Share:


Life cycle sustainability assessment for multi-criteria decision making in bridge design: a review

    Ignacio Javier Navarro   Affiliation
    ; Vicent Penadés-Plà Affiliation
    ; David Martínez-Muñoz   Affiliation
    ; Rasmus Rempling Affiliation
    ; Víctor Yepes   Affiliation

Abstract

Sustainable design of infrastructures has become a major matter of study since the recent establishment of the Agenda 2030. This paper provides a systematic literature review on the use of multi-criteria decision making techniques used so far for the sustainable design of bridges. Special attention is put as well on how the reviewed studies assess the sustainable performance of bridge designs along their life cycle from the economic, the environmental and the social perspective. Although SAW and AHP are recurrently used in the sustainable assessment of bridges, the analysis of the most recent articles show that the application of TOPSIS and PROMETHEE techniques are gaining increasing relevance for such purpose. Most of the studies focus on the research of the construction and the maintenance stage of bridges. However, a need for further analysis is identified when it comes to the assessment of the impacts resulting from the End of Life cycle stage of bridges from a sustainable point of view. The use of intuitionistic and neutrosophic logic have been detected as emerging alternatives to the fuzzy approach of decision making problems.

Keyword : decision making, sustainability, bridge design, state of the art, MCDM, life cycle assessment

How to Cite
Navarro, I. J., Penadés-Plà, V., Martínez-Muñoz, D., Rempling, R., & Yepes, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: a review. Journal of Civil Engineering and Management, 26(7), 690-704. https://doi.org/10.3846/jcem.2020.13599
Published in Issue
Oct 2, 2020
Abstract Views
1939
PDF Downloads
1203
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2012). Prioritizing constructing projects of municipalities based on AHP and COPRAS-G: A case study about footbridges in Iran. Baltic Journal of Road and Bridge Engineering, 7(2), 145–153. https://doi.org/10.3846/bjrbe.2012.20

Ardeshir, A., Mohseni, N., Behzadian, K., & Errington, M. (2014). Selection of a bridge construction site using fuzzy analytical hierarchy process in geographic information system. Arabian Journal for Science and Engineering, 39(6), 4405–4420. https://doi.org/10.1007/s13369-014-1070-2

Arya, C., Amiri, Z., & Vassie, P. (2015). A new method for evaluating the sustainability of bridges. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 168(6), 441–453. https://doi.org/10.1680/stbu.14.00069

Balali, V., Mottaghi, A., Shoghli, O., & Golabchi, M. (2014). Selection of appropriate material, construction technique, and structural system of bridges by use of multicriteria decisionmaking method. Transportation Research Record: Journal of the Transportation Research Board, 2431(1), 79–87. https://doi.org/10.3141/2431-11

Bansal, S., Singh, A., & Singh, S. K. (2017). Sustainability evaluation of two iconic bridge corridors under construction using Fuzzy Vikor technique: A case study. Revista ALCONPAT, 7(1), 1–14. https://doi.org/10.21041/ra.v7i1.171

Bukhsh, Z. A., Stipanovic, I., Palic, S. S., & Klanker, G. (2018). Robustness of the multi-attribute utility model for bridge maintenance planning. Baltic Journal of Road and Bridge Engineering, 13(4), 404–415. https://doi.org/10.7250/BJRBE.2018-13.425

Bukhsh, A., Stipanovic, I., Klanker, G., O’Connor, A., & Doree, A. G. (2019). Network level bridges maintenance planning using Multi-Attribute Utility Theory. Structure and Infrastructure Engineering, 15(7), 872–885. https://doi.org/10.1080/15732479.2017.1414858

del Caño, A., de la Cruz, M. P., Gómez, D., & Pérez, M. (2016). Fuzzy method for analysing uncertainty in the sustainable design of concrete structures. Journal of Civil Engineering and Management, 22(7), 924–935. https://doi.org/10.3846/13923730.2014.928361

Cau, B. T., & Hong, N. T. (2017). A new approach to the multicriteria appraisal of investment alternatives for infrastructure projects. International Journal of Civil Engineering and Technology, 8(11), 982–994.

Chassiakos, A. P., Vagiotas, P., & Theodorakopoulos, D. D. (2005). A knowledge-based system for maintenance planning of highway concrete bridges. Advances in Engineering Software, 36(11–12), 740–749. https://doi.org/10.1016/j.advengsoft.2005.03.020

Chen, T. Y. (2014). The extended linear assignment method for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. Applied Mathematical Modelling, 38(7–8), 2101–2117. https://doi.org/10.1016/j.apm.2013.10.017

Chen, T. Y. (2015). IVIF-PROMETHEE outranking methods for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. Fuzzy Optimization and Decision Making, 14(2), 173–198. https://doi.org/10.1007/s10700-014-9195-z

Chen, T. Y. (2016). An interval-valued intuitionistic fuzzy permutation method with likelihood-based preference functions and its application to multiple criteria decision analysis. Applied Soft Computing, 42, 390–409. https://doi.org/10.1016/j.asoc.2016.02.006

Chen, T. Y. (2018). A novel PROMETHEE-based outranking approach for multiple criteria decision analysis with pythagorean fuzzy information. IEEE Access, 6, 54495–54506. https://doi.org/10.1109/ACCESS.2018.2869137

Chen, T. Y. (2019). Novel generalized distance measure of pythagorean fuzzy sets and a compromise approach for multiple criteria decision analysis under uncertainty. IEEE Access, 7, 58168–58185. https://doi.org/10.1109/ACCESS.2019.2914703

Chen, T. Y. (2020). New Chebyshev distance measures for Pythagorean fuzzy sets with applications to multiple criteria decision analysis using an extended ELECTRE approach. Expert Systems with Applications, 147. https://doi.org/10.1016/j.eswa.2019.113164

Chen, Z., Abdullah, A. B., Anumba, C. J., & Li, H. (2014). ANP experiment for demolition plan evaluation. Journal of Construction Engineering and Management, 140(2), 06013005. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000791

Choi, J. (2019). Strategy for reducing carbon dioxide emissions from maintenance and rehabilitation of highway pavement. Journal of Cleaner Production, 209, 88–100. https://doi.org/10.1016/j.jclepro.2018.10.226

Chou, J. S., Pham, A. D., & Wang, H. (2013). Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation. Automation in Construction, 35, 517–527. https://doi.org/10.1016/j.autcon.2013.06.007

Cinelli, M., Coles, S. R., & Kirwan, K. (2014). Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46, 138–148. https://doi.org/10.1016/j.ecolind.2014.06.011

Contreras-Nieto, C., Shan, Y., Lewis, P., & Hartell, J. A. (2019). Bridge maintenance prioritization using analytic hierarchy process and fusion tables. Automation in Construction, 101, 99–110. https://doi.org/10.1016/j.autcon.2019.01.016

Dabous, S., & Alkass, S. (2008). Decision support method for multi-criteria selection of bridge rehabilitation strategy. Construction Management and Economics, 26(8), 883–893. https://doi.org/10.1080/01446190802071190

Dabous, S. A., & Alkass, S. (2010). A multi-attribute ranking method for bridge management. Engineering, Construction and Architectural Management, 17(3), 282–291. https://doi.org/10.1108/09699981011038079

Dabous, S. A., & Alkass, S. (2011). Managing bridge infrastructure under budget constraints: A decision support methodology. Canadian Journal of Civil Engineering, 38(11), 1227–1237. https://doi.org/10.1139/l11-082

El-Diraby, T. E., & O’Connor, J. T. (2001). Model for evaluating bridge construction plans. Journal of Construction Engineering and Management, 127(5), 399–405. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:5(399)

El-Mikawi, M., & Mosallam, A. S. (1996). A methodology for evaluation of the use of advanced composites in structural civil engineering applications. Composites Part B: Engineering, 27(3–4), 203–215. https://doi.org/10.1016/1359-8368(95)00030-5

Enfedaque, A., Alberti, M. G., Gálvez, J. C., Rivera, M., & SimónTalero, J. M. (2018). Can polyolefin fibre reinforced concrete improve the sustainability of a flyover bridge? Sustainability, 10(12), 4583. https://doi.org/10.3390/su10124583

Fabianowski, D., & Jakiel, P. (2019). An expert fuzzy system for management of railroad bridges in use. Automation in Construction, 106, 102856. https://doi.org/10.1016/j.autcon.2019.102856

Fallahpour, A., Wong, K. Y., Rajoo, S., Olugu, E. U., Nilashi, M., & Turskis, Z. (2020). A fuzzy decision support system for sustainable construction project selection: an integrated FPP-FIS model. Journal of Civil Engineering and Management, 26(3), 247–258. https://doi.org/10.3846/jcem.2020.12183

Farkas, A. (2011). Multi-criteria comparison of bridge designs. Acta Polytechnica Hungarica, 8(1), 173–191.

Frangopol, D. M., & Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12, 1–20. https://doi.org/10.1080/15732479.2014.999794

García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205. https://doi.org/10.1590/S1679-78252014000700007

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017a). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381– 391. https://doi.org/10.1016/j.engstruct.2017.05.013

García-Segura, Yepes, V., & Frangopol, D. M. (2017b). Multiobjective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1), 139–150. https://doi.org/10.1007/s00158-017-1653-0

Gervásio, H., & da Silva, S. (2012). A probabilistic decisionmaking approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121–7131. https://doi.org/10.1016/j.eswa.2012.01.032

Gervásio, H., & da Silva, L. S. (2013). Life-cycle social analysis of motorway bridges. Structure and Infrastructure Engineering, 9(10), 1019–1039. https://doi.org/10.1080/15732479.2011.654124

Gu, X., Wang, Y., & Yang, B. (2011). Method for selecting the suitable bridge construction projects with interval-valued intuitionistic fuzzy information. International Journal of Digital Content Technology and its Applications, 5(7), 201–206. https://doi.org/10.4156/jdcta.vol5.issue7.25

Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental life cycle assessment of bridges. Journal of Bridge Engineering, 18(2), 153–161. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000328

Huang, M., Zhang, X., Ren, R., Liao, H., Zavadskas, E. K., & Antucheviciene, J. (2020). Energy-saving building program evaluation with an integrated method under linguistic environment. Journal of Civil Engineering and Management, 26(5), 447–458. https://doi.org/10.3846/jcem.2020.12647

Ilgin, M. A., Gupta, S. M., & Battaïa, O. (2015). Use of MCDM techniques in environmentally conscious manufacturing and product recovery: state of the art. Journal of Manufacturing Systems, 37, 746–758. https://doi.org/10.1016/j.jmsy.2015.04.010

Issa, U. H., Miky, Y. H., & Abdel-Malak, F. F. (2019). A decision support model for civil engineering projects based on multi-criteria and various data. Journal of Civil Engineering and Management, 25(2), 100–113. https://doi.org/10.3846/jcem.2019.7551

Itoh, Y., Sunuwar, L., Hirano, T., Hammad, A., & Nishido, T. (2000). Bridge type selection system incorporating environmental impacts. Journal of Global Environment Engineering, 6, 81–101.

Jajac, N., Rogulj, K., & Radnic, J. (2017). Selection of the method for rehabilitation of historic bridges – A decision support concept for the planning of rehabilitation projects. International Journal of Architectural Heritage, 11(2), 261–277. https://doi.org/10.1080/15583058.2016.1207113

Jakiel, P., & Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054–4061. https://doi.org/10.1016/j.eswa.2014.12.039

Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J., & Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162. https://doi.org/10.1016/j.autcon.2014.05.013

Jia, J., Ibrahim, M., Hadi, M., Orabi, W., & Xiao, Y. (2018). Multi-criteria evaluation framework in selection of Accelerated Bridge Construction (ABC) method. Sustainability, 10(11), 4059. https://doi.org/10.3390/su10114059

Kaya, I., Çolak, M., & Terzi, F. (2018). Use of MCDM techniques for energy policy and decision-making problems: a review. International Journal of Energy Research, 42(7), 2344–2372. https://doi.org/10.1002/er.4016

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Ranking of bridge design alternatives: A TOPSIS-FADR method. Baltic Journal of Road and Bridge Engineering, 13(3), 209–237. https://doi.org/10.7250/bjrbe.2018-13.413

Kifokeris, D., Matos, J. A. C., Xenidis, Y., & Bragança, L. (2018). Bridge quality appraisal methodology: Application in a reinforced concrete overpass roadway bridge. Journal of Infrastructure Systems, 24(4), 04018034. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000455

Kripka, M., Yepes, V., & Milani, C. J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5), 1307. https://doi.org/10.3390/su11051307

Liu, L., Frangopol, D. M., Mondoro, A., & Yang, D. Y. (2018). Sustainability-informed bridge ranking under scour based on transportation network performance and multiattribute utility. Journal of Bridge Engineering, 23(10), 04018082. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001296

Malekly, H., Meysam-Mousavi, S., & Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design. Expert Systems with Applications, 37(7), 4910–4920. https://doi.org/10.1016/j.eswa.2009.12.024

Mardani, A., Jusoh, A., Nor, K., Khalifa, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istrazivanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139

Mousavi, S. M., Gitinavard, H., & Siadat, A. (2014). A new hesitant fuzzy analytical hierarchy process method for decisionmaking problems under uncertainty. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Bandar Sunway, Malaysia. https://doi.org/10.1109/IEEM.2014.7058713

Navarro, I. J., Yepes, V., & Martí, A. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845. https://doi.org/10.3390/su10030845

Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018b). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698–713. https://doi.org/10.1016/j.jclepro.2018.06.110

Navarro, I. J., Yepes, V., Martí, J. V. (2018c). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50–63. https://doi.org/10.1016/j.eiar.2018.05.003

Navarro, I. J., Martí, J. V., Yepes, V., (2019a). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23–34. https://doi.org/10.1016/j.eiar.2018.10.001

Navarro, I. J., Yepes, V., & Martí, J. V. (2019b). A review of multicriteria assessment techniques applied to sustainable infrastructure design. Advances in Civil Engineering, 2019, 6134803. https://doi.org/10.1155/2019/6134803

Navarro, I. J., Yepes, V., & Martí, J. V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949–967. https://doi.org/10.1080/15732479.2019.1676791

Noryani, M., Sapuan, S. M., & Matsura, M. T. (2018). Multi-criteria decision-making tools for material selection of natural fibre composites: A review. Journal of Mechanical Engineering and Sciences, 12(1), 3330–3353. https://doi.org/10.15282/jmes.12.1.2018.5.0299

Ozcan-Deniz, G., & Zhu, Y. (2015). A multi-objective decisionsupport model for selecting environmentally conscious highway construction methods. Journal of Civil Engineering and Management, 21(6), 733–747. https://doi.org/10.3846/13923730.2014.893915

Pan, N. F. (2008). Fuzzy AHP approach for selecting the suitable bridge construction method. Automation in Construction, 17(8), 958–965. https://doi.org/10.1016/j.autcon.2008.03.005

Penadés-Plà, V., García-Segura, T., Martí, J. V., & Yepes, V. (2016). A review of multi-criteria decision-making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295. https://doi.org/10.3390/su8121295

Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10), 1864. https://doi.org/10.3390/su9101864

Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020a). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8(3), 398. https://doi.org/10.3390/math8030398

Penadés-Plà, V., Martínez-Muñoz, D., García-Segura, T., Navarro, I. J., & Yepes, V. (2020b). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. https://doi.org/10.3390/su12104265

Peng, K. (2019). Risk evaluation for bridge engineering based on cloud-clustering group decision method. Journal of Performance of Constructed Facilities, 33(1), 04018105. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001255

Pipinato, A., Rebelo, C., Pedrosa, B., & Gervásio, H. (2020). Assessment procedure and rehabilitation criteria for riveted road bridges. Structural Engineering International, 30(1), 109–118. https://doi.org/10.1080/10168664.2019.1615855

Podvezko, V. (2011). The comparative analysis of MCDA methods SAW and COPRAS. Inzinerine Ekonomika – Engineering Economics, 22(2), 134–146. https://doi.org/10.5755/j01.ee.22.2.310

Polat, G., Eray, E., & Bingol, B. N. (2017). An integrated fuzzy mcgdm approach for supplier selection problem. Journal of Civil Engineering and Management, 23(7), 926–942. https://doi.org/10.3846/13923730.2017.1343201

Radwan, N., Senousy, M., & Riad, A. (2016). Neutrosophic AHP multi-criteria decision making method applied on the selection of learning management system. International Journal of Advancements in Computing Technology, 8(5), 95–105.

Rashidi, M., Ghodrat, M., Samali, B., Kendall, B., & Zhang, C. (2017). Remedial modelling of steel bridges through application of analytical hierarchy process (AHP). Applied Sciences, 7(2), 168. https://doi.org/10.3390/app7020168

Rempling, R., Mathern, A., Tarazona-Ramos, D., & Luis-Fernández, S. (2019). Automatic structural design by a set-based parametric design method. Automation in Construction, 108, 102936. https://doi.org/10.1016/j.autcon.2019.102936

Sabatino, S., Frangopol, D. M. & Dong, Y. (2015). Sustainabilityinformed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310–321. https://doi.org/10.1016/j.engstruct.2015.07.030

Sabatino, S., Frangopol, D. M. & Dong, Y. (2016). Life cycle utility-informed maintenance planning based on lifetime functions: optimum balancing of cost, failure consequences and performance benefit. Structure and Infrastructure Engineering, 12(7), 830–847. https://doi.org/10.1080/15732479.2015.1064968

Salas, J., & Yepes, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. Environmental Research and Public Health, 17(3), 962. https://doi.org/10.3390/ijerph17030962

Salem, O., Salman, B., & Ghorai, S. (2018). Accelerating construction of roadway bridges using alternative techniques and procurement methods. Transport, 33(2), 567–579. https://doi.org/10.3846/16484142.2017.1300942

Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. https://doi.org/10.1016/j.jclepro.2020.120556

Sasmal, S., & Ramanjaneyulu, K. (2008). Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach. Expert Systems with Applications, 35(3), 1430–1443. https://doi.org/10.1016/j.eswa.2007.08.017

Schmidt, J.-S., & Osebold, R. (2017). Environmental management systems as a driver for sustainability: state of implementation, benefits and barriers in German construction companies. Journal of Civil Engineering and Management, 23(1), 150–162. https://doi.org/10.3846/13923730.2014.946441

Senapati, T., & Yager, R. R. (2019). Some new operations over fermatean fuzzy numbers and application of fermatean fuzzy WPM in multiple criteria decision making. Informatica, 30(2), 391–412. https://doi.org/10.15388/Informatica.2019.211

Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41–53. https://doi.org/10.1016/j.eiar.2017.02.004

Shen, F., Xu, J., & Xu, Z. (2016). An outranking sorting method for multi-criteria group decision making using intuitionistic fuzzy sets. Information Sciences, 334–335, 338–353. https://doi.org/10.1016/j.ins.2015.12.003

Sobanjo, J. O., Stukhart, G., & James, R. W. (1994). Evaluation of projects for rehabilitation of highway bridges. Journal of Structural Engineering, 120(1), 81–99. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(81)

Tan, J. S., Elbaz, K., Wang, Z. F., Shen, J. S., & Chen, J. (2020). Lessons learnt from bridge collapse: A view of sustainable management. Sustainability, 12(3), 1205. https://doi.org/10.3390/su12031205

Torres-Machi, C., Pellicer, E., Yepes, V., & Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148, 90–102. https://doi.org/10.1016/j.jclepro.2017.01.100

Ugwu, O. O., Kumaraswamy, M. M., Wong, A., & Ng, S. T. (2006). Sustainability appraisal in infrastructure projects (SUSAIP): Part 2: A case study in bridge design. Automation in Construction, 15(2), 229–238. https://doi.org/10.1016/j.autcon.2005.05.005

UNEP/SETAC. (2009). Guidelines for social life cycle assessment of products. United Nations Environment Program. In Paris SETAC Life Cycle Initiative United Nations Environment Programme.

Wang, W. (2017). On fuzzy TOPSIS method based on alpha level sets. Journal of Intelligent and Fuzzy Systems, 33(6), 4067–4076. https://doi.org/10.3233/JIFS-17983

Wang, Y. M., & Elhag, T. M. S. (2006). Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems with Applications, 31(2), 309–319. https://doi.org/10.1016/j.eswa.2005.09.040

Wang, Y. M., & Elhag, T. M. S. (2007). A fuzzy group decision making approach for bridge risk assessment. Computers and Industrial Engineering, 53(1), 137–148. https://doi.org/10.1016/j.cie.2007.04.009

Wang, Y. M., Liu, J., & Elhag, T. M. S. (2008). An integrated AHP-DEA methodology for bridge risk assessment. Computers and Industrial Engineering, 54(3), 513–525. https://doi.org/10.1016/j.cie.2007.09.002

Wang, J. C., & Chen, T. Y. (2015). Likelihood-based assignment methods for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. Fuzzy Optimization and Decision Making, 14(4), 425–457. https://doi.org/10.1007/s10700-015-9208-6

Wang, H. L., Qin, S. F., Zhang, Z., & Huang, C. L. (2010). Fuzzy optimum model of semi-structural decision for bridge lectotype. In 7th International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China. https://doi.org/10.1109/FSKD.2010.5569102

Wang, Z., Jin, W. L., Wu, K., & Frangopol, D. M. (2018). Social dimensions in sustainability evaluation of deteriorating reinforced concrete bridges. In 6th International Conference on Durability of Concrete Structures.

World Commission on Environment and Development. (1987). Our common future.

Yadollahi, M., Ansari, R., Abd-Majid, M. Z., & Yih, C. H. (2015). A multi-criteria analysis for bridge sustainability assessment: a case study of Penang Second Bridge, Malaysia. Structure and Infrastructure Engineering, 11(5), 638–654. https://doi.org/10.1080/15732479.2014.893002

Yehia, S., Abudayyeh, O., Fazal, I., & Randolph, D. (2008). A decision support system for concrete bridge deck maintenance. Advances in Engineering Software, 39(3), 202–210. https://doi.org/10.1016/j.advengsoft.2007.02.002

Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036. https://doi.org/10.1016/j.acme.2015.05.001

Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J.V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140, 1037–1048. https://doi.org/10.1016/j.jclepro.2016.10.085

Zavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016a). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja, 29(1), 857–887. https://doi.org/10.1080/1331677X.2016.1237302

Zavadskas, E. K., Antucheviciene, J., Turskis, Z., & Adeli, H. (2016b). Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Scientia Iranica A, 23(1), 1–20.

Zavadskas, E. K., Antucheviciene, J, & Kaplinski, O. (2016c). Multi-criteria decision making in civil engineering: Part I – a state-of-the-art survey. Engineering Structures and Technologies, 7(3), 103–113. https://doi.org/10.3846/2029882X.2015.1143204

Zavadskas, E. K., Antucheviciene, J., & Kaplinski, O. (2016d). Multi-criteria decision making in civil engineering. Part II – applications. Engineering Structures and Technologies, 7(4), 151–167. https://doi.org/10.3846/2029882X.2016.1139664

Zavadskas, E. K., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2018). Sustainable decision-making in civil engineering, construction and building technology. Sustainability, 10(1), 14. https://doi.org/10.3390/su10010014

Zhang, Y. R., Wu, W. J., & Wang, Y. F. (2016). Bridge life cycle assessment with data uncertainty. The International Journal of Life Cycle Assessment, 21, 569–576. https://doi.org/10.1007/s11367-016-1035-7