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Abstract. The increasing complexity of architectural design works refers to the need for high quality design solu-
tions for overlapping activities through a shorter time period. Conventional network analysis techniques such as CPM 
could only represent sequential processes yet it is unable to handle a process which contains iterations so that it leads 
to the occurrence of unwanted omission of logic or information links between design activities. Ant Colony Optimiza-
tion emerged as an efficient metaheuristic technique for solving computational problems in finding good paths through 
graphs. This research aims to develop an ACO based Design Activity Scheduling model (ACO-DAS) for the scheduling 
of overlapping architectural design activities and to test the workability of ACO-DAS through a hypothetical run. From 
the computational results of both CPM and ACO methods, the determination of critical path using ACO-DAS model 
resulted in a design duration at 50 while that for CPM was as long as 78. The durations of architectural design activi-
ties have been significantly shortened by ACO-DAS. ACO-DAS results in shorter design completion time thus it deems 
more advanced than CPM.
Keywords: ant colony optimization, design activity scheduling, CPM, overlapping architectural design activities,  
metaheuristic technique.

Corresponding author: Chen Wang
E-mail: derekisleon@gmail.com

780 Copyright © 2016 Vilnius Gediminas Technical University (VGTU) Press
www.tandfonline.com/tcem

Introduction

Recently, the pressures to improve the design perfor-
mance have increased due to the increasing complexity 
of projects and the competitive market. Such improve-
ments refer to the need for high quality design solutions 
for overlapping activities through a shorter time period 
(Hoseini, Shayesteh 2013; Tzortzopoulos, Cooper 2007). 
There lacks of a formal procedure or computerized tools 
to guide the architects in considering overlapping de-
cisions and most architects do not have a good math-
ematics background (Srour et al. 2013). Fast-tracking 
in the construction industry is becoming more popu-
lar due to the growing industry demands (Srour et al. 
2013). Construction delays are commonly occurred due 
to the lateness of design deliverables such as drawings, 
calculations and reports. Scheduling of building design 
activities includes assessing the status on the activities’ 
readiness to be performed, assigning resources and de-
termining the start time, duration, and completion time 
for each activity (Bożejko et al. 2012). Construction 
practitioners normally rely on experience and standard 
scheduling methods such as bar charts or Critical Path 
Method (CPM) of network analysis for design activi-
ties scheduling. CPM was developed in 1950s with con-

cepts of identifying activities, determining logical order 
of activities and estimating the duration of each activ-
ity (Kloppenborg 2009). CPM in design and planning 
has been in existence for many years but it was initially 
developed only for construction scheduling because de-
sign activities normally have information dependencies 
between each other and this makes the application of 
CPM imperfect for architectural design. Hence, a more 
efficient alternative to the traditional CPM technique 
is needed for the architectural design with overlapping  
design activities.

In 1992, Ant Colony Optimization (ACO) was first 
introduced by Dorigo who was inspired from the forag-
ing behavior of real ant colonies (Mateos et al. 2013). 
Duan and Liao (2010) found ACO an efficient me-
taheuristic technique for solving computational problems 
in finding good paths through graphs. In recent times, 
ACO has been applied in the construction management 
such as resource-constrained project scheduling (Zhang, 
Ng 2012), construction site layout planning (Ning, Lam 
2013; Lam et al. 2007), optimizing construction time and 
cost (Ng, Zhang 2008), resource-unconstrained schedul-
ing (Thiruvady et al. 2013), determining project critical 
paths (Duan, Liao 2010) and so forth. This research aims 
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to develop an ACO based Design Activity Scheduling 
model (ACO-DAS) for the scheduling of overlapping 
architectural design activities and to test the workability 
of the developed ACO-DAS model through a hypotheti-
cal run.

1. Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is categorized as a part 
of swarm intelligence (SI) inspired by the social behav-
ior of swarms (Junior et al. 2013). Swarm Intelligence 
is related to the transformation of knowledge about the 
ability of insects to solve problems cooperatively into ar-
tificial problem solving methods (Bonabeau et al. 2000). 
There are many techniques inspired by the ants’ behavior 
and ACO is the most successful example of ant algo-
rithms (Dorigo et al. 2006). ACO was first introduced by 
Marco Dorigo in year 1992 where the idea came from 
the foraging behavior of some ant species, particularly 
on the ability of ants to discover the shortest route be-
tween their nest and food sources. As described by Do-
rigo and Socha (2007), when ants are walking around 
searching for food, they will deposit an odorous chemi-
cal substance which is known as pheromone on the path, 
forming a pheromone trail. When the ants are choos-
ing their way to the food sources, they able to smell the 
pheromone and they are more likely to follow the route 
that have stronger concentration of pheromone. This 
pheromone trail enables the ant to reach good sources of 
food which have been previously explored by the other 
ants. In 1992, the first ACO system, known as Ant Sys-
tem (AS) was proposed by Marco Dorigo in his PhD 
thesis. Since then, ACO started to attract the attention of 
many researchers and broad fields of ACO applications 
are now available. 

1.1. Foraging behavior of real ant colonies
Ants can be classified as social insects which live to-
gether in colonies. Normally their behavior is influenced 
by the goals of their colony survival but not concentrat-
ed on the individual survival (Blum 2005). A research 
has been done by Deborah Gordon to observe the ant 
colony behavior, who clarified that ants are not smart 
but ant colonies are (Miller 2010). Ant is a simple crea-
ture but an ant colony was able to complete some com-
plex activities which in certain circumstance far beyond 
the ability of individual ant (Dorigo et al. 2000). One of 
the amazing abilities of ant colony is that they are able 
to discover the shortest path from their nest to the food 
source through stigmergy. This ant behavior is especial-
ly remarkable as we know ant is almost blind. Hence, it 
is impossible for the ant colonies to find out the short-
est path by the employment of visual clues. Dorigo and 
Blum (2005) described the concept of ACO algorithms 
from the sourcing of food in ant colonies. Many ant 
species had a depositing-trial following behavior when 
they are searching for food (Dorigo et al. 2000). While 
the ants are foraging, they will first explore the area 

surrounding their nest and randomly moving around. 
Once a forager found an important food source, it will 
evaluate the food quality and quantity and transport it 
back to its nest. When the forager is heading back to its 
nest, it will lay an odorous chemical substance which 
is known as pheromones along their travelled path 
(Blum, Dorigo 2004). Other foragers might then follow 
such pheromone trails with some probability to reach 
the food source. The ants can communicate indirectly 
between each other to exchange information through 
depositing a chemical substance which is called phero-
mone (Duan, Liao 2010). In practice, choices between 
different paths occur when several intersect. Then, ants 
choose the path to follow by a probabilistic decision 
biased by the amount of pheromone: the stronger the 
pheromone trail, the higher its desirability. The level of 
tendency, equivalently, the quantity of pheromone de-
posited, is dependent upon the quality of food. A high 
level of pheromone concentration attracts ants to follow 
it with high probability thus reinforcing he trail with its 
own pheromone. The more ants follow a trail, the more 
attractive it become to other ants. On the other hand, 
the pheromones will evaporate over some time due to 
natural environment (Duan, Liao 2010). In those less-
travelled paths, the concentration of pheromones will 
varnish with time and thus become weaker and weaker. 
This whole process can be characterized by a positive 
feedback loop where the probability of each ant chooses 
to follow the path increases with the numbers of ants 
that have previously chosen to travel the same path. As 
a result, the ant population and path-traversing process 
converge to the shortest path from the nest to the food 
source in a relatively short period of time (Duan, Liao 
2010).

1.2. Ant Colony Optimization (ACO) variants and  
applications
Variants of ACO algorithms are basically differing from 
each other in the aspect of the pheromone update rule 
that have been employed (Dorigo, Blum 2005). After the 
Ant System (AS) has been introduced, many researchers 
and practitioners have made extension and improvement 
on the original AS algorithm to discover the further ap-
plication of ACO. A selection of some successful ACO 
variants applications are listed in Table 1. 

The first ACO algorithm example is Ant System 
(AS) which was introduced by Marco Dorigo in 1992 to 
solve the travelling salesman problem (TSP). The next 
two applications of ACO after the travelling salesman 
problem (TSP) were the quadratic assignment problem 
(QAP) and the job-shop scheduling problem (JSP) that 
have been introduced in year 1994 and followed by the 
first network routing applications in 1996. The number 
of ACO applications started to increase and these in-
clude the classical vehicle routing problems, sequential 
ordering, flow shop scheduling and also graph coloring 
problems. Since then, ACO has been applied to solve 
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the combinatorial optimization problems such as short-
est common super sequence, generalized assignment,  
set covering, multiple knapsack and constraint satis-
faction problems. Recently, the application of ACO 
has been further expanded by several other research-
ers for machine learning purposes, concretely to the  
design of learning algorithms for knowledge representa-
tion structures such as classical logic rules (Parpinelli  
et al. 2002), and fuzzy logic rules (Cordon et al. 2002) 
showing very promising results. Christodoulou (2009) 
presents a methodology for the critical path calculation 
from network diagram by imitating the behavior of real 
ants in finding the shortest route from their nest to the 
food source. Duan and Liao (2010) pointed out the num-
ber and allocation of logical dummy activities associ-
ated with AoA Network can affect the performance of 
the two existing ACO algorithms. Shankar et al. (2011) 
discussed an approach to apply ACO for solving CPM 
Network. Abdallah et al. (2009) has proposed the ap-
plication of ACO to look into and solve the problems 
of PERT network in project management. As described 
by Christodoulou (2009), ACO algorithms exhibit many 
similarities in construction scheduling, especially in the 
characteristic of underlying network topology and path 
searching approach to compute longest or shortest path. 
The application of ACO in defining the longest path in 
acyclic graph is actually the same as the determination of 
critical path in construction activities network. The ACO 
ants, state, connection and cost functions could represent 
the CPM’s resources, activity, relationship and durations 
respectively.

2. Research procedures and model development

The planning and control of design work is considered 
the fundamental activity in a design project. Time aspect 
is always the most important consideration to make sure 
the project is completed within budget. A development 
team was formed among experts from various fields 
such as architects, building consultants, IT profession-
als, and Mathematicians, whose profiles are presented 
in Table 2. A qualitative technique enables misunder-
standing or intangible issues to be avoided so that the 
model development process can be rectified immediately  
(Hennink et al. 2010). Owing to the nature of the re-
search where people’s experiences, perceptions, opinions 
and knowledge are necessities to the development of the 

Table 1. Various applications of ACO algorithms according to 
problem type

Problem Authors Year Algorithms

Travelling 
Salesman

Dorigo et al. 1991 AS

Gambardella and 
Dorigo 1995 Ant-Q

Dorigo and 
Gambardella 1996 ACS-3-opt

Stutzle and Hoos 2000 MaxMin-AS

Bullnheimer et al. 1997 Rank AS

Quadratic 
Assignment

Maniezzo et al. 1994 AS-QAP

Gambardella et al. 1997 HAS-QAP

Stutzle and Hoos 2000 MMAS-QAP

Maniezzo and 
Colorni 1998 AS-QAP

Maniezzo 1998 ANTS-QAP

Vehicle Routing
Bullnheimer et al. 1997 AS-VRP

Gambardella et al. 1999 HAS-VRP

Scheduling 
problems

Colorni et al. 1994 AS-JSP

Stutzle 1997 AS-FSP

Merkle et al. 1997 ACO-RCPS

Bauer et al. 1999 ACS-SMTTP

den Besten et al. 1999 ACS-
SMTWTP

Blum et al. 2004 HCF

Blum 2005 PACO

Connection-
oriented 
network routing

Schooderwoerd 
et al. 1996 ABC

White et al. 1998 ASGA

Di Caro and 
Dorigo 1998 AntNet-FS

Bonabeau et al. 2000 ABC-smart 
ants

Connection-less 
network routing

Di Caro and 
Dorigo 1997 Ant Net-FA

Subramanian et al. 1997 Regular ants

Heusse et al. 1998 CAF

Van der Put and 
Rothkrantz 1998 ABC-

backward

Multiple 
knapsack

Leguizamon and 
Michalewicz 1999 AS-MKP

Generalized 
assignment Ramalhinho et al. 1998 MMAS-GAP

Optical 
networks 
routing

Navarro Varela and 
Sinclair 1999 ACO-VWP

Sequential 
Ordering

Gambardella and 
Dorigo 1997 HAS-SOP

Graph Coloring Costa and Hertz 1997 ANTCOL
Shortest 
Common 
Supersequence

Michel and 
Middendorf 1998 AS-SCS

Frequency 
assignment

Maniezzo and 
Carbonaro 2000 ANTS-FAP

Travelling 
Salesman 
Problem (TSP)

Blum and Lopez-
Ibanez 2010 Beam-ACO
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model, qualitative approach was employed in this study, 
which consists of the following four main stages. A hy-
pothetical run of the ACO-DAS was conducted to test 
how it works in a building design project. The first stage 
worked out the ACO algorithm processes used for the 
development of ACO-DAS. Secondly, each step of the 
final model was developed and outlined. The complete 
ACO-DAS associated with its main components was fi-
nalized on the third stage. The final but significant stage 
is the hypothetical run of the developed ACO-DAS. The 
ACO algorithm processes for the ACO-DAS develop-
ment consists of 9 steps as follows.

Step 1: Categorization of design activities
Design activities can be categorized into conceptu-

al design, electrical design, HVAC design and structural 
design. By categorizing the design activities, the devel-
oping team listed down all the detailed design activities  
under each category to find the sequence. The durations 
and relationship between the activities were clearly stat-
ed. For example, conceptual design consists of floor plan 
design, exterior elevations design, wall section design, 
ceiling design and so forth. Structural design is com-
prised of structural calculations, foundation design, floor 
framing design, etc. All the detailed activities were tabu-
lated with respective durations. 

Step 2: Construction of network topology
Network topology was formed by circles and paths 

linked by arrows. The circle, which is known as node is 
the intersection point of two or more arrows. This net-
work topology technique can meet the requirements of 
different functions and purposes. The network model 
graphically represents the order of events or sequence 
of design activities. There are two types of network 
diagram which are AON and AOA. AOA diagram is 
a graphic technique in which the arrows represent ac-
tivities and nodes represent the start and finish of those 
activities. On the other hand, AON diagram represent  
activities as nodes and activity sequences as arrows. The 
network topology provides a comprehensive layout for 
project schedule with a set of activities that have rela-

tions with each other. In this research, the design net-
work topology was defined by an AON graph G = (V, E)  
in which V represents the design activities and E repre-
sents the relationships connected to the nodes. The es-
tablished network topology which represents the design 
schedule should be analyzed to initialize topology pa-
rameter in Step 3.

Step 3: Initialization of topology parameters
The setting of topology parameters (β, ρ, α, q0) ac-

tually depends on a sensitivity analysis for other rand-
omized topologies and the observed rate and accuracy 
of convergence to an optimal solution (Christodoulou 
2009). Evaluation of the accuracy and rate of conver-
gence for the examined solution methodology in relation  
with the examined parameters are allowed by the sensi-
tivity analysis. The base value combinations for the ex-
amined parameters can be obtained through the exami-
nation of various network topologies. After constructing 
the network topology, the topology parameters were ini-
tialized before the generation of solution through ACO 
algorithms. The values of each parameter are the results 
of sensitivity analysis. The performance of all the topol-
ogy parameter was verified against other network char-
acteristics such as the number of nodes and arcs in the 
network topology and also the number of possible start-
ing nodes (ant nest) found in the network. The 4 com-
mon parameters that associated with the ACO technique 
is shown in Table 3.

Step 4: Setting of initial pheromone level
In this step, the artificial ants were expected to ran-

domly walk and search the path because there was no 
previously visited path with higher pheromone concen-
tration which the ants could sense. Therefore, the initial 
pheromone level was set at an equal value at each edge. 
The initialized pheromone level of the path was updated 
after it had been travelled by the ants. The pheromone 
levels at all arcs were initialized with a small amount 
of pheromone, τ0. The values of this initial pheromone 
level of the path was either the inverse line-distance be-
tween two nodes or the inverse line-distance of the arc 
between the nodes, which referred to the durations of 
activity found in the network. 

Step 5: Allocation of ants to initial node
After initializing the pheromone level, all ants were 

allocated. 
The ants were allocated from the initial node pseu-

do-randomly walking via the connecting edges until it 
reached the end node. 

Step 6: Generation of best paths
When the ants were randomly walking from the 

initial node, they will come across the node where they 
need to select which path to follow. The path selection 
process depended on Eqn (1):

 ρi = τiηi
β / ∑i τiηi

β, (1)

Table 2. Profiles of the ACO-DAS Developing Team

Topology parameters Description

β
Parameter that determine the 
relative influence of the heuristic 
information

ρ

Parameter that determine the 
level of pheromone concentration 
evaporation in local pheromone 
update

α

Parameter that determine the 
level of pheromone concentration 
evaporation in global pheromone 
update

q0

Assist the selection of path based 
on the probability or random 
selection
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Table 3. The network topology parameters

No Specialty Gender Age Working 
experience Qualification Roles in model development

A Architect Male 57 25 years Bachelor Stage 1 
and 4

Collaborating with Developer B to 
determine the sequence of design activities 
and their nodes. Working with Developer 
D to determine the critical path of design 
activities.

B Building 
Consultant Male 52 28 years Master Stage 1 

and 4

Expertise in electrical design, HVAC design. 
Working with Developer A, C, D, L to 
determine the sequence of design activities 
and their nodes.

C Architect Male 48 15 years Bachelor Stage 1 
and 4

He is the project manager of the ACO-DAS 
hypothetical run. All the design activities and 
nodes were finalized by him. He supervised 
the hypothetical run.

D Architect Male 45 18 years PHD Stage 1 
and 4

Assisting Developer C. He was in charge of 
finding critical path from design activities.

E
Cartographer 
and ACO 
algorithms

Male 50 20 years PHD Stage 3 
and 4

Worked out the ACO algorithm processes 
for the development of the final ACO-DAS. 
He was in charge of establishing network 
topology, initializing topology parameters, 
setting initial pheromone level, and 
constructing best solution.

F
Computer-
aided 
Scheduling

Male 47 25 years PHD Stage 2 
and 4

Reasoning the selection of ACO algorithms 
in design activities. Developer F was 
in charge of finding the critical path by 
calculating the total float. He was also the 
main programmer of the hypothetical run.

G Mathematician Female 51 27 years PHD Stage 2 
and 3

She was in charge of local pheromone update 
rule, global pheromone update, and reach 
number of iterations and termination.

H ACO 
algorithms Male 56 31 years PHD Stage 3

All the design activities and nodes finalized 
by the Developer C were translated and 
inputted by Developer H into the ACO-
DAS. He is the cartographer of the iteration 
diagrams.

I Architect Male 44 19 years Master Stage 2 
and 4

Expertise in structural design. Collaborating 
with Developer B to determine the sequence 
of design activities and their nodes.

J Mathematician Female 33 8 years PHD Stage 3
The complete ACO-DAS associated with 
its main components was graphed and 
calculated by her.

K
Project 
Scheduling and 
CPM

Male 42 16 years Master Stage 3 
and 4

Reasoning the selection of ACO algorithms 
in schedule acceleration. Developer D 
examined the limitation of traditional CPM 
a) CPM is unable to calculate the longest 
or shortest paths from a node to any node; 
b) CPM does not take into consideration 
the resource-driven relationships for 
the activities; and c) The computational 
insufficiency of CPM due to exhaustive 
enumeration. He was also in charge of the 
CPM calculation part in the hypothetical 
run. The critical path of the design process 
was identified by both the traditional CPM 
and the new ACO approach to verify the 
application of ACO in finding the critical 
path.

L Architect Male 39 17 years Bachelor Stage 2 
and 4

Collaborating with Developer B to determine 
the sequence of design activities and their 
nodes. 
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where: τi – pheromone concentration on the ith arc; ηi – 
priori available heuristic value for the ith arc, can be the 
inverse of the arc length or the inverse of the arc length 
plus the line-distance between the nodes; and βi – param-
eter determining the relative influence of the heuristic 
information.

Step 7: Apply local pheromone update 
After passing each arc in the network during the 

construction of solutions, the local pheromone update rule  
was applied to update the level of pheromone at the given 
arc. Local pheromone updating is to allow more paths or 
routes to be explored and chosen by lowering the chance 
where the previously travelled paths to be chosen again 
when the ants are randomly selecting the arc. The phero-
mone evaporation was updated by means of local phero-
mone update to all paths. The local pheromone update 
was computed by Eqn (2):

 τi = (1 – ρ) τi + ρτ0, (2)

where: ρ – network topology parameter, 0 ≤ ρ ≤ 1; τ0 = 
initial pheromone level.

Step 8: Apply global pheromone update
Global pheromone update was applied to the best 

path of the iteration. The ant that made the longest path 
in the particular iteration was the best path adding an 
amount of pheromone concentration on the travelled arc 
in which the line distance of that path was increasing. 
The amount of pheromone concentration depends on 
how frequent the path is being chosen, which means that 
the more frequently selected best path of the iterations, 
the higher is the pheromone concentration. The global  
pheromone update was calculated using Eqn (3).

 τi = (1 – α) τi + ατL, (3)

where: α – network topology parameter, 0 ≤ α ≤ 1, which 
determines the pheromone concentration evaporation 
level; τL – inversely proportional to the path length of 
the best solution, zero for all other solution.

Step 9: Reach number of iteration
The whole ACO process ended when a fixed num-

ber of iterations were reached after repeating Step 6 to 
Step 8. The best solution was determined from the fi-
nal pheromone level and the chosen probability of the 
nodes. The longest path was finally obtained. The above 
mentioned 9 steps could be run in accordance with the 
sequence shown in the developed ACO-DAS model as 
illustrated in Figure 1.

3. Hypothetical run of ACO-DAS

A hypothetical run of the ACO-DAS model was con-
ducted to test its workability. The critical path was cal-
culated by both the CPM and the ACO-DAS model, 
thus a comparison could be made between these two 
methods based on the computation results. A design 

case was created for the hypothetical run, in which all 
the detailed design activities were coded to construct 
the network topology. The detailed information on each 
activity in the hypothesized project including the nodes, 
immediate predecessors, and durations are tabulated in 
Table 4.

3.1. Network diagram in hypothesized design case
A network diagram as shown in Figure 3 was created 
based on the detailed architectural design activities listed 
in Table 4. The hypothesized design case has a topology 
with 12 nodes and 20 node connections. The 12 nodes 
of the simulation network topology consists of an ant 
nest, a food source, and regular nodes. The node without 
predecessors represents the ant nest and the one without 
any successor is the food source. 

3.2. Calculating critical path by CPM
As the most conventional method for design activity 
scheduling, CPM was conducted in this hypothetical run 
in order to compare with the developed ACO-DAS. CPM 
involved the computation of forward pass and backward 
pass for the determination of critical path in the network. 
The computation of forward pass involved the earliest 

Fig. 1. The developed ACO-DAS model for overlapping 
architectural design activities
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start (ES) and earliest finish (LS), whereas the computa-
tion of backward pass involved the calculation of latest 
finish (EF) and the latest start (LS). The critical path was 
then selected with critical activities of zero float. 

3.2.1. Calculation of forward pass
The starting point of a forward pass was the very first 
activity in the network diagram shown in Figure 2. The 
ES of this very first activity equals to zero. The FS of 
this activity was then calculated by adding its durations 
to the ES. 

3.2.2. Calculating backward pass
The starting point for a backward pass was the last activ-
ity in the network diagram shown in Figure 3. LS was 

calculated from the longest duration of the activity path 
and taken into consideration the smallest value for more 
than one activity for the subsequent activities.  

3.2.3. Calculation of total float (TF)
After computing all the values of ES, EF, LS and 
LF for each activity, the total float was then deter-
mined. The total float was the amount of time that an 
activity could be delayed without delaying the pro-
ject’s estimated completion period. For activity A,  
TF = LF – EF/ LS – ES = 7 – 7/ 0 – 0 = 0. For activity  
C, TF = LF – ES – Duration of activity C = 24 – 7 – 10 = 7.  
The same computation method was used to calculate the TF  
of all other activities in the network. 

Table 4. Description and predecessors of each activity in the hypothesized design project

Activity Immediate 
predecessor

Durations
(days)Code Name Node

A Floor Plan Design (0,1) – 7
B Exterior Elevations Design (1,2) A 8
C Wall Sections Design (1,3) A 10
D Ceiling Plan Design (2,3) B 9
E Restroom Details Design (2,5) B 12
F Door and Window Details Design (3,5) C, D 13
G Cafeteria Furniture Design (3,4) C, D 5
H Interior Elevation Design (4,5) G 15
I Construction Details Design (5,8) E, F, H 16
J Architectural Design Review (4,8) G 1
K HVAC Calculations (4,7) G 4
L AHU Equipment Design (4,6) G 10
M Piping System Design (6,7) L 9
N Air Duct Plan Design (7,8) K, M 8
O Electrical Switchgear Calculations (8,10) I, J, M 7
P Electrical Switchgear Design (7,10) K, M 6
Q Light Fixture and Wiring Design (6,9) L 8
R Emergency Light Design (9,10) G 2
S Smoke Detector Design (9,11) Q 3
T Emergency Exhaust Duct Design (10,11) O, P, R 11

Fig. 2. Network topology for hypothesized design case Fig. 3. Network Diagram for Final Solution of CPM
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3.2.4. Determination of critical path
The critical activity, if delayed by any amount of time, 
will delay the completion of entire project by the same 
amount of time. Any node not in the critical path will 
have float, which means that critical activities have zero 
float. In this network, the activity A was one of the critical 
activities as it had zero float. On the other hand, activ-
ity B contained the total float of 7, which indicated that 
activity B was not a critical activity. The results of the 
forward pass (ES and LS), the backward pass (LS and 
LF) and also the total float computation are tabulated in 
Table 5. The critical path was then identified in Figure 3.  
The critical path in this network was formed by the criti-
cal activities 0–1–2–3–4–5–8–10–11 which had zero float. 
Hence, the longest project total durations were 7 + 8 + 9 + 
5 + 15 + 16 + 7 + 11 = 78. This is the shortest durations 
to finish the entire design project using CPM scheduling.

3.3. Calculating critical path using ACO-DAS

The ACO-DAS was used to identify the critical path to 
compare the result with CPM. The same network to-
pology was used as shown in Figure 3. The assump-
tion of topology parameters is tabulated in Table 6. 
After initializing the topology parameters, the initial  
pheromone level was set. In the beginning, the phero-
mone levels of all arcs were the same because there was 
no path travelled by the ant. Nevertheless, each arc had 
a small value of pheromone concentration to initialize 

the selection process in which the ant moved randomly 
to choose which path to travel. The values of the phero-
mone concentration were set according to the line dis-
tance between the nodes. It could be the inverse line 
distance between two nodes or the inverse line distance 
of the arc between the nodes. The line distances in the 
network topology represented the durations of each ac-
tivity. The probability where the path to be chosen was 
computed by Eqn (1). The selection of path was made 
between the arcs according to the probability stochastic 
process. The number of iteration was fixed to 5 by the 
researcher. The probability calculation process for the 
given arcs in Figure 3 with different initial pheromone 
level are presented in detail below. The probability was 
computed for each path from the left to the right of the 

Table 5. Solution of critical path by applying CPM

Activity 
code (i,j) Duration Immediate 

predecessor ES EF LS LF TF Critical activity

A (0,1) 7 – 0 7 0 7 0 Yes
B (1,2) 8 A 7 15 7 15 0 Yes
C (1,3) 10 A 7 17 14 24 7 No
D (2,3) 9 B 15 24 15 24 0 Yes
E (2,5) 12 B 15 27 32 44 17 No
F (3,5) 13 C,D 24 37 31 44 7 No
G (3,4) 5 C,D 24 29 24 29 0 Yes
H (4,5) 15 G 29 44 29 44 0 Yes
I (5,8) 16 E,F,H 44 60 44 60 0 Yes
J (4,8) 1 G 29 30 59 60 30 No
K (4,7) 4 G 29 33 48 52 19 No
L (4,6) 10 G 29 39 33 43 4 No
M (6,7) 9 L 39 48 43 52 4 No
N (7,8) 8 K,M 48 56 52 60 4 No
O (8,10) 7 I,J,M 60 67 60 67 0 Yes
P (7,10) 6 K,M 48 54 61 67 13 No
Q (6,9) 8 L 39 47 57 65 18 No
R (9,10) 2 G 29 31 65 67 36 No
S (9,11) 3 Q 47 50 75 78 28 No
T (10,11) 11 O,P,R 67 78 67 78 0 Yes

Table 6. Assumption of topology parameter

Topology 
parameters Description

α = 1.0 Determine the level of evaporation of 
pheromone concentration for global update

β = 1.0 Determine the relative influence of the 
heuristic information

q0 = 0.3 Assist in the path selection based on the 
probability or random selection

p = 0.5 Determine the level of evaporation of 
pheromone concentration for local update
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network topology. When the ant reached a node without 
any branch, the possibility for the ant to travel to it al-
ways equaled to 1. 

3.3.1. Probability and pheromone level for arc 0 – 1
Iteration 1: P01 = 1, the local pheromone update was 
then applied to all travelled paths. The chosen arc was 
updated to enable other arcs to have the higher prob-
ability to be chosen, the initial pheromone level τ0 was 
set to 1. The computation was based on Eqn (2), thus 
the local pheromone level updated as: τ01 = (1 – 0.5) 
(1) + (0.5) (1/7) = 0.5714. The global update was ap-
plied to the chosen best path to update the pheromone 
level because the frequently travelled path by the ant 
would have higher pheromone concentration. However, 
the previously chosen arc would not be considered as 
part of the possible trails. The computation was based 
on Eqn (3), thus the global pheromone level updated as: 
τ01= (1 – 0.5) (0.5714) + (0.5) (1/7) = 0.3571. Likewise, 
the global pheromone level updated in Iteration 2, 3, 4, 
and 5 are:

Iteration 2: P01 = 1, thus τ01 = (1 – 0.5)(0.3571) + 
(0.5) (1/7) = 0.2500;

Iteration 3: P01 = 1, thus τ01 = (1– 0.5)(0. 2500)+ 
(0.5) (1/7) = 0.1964;

Iteration 4: P01 = 1, thus τ01 = (1 – 0.5)(0.1964) +  
(0.5) (1/7) = 0.1696;

Iteration 5: P01 = 1, thus τ01 = (1 – 0.5)(0.1696)+ 
(0.5) (1/7) = 0.1562.

Five iterations were completed and the final pheromone 
levels were established. The highest probability revealed 
that the longest path of the network was the critical ac-
tivity and the highest pheromone concentration was the 
shortest travelled distance. The results were tabulated in 
Table 7. 

3.3.2. Probability and pheromone level for arcs  
1–2 and 1–3
Next, the ant reached the node 2 with two branch-
es, namely: 1–2 and 1–3. The results are tabulated in  
Table 8. The global pheromone level updated: τ12 = 
(1 –0.5) (0.4747) + (0.5) (1/8) = 0.2999; and τ13 = (1 – 
0.5) (0.5253) + (0.5) (1/10) = 0.3127.

3.3.3. Probability and pheromone level for arcs  
2–3 and 2–5
The next selection is between the arcs 2–3 and 2–5. The 
calculated values for 5 iterations were tabulated in Table 9.

3.3.4. Probability and pheromone level for the rest  
notes and arcs
Next, the ant was facing new braches which are arcs 3–4 
and 3–5. After that, the ant arrived the arcs 4–5, 4–6, 
4–7 and 4–8. Then, the ant arrived at the node with no 
branch through the arc 5–8. As the ant travelled on, the 
probability and pheromone level for arcs 6–7 and 6–9 
is in Table 10. Further, the ant was facing new braches 
arcs 7–8 and 7–10. Next, the ant reached the node with 
no branch through arc 8–10. Then, the ant was facing 
braches 9–10 and 9–11. Finally, the ant arrived again at 
the node without branch through arc 10–11. The critical 
path in this network was formed by the critical activities 
0–1, 1–2, 2–3, 3 –4, 4–6, 6–9 and 9–11 which have zero 
float. Hence, the longest project total durations are 7 + 
8 + 9 + 5 + 10 + 8 + 3 = 50. This equals to the shortest 
durations to finish the entire project. 

3.4. Computational results 
The network topology for final solution using ACO-DAS 
is presented in Figure 4 and the computational result by 
ACO-DAS is tabulated in Table 10, which indicates that 
the determined critical path is much more efficient than 
that by CPM. 

The critical path determined by CPM was formed 
by the critical activities 0–1, 1–2, 2–3, 3–4, 4–5, 5–8, 

Table 7. Probability and pheromone level for arc 0–1

No of iteration
0–1

Global pheromone update, τ01

1 0.3571
2 0.2500
3 0.1964
4 0.1696
5 0.1562

Table 9. Probability and pheromone level for arcs 2–3 and 2–5

No of 
iteration

2 – 3 2–5
Probability, 

P23

Global 
pheromone 
update, τ23

Probability, 
P25

Global 
pheromone 
update, τ25

1 0.5013 0.3334 0.4987 0.3209
2 0.4827 0.2969 0.5173 0.3003
3 0.5052 0.3082 0.4948 0.2891
4 0.4707 0.2909 0.5293 0.3063
5 0.5237 0.3174 0.4763 0.2798

Table 8. Probability and pheromone level for arcs 1–2 and 1–3

No of 
iteration

1–2 1–3
Probability, 

P12

Global 
pheromone 
update, τ12

Probability, 
P13

Global 
pheromone 
update, τ13

1 0.5014 0.3438 0.4986 0.3250
2 0.4747 0.2999 0.5253 0.3127
3 0.5191 0.3221 0.4809 0.2905
4 0.4529 0.2890 0.5471 0.3236
5 0.5515 0.3383 0.4485 0.2743
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8–10 and 10–11 with the total critical path duration of 
78. Whereas, the critical path determined by ACO-DAS 
is formed by the critical activities 0–1, 1–2, 2–3, 3–4, 
4–6, 6–9 and 9–11 with critical path duration of 50. It 
justified that ACO-DAS could significantly further short-
en the design duration determined by CPM. ACO-DAS 
could therefore be used to create a compressed design 
schedule for a fast-tracked project.

3.5. Discussion on results
The developed ACO-DAS was proved more efficient in 
scheduling overlapping architectural design activities 

compared with CPM. ACO-DAS resulted in shorter de-
sign completion time thus it is more advanced than CPM. 
From the computational results of both CPM and ACO 
methods, the determination of critical path using ACO-
DAS model resulted in a design duration at 50 while that 
for CPM was as long as 78. The durations of architectur-
al design activities have been significantly shortened by 
ACO-DAS. Even though the CPM approach is an effec-
tive planning tool for scheduling construction projects, 
it does not make use of opportunities for optimization 
during the design phase (Oloufa 2003). Many researchers 
have pointed out the limitations of CPM in design sched-
uling. Srour et al. (2013) stressed that currently there 
is no computerized tools to guide architects in making 
overlapping decisions. CPM is unable to schedule design 
overlapping especially in a fast-tracked project. Network 
analysis techniques and tools such as CPM could only 
represent sequential processes yet it is unable to handle 
a process which contains iterations so that it leads to the 
occurrence of unwanted omission of logic or information 
links between design activities. ACO-DAS has remedied 
those limitations in CPM and provided a more efficient 
computational algorithm comparing to CPM. The ben-
efits of the developed ACO-DAS are simplified as a) it 
provides a formalized scheduling approach to guide the 
design mangers, architects, and project managers in mak-
ing overlapping decisions in design works; b) the break-

Table 10. Solution of network using the ACO algorithm

Network Pheromone level Result
Activity 

node Start node End node Duration Original After 5 
iterations Probability Critical 

activity
A 0 1 7 0.1429 0.1562 1.0000 YES
B 1 2 8 0.1250 0.3383 0.5515 YES
C 1 3 10 0.1000 0.2743 0.4485 NO
D 2 3 9 0.1111 0.3174 0.5237 YES
E 2 5 12 0.0833 0.2798 0.4763 NO
F 3 5 13 0.0769 0.2011 0.3252 NO
G 3 4 5 0.2000 0.4374 0.6748 YES
H 4 5 15 0.0667 0.1626 0.2585 NO
I 5 8 16 0.0625 0.0772 1.0000 NO
J 4 8 1 1.0000 0.5338 0.0676 NO
K 4 7 4 0.2500 0.2854 0.3208 NO
L 4 6 10 0.1000 0.2266 0.3531 YES
M 6 7 9 0.1111 0.2921 0.4730 NO
N 7 8 8 0.1250 0.2868 0.4485 NO
O 8 10 7 0.1429 0.1562 1.0000 NO
P 7 10 6 0.1667 0.3591 0.5515 NO
Q 6 9 8 0.1250 0.3260 0.5270 YES
R 9 10 2 0.5000 0.4964 0.4921 NO
S 9 11 3 0.3333 0.4203 0.5073 YES
T 10 11 11 0.0909 0.1052 1.0000 NO

Fig. 4. Network topology for final solution using ACO-DAS
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ing down of every category of design activities provides 
a clear image of the flows of design phase; c) more care-
ful attention is paid to the critical activities being deter-
mined; and d) it leads to more effective fast-tracking in 
construction.

Conclusion and recommendations

ACO algorithms have not been used by architects or 
other building designers world widely due to their una-
wareness of this kind of powerful tool in the overlapped 
architectural design activities. The workability of the de-
veloped ACO-DAS model was verified by a hypotheti-
cal run in the design work of fast-track construction and 
the comparative results with CPM demonstrated a sig-
nificantly shorter design completion time thus it deemed 
more advanced than CPM in overlapping design activi-
ties. Future work can elaborate on the factors ensuring 
a successful fast-track strategy due to high demand of 
faster completion of designing work. Besides, the ACO-
DAS has not been fun tune for Industrialized Building 
System (IBS). By taking into consideration that IBS is 
highly implemented in the construction sector, which is 
for the same purpose of time saving, a tailored ACO-
DAS is highly recommended to be developed and tested 
for IBS design purposes.
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