’s suggestions of parameter 
selection provides a large value ranges and is dependent 
on the data set at hand (Friedman 1991).

To overcome this drawback of MARS, our paper 
used ABC (Karaboga 2005) algorithm as a search engine 
to determine optimal MARS parameter values. ABC was 
introduced by Karaboga in 2005 and is a swarm intelli-
gence-based optimization algorithm inspired by honeybee 
foraging behavior. The ability of ABC to find optimal solu-
tions for large-scale problems was demonstrated in various 
works (Karaboga, Akay 2009; Li  et al. 2010). Moreover, 
ABC is also a reliable tool when incorporated with other 
data mining techniques (Hong 2011). Therefore, ABC is a 
potentially suitable search engine for identifying suitable 
parameters of MARS, including Mmax, d and mi.

Hence, the objective of this research was to develop 
and test the Evolutionary Multivariate Adaptive Regres-
sion Splines (EMARS). The authors created EMARS by 
fusing MARS and ABC in a manner that incorporated 

the strengths and avoided the weaknesses of each tech-
nique. This newly proposed model operates automati-
cally without human intervention and accurately predicts 
rubberized concrete strength using different ingredient 
ratios. This study then compared the performance of 
EMARS against four other benchmark data mining tech-
niques, including MARS, Back-propagation Neural Net-
work (BPNN), Radial Basis Function Neural Network  
(RBFNN), and Genetic Programming (GP).

The remainder of this paper is organized as fol-
lows: the second section reviews related research works; 
the third introduces the EMARS model; the fourth de-
scribes data collection; the fifth validates the EMARS 
model compares simulations results; and the last presents  
conclusions.

1. Literature review
1.1. Previous works
There is increasing research interest in applying AI tech-
niques to problems related to rubberized concrete. Nu-
merous studies have proposed approaches for modeling 
rubberized concrete strength and mechanical properties. 
Eldin and Senouci (1994) first used Artificial Neural Net-
work (ANN) to estimate the strength of rubberized con-
crete when rubber aggregate was used in place of coarse 
aggregate in the control mix and sand in the control mix.

Topçu and Saridemir (2008) recently applied ANN 
and fuzzy logic (FL) to predict the properties of rubber-
ized concrete. They modeled rubberized concrete prop-
erties using input variables including cement, sand, wa-
ter, fine crushed stone, coarse crushed stone, fine rubber, 
coarse rubber and output variables including the unit 
weight and flow table of fresh concrete (Topçu, Sarıdemir 
2008). Gesoğlu et al. (2010) established a mathematical 
formula using ANN and Genetic Programming (GP) to 
model rubberized concrete properties and measure the in-
fluence of silica fume on rubberized concrete properties. 
More recently, Abdollahzadeh et al. (2011) used ANN to 
predict the compressive strength of rubberized concrete. 
However, their dataset of only 20 instances is likely inad-
equate to accurately assess model performance.

Previous studies have generally applied similar ANN 
techniques with only minor modifications and some tradi-
tional regression techniques. This may represent a short-
coming of applying AI to the rubberized concrete field. 
A significant disadvantage of ANN is the need to select 
a large number of controlling parameters, e.g. number of 
hidden layers, number of neurons in hidden layers, learn-
ing rate, momentum to construct network (Samarasinghe 
2006). This means that the ANN training process must 
be obtained via a gradient descent algorithm on the error 
space, which can be very complex and may contain many 
local solutions that may prevent an ANN model from 
converging on an optimal solution (Kiranyaz et al. 2009).

Additionally, ANN does not represent an explicit re-
lationship between input and output parameters or even 
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verify the importance level of each input variable. For 
GP, this method does not perform a proper numerical 
estimation of model parameters (constants/coefficients). 
Essentially, it tends to yield functions that grow in length 
during evolutionary search (Davidson et al. 2003), po-
tentially making the final model unnecessarily large and 
difficult to interpret.

1.2. Multivariate adaptive regression splines
MARS was first proposed by Friedman (1991) as a flex-
ible procedure to organize relationships that are nearly 
adaptive or involve interactions with fewer variables. 
MARS makes no assumptions about the underlying func-
tional relationship between dependent and independent 
variables in order to estimate the general functions of 
high-dimensional arguments given sparse data (Friedman 
1991; Samui 2012). One further advantage of MARS is 
its ability to estimate the contributions of basis functions 
so that the additive and interactive effects of predictors 
are allowed to determine the response variable.

MARS is established by fitting a basis function 
(term) to distinct independent variable intervals. In gener-
al, splines (also called piecewise polynomials) have piec-
es that connect smoothly together. The interface points 
between pieces are called knots, denoted as t. MARS 
uses two-sided truncated power functions as spline ba-
sis functions, described in Eqns (1) and (2), Figure 1  
(q = 1; t = 0.5) provides an illustration:

 
 (1)

 
 (2)

where: (q ≥ 0) is the power to which splines are raised 
and determines the degree of smoothness of the resultant 
function estimate; q = 1 is the case used in this study; []+ 
ensures values are positive.

Interaction basis functions are produced by multiply-
ing an existing term with a truncated linear function in-
volving a new variable. In this case, both the existing 
term and newly produced interaction basis function are 
used to establish the MARS model. Setting maximum 
user order can restrict the search for new basis functions. 
Formulae for the interaction basis function and the gen-
eral MARS function can be represented in Eqns (3) and 
(4), respectively:

 
 (3)

 
 (4)

where: Km is the number of truncated linear functions 
multiplied in the mth basis function. Km must be not 
larger than the maximum interaction among variables mi.  
Thus, the user must specify mi prior to establishing the 
MARS model.  is the input variable corresponding to 
the jth truncated linear function in the mth term;  is  
the knot value corresponding to variable  is the 
selected sign +1 or –1;  is the dependent variable pre-
dicted by the MARS model; c0 is a constant; 

Bm(x) is the mth basis function, which may be a sin-
gle spline basis function; and cm is the coefficient of the 
mth basis function.

The final MARS model was constructed using a 
two-stage process comprising a forward phase and back-
ward phase. The forward phase started with the basis 
function h0(x) = 1. Knots were then chosen automati-
cally. Candidate knots were placed at random positions 
within the range of each predictor variable to define a 
pair of basis functions. At each step, the model adopted 
the knot and its corresponding pair of basis functions to 
give the maximum reduction in sum-of-squares residual 
error. This process of adding basis functions continued 
until the maximum number of basis functions Mmax was 
reached (Friedman 1991). Mmax is set by the user as ref-
erenced in Friedman (1991). The forward phase selection 
of the basis function leads to a very complex and over-
fitted model. Although this model has poor predictive 
abilities for new data (testing data), it fits the training 
data well.

To improve model predictive power, the authors em-
ployed a backward phase to delete the redundant basis 
functions that made the least contributions. Generalized 
cross-validation (GCV) was used as the deletion crite-
rion (Sekulic, Kowalski 1992). GCV is the mean-squared 
residual error divided by a penalty that is dependent on 
model complexity and defined as follows:

  
(5)

Fig. 1. Basis function
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where n is the number of data cases. C(M) is a complex-
ity penalty that increases with number of basis functions 
in the model, defined as:

  (6)

where M is the number of basis functions in Eqn (4) and 
parameter d is a penalty for each basis function included 
in the model. d may be also regarded as a smoothing 
parameter. A small d generates a large model with more 
basis functions, while a big d creates a small, smooth 
model with fewer basis functions (Sánchez-Lasheras 
et al. 2012). Reference (Friedman 1991) provides further 
suggestions on choosing the value of d and the influence 
of d on the final model.

1.3. Artificial bee colony algorithm
The Artificial Bee Colony (ABC) algorithm is a recently 
developed population-based optimization algorithm now 
widely used to solve multidimensional optimization prob-
lems. Karaboga first proposed the ABC concept in 2005 
(Karaboga 2005). Its swarm intelligence-based optimiza-
tion algorithm was inspired by honeybee foraging behav-
iour. ABC incorporates three kinds of honeybees, namely 
employed bees, onlooker bees, and scout bees. Figure 2 
shows the ABC algorithm flowchart.

1.3.1. Initial population
ABC commences the search process by randomly gener-
ating an NF number of food source positions. NF does 
not change during the optimization process in the stan-
dard ABC algorithm. Eqn (7) was used as our initial pop-
ulation generator. Amount of nectar at each food source 
position was calculated after all food source positions 
were generated:

  (7)

where: xi,min and xi,max indicates the minimum and maxi-
mum of the ith decision variable; rand[0,1] denotes a uni-
formly distributed random number between 0 and 1; and 
xi,0 is the ith decision variable (food source position) in 
the initial population.

1.3.2. Employed bee phase
Each employed bee chooses a new candidate food 
source position to update feasible solutions based on 
the neighbourhood of the previously selected food 
source. A candidate solution ui,j 

can thus be generated 
from the old solution xi,j as in Eqn (8). Employed bees 
are created from the strength of previously discovered 
sources.

 
 (8)

where:  and  are ran-
domly chosen indices, k must be different from i, and φi,j 
is a random number in the range [–1,1].

Amount of nectar is used to compare the candidate 
solution (candidate food source position) with the old so-
lution. The candidate solution will replace the old solu-
tion if its food source quality is equal to or better than the 
latter; otherwise, the old solution is retained. Food source 
information is shared with onlooker bees when employed 
bees return to their hive.

1.3.3. Probability calculation
The information sharing stage of the ABC algorithm gen-
erates collective intelligence. Probability value influences 
the behaviour of onlooker bees, which select food sources 
based on probability. Probability value is calculated as:

  (9)

where fiti is the fitness value of the ith food source, which 
is proportional to the nectar amount of the food source in 
position i and given by Eqn (10):

 
 (10)

where: fi is the objective function value of the ith food 
source; abs is absolute value.

Fig. 2. ABC model
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1.3.4. Onlooker bee phase
In this stage, a random real number within the range [0,1] 
is generated for each food source. As in the employed 
bee phase, if the probability value pi associated with that 
source is greater than this random value then the onlooker 
bee uses Eqn (8) to create a new candidate food source 
position. After evaluating the source, greedy selection is 
applied and the onlooker bee either updates the new posi-
tion by removing or retaining the old solution.

1.3.5. Update the best food source position
The ABC algorithm updates the best food source position 
after termination of the onlooker bee phase. This process 
implements once for each cycle. A new best food source 
position will replace the old if the former provides an 
equal or better amount of nectar. Otherwise, the old food 
source position remains valid.

1.3.6. Scout bee phase
If solution xi shows no improvement during the greedy 
selections of the employed bee phase and onlooker bee 
phase, its counter holding trials are incremented by 1; 
otherwise, the counter is reset to 0. This action updates 
the counters during the search process. Counters are then 
used to determine if a source is to be abandoned. If the 
value of the counter is greater than the number of us-
er-specified trials, the source associated with this counter 
is assumed to be exhausted and is abandoned. The food 
source abandoned by its bee is replaced with a new food 
source discovered by the scout, using Eqn (7).

1.3.7. Stop condition
The optimization process terminates when the user-
determined stop criterion is met. Maximum generation  
(Gmax) was used as this study.

2. Evolutionary multivariate adaptive regression 
splines

One may construct a MARS model with various choices 
of parameters including maximum basis function Mmax, 
maximum interaction mi, and penalty parameter d. How-
ever, using MARS makes it difficult to set optimal param-
eters simultaneously. Appropriate parameter settings can 
significantly improve MARS prediction accuracy. Sug-
gestions for selecting these parameter values are repre-
sented in Friedman (1991). However, it is difficult to se-
lect the best values because the range of choices is large 
and proper values may still lie outside suggested ranges. 
The authors thus proposed EMARS as a tool to help us-
ers address this challenging task. The EMARS model is 
illustrated in Figure 3.

2.1. Input data
Original data are normalized into a range of (0;1) to 
avoid attributes in greater numeric ranges dominating 
those in smaller numeric ranges as well as avoid numer-
ical difficulties. The function used to normalize data is 
shown in Eqn (11). Orenstein et al. (1995) showed that 
ten folds are optimal (i.e. ten folds obtain the shortest 
acceptable bias and variance for validation testing time).

Data were first divided into 10 cross-fold training and 
testing sets. Training sets (nine of the ten) were then uti-
lized to determine the best models. Finally, the models 
were tested via holdout data (the remaining set). Cross-
fold training and testing were repeated ten times. Train-
ing data were then used to construct the EMARS model, 
which was divided into two sets, namely one set (80%) 
for training and the other for validation:

 
x

x x
x xi

nor i=
−

−
min

max min
,  (11)

where: xi is any data (input or output); xmin is the mini-
mum value of the entire dataset; xmax is the maximum 
value of the entire dataset; and xi is the normalized value 
of the data.

2.2. MARS training model
In this stage, MARS is deployed to handle the underly-
ing function. A new MARS model is built for each set 
of ABC-provided parameter values. ABC’s greedy selec-
tor will compare model quality based on fitness function 
evaluation.

2.3. Fitness function
After the training process, MARS is applied to test for the 
validating set. To find the optimal set of tuning param-
eters, the following objective function is employed during 
the fitness function stage:

 
 (12)Fig. 3. EMARS model
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where: Etraining and Evalidating indicate training error and 
validating error, respectively. In Eqn (12) Root mean 
square error is used as the prediction error (Eqn (15)).

It is worth noticing that the fitness function in Eqn (12) 
indicates the trade-off between model generalization and 
model complexity. It is well known that good training data 
fitness often reflects an over-fitted model (Bishop 2006). 
Hence, the combination of training error and validating 
error can establish a model optimally balances minimum 
training error and model generalizability.

2.4. ABC searching
In this stage, ABC carries out the search for best param-
eter setting values, including: maximum basis function 
Mmax, maximum interaction mi, and penalty parameter d. 
It regards these parameters as three independent variables. 
Objective function is prediction accuracy.

2.5. Stop condition
The optimization process is terminated once the stop crite-
rion is satisfied. Prior to this point, the model will proceed 
to the next generation. Because ABC is used as the search 
engine, the stop criterion used is often either generation 
number or number of function evaluation NFE. The pre-
sent study employed generation number.

2.6. Optimal prediction model
The optimal prediction model with fittest parameter set-
tings is found when the stop criterion is fulfilled. This 
means that EMARS has completed the training process 
and is ready to predict new input patterns (testing data).

3. Data description

Data were extracted from previously published research 
studies (Gesoğlu et al. 2010; Güneyisi et al. 2004). His-
torical data used in this study comprised 70 distinct con-
crete mixtures that were cast and tested for compressive 
and tensile strengths. Natural sand (maximum particle size:  
4 mm; fineness modulus: 1.39) and crushed limestone 
(maximum particle size: 20 mm; and fineness modulus: 5.6)  

were used as fine and coarse aggregate, respectively. The 
experiment used two types of tire rubber, namely crumb 
rubber and tire chips, which were taken from used truck 
tires discarded after the second recapping. Crumb rub-
ber is fine aggregate with a gradation close to that of the 
sand described above and determined based on ASTM 
C136 (2014) standard. Tire chips were produced using 
mechanical shredding and elongated between 10 and 40 
mm. ASTM Type I Portland cement (28-day compressive 
strength of 50 MPa) and grade silica fume (91% SiO2 con-
tent) were used as cementitious materials.

The experiment used the two w/cm ratios of 0.60 and 
0.40 with respective cement contents of 350 and 450 kg/m3.  
The six rubber content ratios ranged from 2.5% to 50% of 
total aggregate volume, including 2.5%, 5%, 10%, 15%, 
25%, and 50%. Rubber content ratios were divided equally 
between crumb and chip, as previously mentioned. Silica 
fume was used as a partial replacement for cement to miti-
gate the loss in concrete strength. Amount of silica fume 
varied from 0% to 20% by cement weight. With the excep-
tion of aggregate constituents, all other mix design param-
eters, including cementitious material content, w/cm ratio 
(0.6 and 0.4), and aggregate volume, were held constant.

The experiment used 70 concrete batches. Each batch was 
mixed according to the ASTM C192 (2016) standard. Con-
crete mixtures had slump values of 180±20 and 140±20 mm  
for w/cm ratios of 0.60 and 0.40, respectively. These values 
were measured in accordance with ASTM C143 (2015). 
Three cube (150 mm) and 3 cylinder (150×300 mm) spec-
imens were cast from each batch. Thus, a total of 210 
cube and 210 cylinder specimens were tested for com-
pressive strength and splitting tensile strength in accord-
ance with ASTM C39 (2016) and ASTM C496 (2004), 
respectively. Test specimens were demoulded 24 hours af-
ter casting and then water cured for 7 days at an ambient 
temperature of 21±1 °C and 60±5% humidity. Additional 
details related to the 70 concrete mixtures and experimen-
tal process are presented in (Güneyisi et al. 2004).

Table 1 shows input and output factors and their 
corresponding statistical descriptions. Concrete mix-
tures include cement (C), silica fume (SF), water (W),  

Table 1. Input and output parameters

Description Notation Parameters  Min. Max. Avg. Std.
Cement (kg/m3) C X1 280.00 450.00 360.00 53.65
Silica fume (kg/m3) SF X2 0.00 90.00 40.00 29.15
Water (l/m3) W X3 180.00 210.00 195.00 15.11
Super-plasticizer (kg/m3) SP X4 5.25 13.50 9.38 4.15
Coarse aggregate (kg/m3) CA X5 522.60 1076.40 898.67 173.13
Fine aggregate (kg/m3) FA X6 338.40 697.00 581.91 112.11
Crumb rubber (kg/m3) CR X7 0.00 110.40 33.45 35.48
Tire rubber (kg/m3) TC X8 0.00 203.70 61.71 65.46
Compressive strength (MPa) CS Y1 7.10 85.77 44.13 22.26
Tensile strength (MPa) TS Y2 0.70 4.70 3.05 1.10
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super-plasticizer (SP), coarse aggregate (CA), fine ag-
gregate (FA), crumb rubber (CR), and tire chips (TC). 
Composition plays a role as a prediction model input 
variable when compressive strength (CS) and splitting 
tensile strength (TS) are outputs.

4. Simulation results and comparisons
4.1. Evaluation criteria
The present study used R2, MAPE and RMSE to com-
pare the performance of EMARS against other models. 
R2 expresses degree of similarity between predicted and 
actual values, with R2 values close to 1 indicating pre-
dicted and actual values to be very similar. Low RMSE, 
MAPE values indicate high confidence in model-predict-
ed values.

The R-square coefficient R2 measures how well the 
considered independent variables account for the meas-
ured dependent variable. Higher values correlate with 
greater model predictive capability. The mathematical 
formula for computing R2 is:

 , (13)

where: SST – total of sum square; SSE – sum of 
square due to error; Yi,predicated – predicted value; 
Yi,actual – actual values;  – average of actual  
values; and n – sample size.

The mean absolute percentage error (MAPE) is a 
statistical measure of predictive accuracy. It usually in-
dicates accuracy as a percentage. MAPE is useful for 
evaluating the performance of predictive models because 
of its relative values. MAPE effectively reflects relative 
differences between models because it is unaffected by 
the size or unit of actual and predicted values. MAPE is 
stated using the following equation:

. (14)

Root mean squared error (RMSE) computes the square 
error of the prediction compared to actual values and 
computes the square root of the summation value. The 
RMSE is thus the average distance of a data point from 
the fitted line measured along a vertical line. This tool 
is efficient at assessing undesirably large differences. 
RMSE is stated using the following equation:

 (15)

4.2. EMARS experimental results
The authors used k-fold cross-validation method to assess 
model performance. This study used a stratified 10-fold 
cross-validation approach. Random selection divided the 
70 patterns of data into 10 distinct folds. Each fold was 
employed in turn as testing data, with remaining folds 
employed as training data, ensuring that all data set in-
stances were applied in both training and testing phases. 
Parameters of ABC search were set as follows: maxi-
mum iteration number = 200; population size = 6 × D  
where D is number of tuning parameters; the range of 
Mmax is [5,40]; d belongs to range [0,6]; and mi has a 
range of [1,8]. The proposed model was run in Matlab 
environment.

Table 2 shows testing and training results for the 
EMARS model. As can be seen, the proposed model 
provided a very good value of R2 for both testing and 
training processes (R2

compressive = 0.99 for predicting 
compressive strength and R2

splitting .tensile = 0.99 for pre-
dicting splitting tensile strength in testing performance). 
These R2 values were close to 1, indicating the EMARS 
models may be employed to accurately approximate the 
underlying function of concrete strength. In terms of 
RMSE, the EMARS model yielded very small values, 
with average RMSE values for predicting compressive 
strength and splitting tensile strength in terms of testing 
performance of 0.99 and 0.07, respectively. There was no 
significant difference between RMSE training and testing 
results, indicating that the EMARS model is generaliz-
able. In terms of MAPE, the average testing and training 
values for predicting compressive strength were 2.16% 
and 1.87%, respectively, and for splitting tensile strength 
were 2.46% and 2.08%, respectively. Training and test-
ing values of MAPE smaller than 2.5% ensure proposed 
model performance reliability.

As mentioned earlier, one of MARS’ most important 
advantages is its ability to verify the importance of input 
variables. Table 3 displays the ANOVA decomposition 
of the proposed models for predicting fold 1 compres-
sive strength. The first column lists the ANOVA func-
tion number. The second column gives an indication of 
importance of the corresponding ANOVA function by 
listing the GCV score for a model with all BFs corre-
sponding to that particular ANOVA function removed. 
This GCV score can be employed to assess whether the 
ANOVA function contributes significantly to the model 
or only slightly improves the global GCV score. The 
third column gives the number of BFs in the ANOVA 
function. The last column gives the particular input vari-
ables associated with the ANOVA function.

There were a total of 13 basis functions with a maxi-
mum of 3 interactions among variables in the final model. 
Global GCV score was 0.000 in this case. Variable 8 (tire 
rubber) was the most important parameter, followed by 
variable 6 (fine aggregate). The presence of variable 2 
(silica fume) in 6 of the 13 basis functions demonstrates 
the important contribution of this variable to modeling 
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rubberized concrete strength. The absence of variable 4 
(super-plasticizer) from all basis functions demonstrates 
that super-plasticizer does not influence the EMARS rub-
berized concrete strength model.

4.3. Result comparison
To better evaluate the performance of the EMARS model, 
this study compared its performance with results obtained 
by four other approach techniques, including MARS, 
BPNN, RBFNN, and GP. BPNN and RBFNN were cho-
sen as they are both popular and effective approaches for 
conducting regression analysis in high dimensional space 
(Samarasinghe 2006). GP was chosen because this tech-
nique was highly regarded by Gesoğlu et al. (2010) for 
its ability to predict the dynamic properties of rubberized 
concrete. Finally, the paper included MARS as an index 
to verify the improvements achieved by EMARS. Fur-
thermore, these techniques represent different data min-
ing techniques that are worth investigating in determining 
the strength of rubberized concrete. 

In terms of parameters, MARS was set as follows: the 
maximum number of basis functions is 30, the maximum 
interaction among variable is 3, and the penalty parame-
ter is 3; BPNN was set as follows: the number of hidden 

layers is 1, the number of neurons in the hidden layer is 
8, and the learning rate is 1; RBFNN was set as follows: 
the maximum number of neurons is 16 and the number 
of neurons to add between displays is 25; These param-
eters of BPNN and RBFNN were identified by a large 
number of trails that provided the best performances. GP 
was set as follows: size of population is 100, the num-
ber of generations is 200, and the tournament size is 7.  
Table 4 shows the average results of testing 10-fold cross 
validation for all five models.

For compressive strength prediction errors, average 
RMSE training data values for EMARS, MARS, BPNN, 
RBFNN, and GP were 0.880, 0.923, 3.303, 1.031, and 
1.781, respectively, and average RMSE testing values 
of testing for the same were 0.992, 1.150, 3.612, 1.597, 
and 1.934, respectively. Results show EMARS to be 
the fittest model in terms of minimizing RMSE values, 
with a value roughly 16% below the second best model 
(MARS). In terms of MAPE, EMARS yielded the small-
est prediction error for both training and testing data: 

 and . RB-
FNN earned the second smallest MAPE prediction er-
rors, which were significantly larger than EMARS. For 
evaluating performance based on R2, EMARS achieved 
results very close to 1 for both training and testing data in 
predicting both compressive and splitting tensile strength.

In terms of determining splitting-tensile-strength 
prediction performance, EMARS was the best model, 
yielding the smallest values for both training and test-
ing data in terms of RMSE and MAPE. In comparison 
with the second best model RBFNN for testing data, 
EMARS delivered roughly 28% and 40% improvement 
in terms of RMSE and MAPE. Furthermore, EMARS 
also achieved very good values for R2 (0.992 and 0.997  
for testing and training, respectively). All statistical val-
ues in Table 4 demonstrate that the proposed EMARS 
model is suitable to predict rubberized concrete strength 
very close to observed values.

Table 2. EMARS testing and training results

fold 1 2 3 4 5 6 7 8 9 10 Avg.
C

om
pr

es
si

ve
 s

tre
ng

th

Tr
ai

ni
ng RMSE 0.872 0.786 0.927 0.819 1.041 0.949 0.888 0.680 0.830 1.005 0.880

MAPE 1.972 1.691 2.059 1.426 2.864 1.927 1.420 1.290 1.984 2.099 1.873
R2 0.998 0.999 0.998 0.999 0.998 0.998 0.998 0.999 0.999 0.998 0.998

Te
st

in
g RMSE 0.701 1.256 0.920 0.387 1.281 0.532 0.899 1.448 1.436 1.060 0.992

MAPE 1.499 1.735 2.776 1.045 2.184 1.081 3.549 2.267 2.246 3.258 2.164
R2 0.999 0.990 0.998 1.000 0.996 0.999 0.997 0.994 0.995 0.997 0.996

Sp
lit

tin
g 

te
ns

ile
 

st
re

ng
th Tr

ai
ni

ng RMSE 0.054 0.056 0.059 0.045 0.056 0.060 0.070 0.054 0.055 0.063 0.057
MAPE 1.891 2.063 2.196 1.410 1.822 2.333 2.627 1.947 2.144 2.398 2.083
R2 0.997 0.997 0.997 0.998 0.997 0.997 0.996 0.998 0.998 0.996 0.997

Te
st

in
g RMSE 0.072 0.044 0.077 0.053 0.062 0.077 0.083 0.060 0.096 0.081 0.070

MAPE 1.973 1.667 2.522 1.931 1.996 2.191 3.803 1.366 2.536 4.623 2.461
R2 0.997 0.995 0.994 0.999 0.998 0.992 0.989 0.987 0.972 0.997 0.992

Table 3. ANOVA decomposition of the EMARS model

Function GCV Basis function Variable (s)

1 0.001 1 X2

2 8.888 2 X6

3 11.789 2 X8

4 0.001 1 X1 X2

5 0.002 1  X2 X7

6 0.001 1 X2 X8

7 0.009 1 X3 X6

8 0.016 2 X7 X8

9 0.001 2 X1 X2 X5
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Conclusions

Earlier and accurate estimation of concrete strength is 
valuable to the construction industry. This study fused 
an ABC algorithm with MARS to create a new model, 
EMARS. In EMARS, MARS chiefly addresses learning 
and curve fitting by mapping input and output and ABC 
primarily copes with global optimization. The purpose 
of developing this new model was to concurrently deter-
mine optimal Mmax, mi and d parameters. The EMARS 
model integrated the superior characteristics of the two 
constituent AI techniques to attain comparatively better 
prediction performance and virtually eliminate the weak-
ness of traditional techniques. The developed model has 
the capability to reduce the need for human intervention 
in rubberized concrete strength prediction.

In simulations run to predict rubberized concrete 
strength under various rubber and silica fume ratios, this 
study compared EMARS model performance against 
four other data mining techniques, including MARS, 
BPNN, RBFNN, and GP. A 10-fold cross-validation 
model was utilized to diminish prediction bias. Com-
parisons were based on the three criteria of R2, MAPE,  
and RMSE. Result comparisons have shown that the 
proposed approach can achieve roughly 16% and 28% 
reduction in RMSE for compressive strength prediction 
and splitting-tensile strength prediction compared to 
other data-mining techniques, respectively. Experimen-
tal results amply demonstrate EMARS as a reliable and 
proper tool for civil engineers to predict rubberized con-
crete strength.

Because EMARS allows civil engineers to determine 
rubberized concrete strength without running costly and 
time-consuming confirmatory experiments, it should be 
considered an effective tool to manage concrete quality  
and reduce project time. Civil engineers can employ 
EMARS to strike an optimal balance between quality and 
cost by creating the ideal mix proportion in the concrete 
aggregation that meets but does not unnecessarily exceed 
project concrete strength requirements.
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