
MICROBIAL COMMUNITY CHANGES IN TNT SPIKED SOIL BIOREMEDIATION
TRIAL USING BIOSTIMULATION, PHYTOREMEDIATION AND

BIOAUGMENTATION
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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Reference to this paper should be made as follows: Nõlvak, H.; Truu, J.; Limane, B.; Truu, M.; Cepurnieks, G.;
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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vegetation and occurrence of certain kinds of plant life 
that will flourish along a coastal zone (Nicol, Ganf 2000; 
Riis, Hawes 2002). The impact of water level regime on 
the development of different plant communities has 
been demonstrated experimentally (Weiher, Keddy 1995; 
Nielsen, Chick 1997). 

The ability to accurately forecast water level changes 
in lakes enables conducting of a well thought-out water 
management within given area or catchment. Addition-
ally it indirectly provides information on the volume of 
water resources which is of great importance in case of 
energy generation and irrigation. Precise forecasts makes 
evidencing and detection of variation in water ecosystem 
functioning much easier and enable faster adjustments to 
those changes.
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Abstract. The aim of this study is to assess the possibility of forecasting water level fluctuations in a relatively small 
(<100 km2), post-glacial lake located in a temperate climate zone by means of artificial neural networks and multiple 
linear regression. The area of study was Lake Serwy, located in northeastern Poland. 
Two artificial neural network (ANN) multilayer perceptron (MLP) and multiple linear regression (MLR) models were 
built. The following explanatory variables were considered: maximal and minimal temperature (Tmax, Tmin) wind 
speed (WS), vertical circulation (VC) and water level from previous periods (WL). Additionally, a binary variable 
describing the period of the year (winter, summer) has been considered in one of the two MLP and MLR models. 
The forecasting models have been assessed based on selected criteria: mean absolute percentage error (MAPE), root 
mean squared error (RMSE), coefficient of determination (R2) and mean biased error. Considering their values and 
absolute deviations from observed values it was concluded that the ANN model using an additional binary variable 
(MLP_B+) has the best forecasting performance. Absolute deviations from observed values were the determining fac-
tor which made this model the most efficient. In the case of the MLP_B+ model, those values were about 10% lower 
than in other models. 
The conducted analyses indicated good performance of ANN networks as a forecasting tool for relatively small lakes 
located in temperate climate zones. It is acknowledged that they enable water level forecasting with greater precision 
and lower absolute deviations than the use of multiple linear regression models. 

Keywords: ANN, multiple linear regression, lake Serwy, water level, post-glacial lake.

Introduction

Lakes are very sensitive parts of the environment, re-
sponding very quickly to changes in inflow water volume. 
Hence, systematic measurement of their water level allows 
knowledge of the range of seasonal and long-term varia-
tions in inflow and outflow to be gathered. They may also 
indirectly be a source of information on transformations 
in water balance, or regional climate changes (Hartmann 
1990; Angel, Kunkel 2010). 

Information regarding water level fluctuations is 
essential in coastal zone management, for the location 
both of water management facilities (inter alia potable 
water intakes) and of tourism/recreation (beaches, decks, 
educational trails). Water level changes determine the 
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As part of the water ecosystem of a given area, lakes 
are influenced by a number of natural and anthropogenic 
factors. Human activities manifest themselves as interfer-
ence in the volume and velocity of water outflow from the 
drainage basin. In the case of natural factors, the basic 
determinant shaping water conditions is climate. All at-
tempts to model the lake water level must be preceded by 
an in-depth local analysis of the lake and its catchment in 
order to properly identify all explanatory variables. At the 
same time, it is important to note that it may be an ardu-
ous or even impossible task to take into consideration all 
factors influencing water level fluctuations. The best exam-
ple of a reason for this is miscellaneous human interfer-
ence in the water resources of a given area: these activities 
are often not registered, and are hard to specify and take 
into account in any model. Therefore, it is important to 
consider in the future application of any model created, 
that some explanatory variables have not been considered. 

So far in papers focusing on water level fluctuations, 
authors have considered diverse sets of hydrological and 
hydro-meteorological parameters (Bengtsson, Malm 1997; 
Jones et al. 2001). The most commonly used explanatory 
variables include (Talebizadeh, Moridnejad 2011):

 – inflow and outflow rates;
 – historical time series of water levels;
 – sum of precipitation over a given period;
 – evaporation;
 – wind speed;
 – humidity;
 – temperature.

In practice, several methods and statistical tools 
are used to forecast water level fluctuations. One of the 
most commonly used is Auto Regressive Moving Aver-
age (ARMA). It has been used by (Wiche, Vecchia 1995) 
in the case of Devils Lake, USA. A modified version of 
ARMA (ARIMA) has been successfully applied by Irvine 
and Eberhard (1992) for Lakes Erie and Ontario. Another 
approach has been implemented by Sen et al. (2000) to 
model the water level of Lake Van, situated in eastern Tur-
key – the authors of that study used Fourier transforma-
tions combined with second-order Markov chains. One of 
the newer approaches in the area of water level forecast-
ing is Artificial Neural Networks (Ondimu, Murase 2007; 
Çimen, Kisi 2009; Coulibaly 2010). So far, research has 
focused on lakes of greater than several thousand square 
kilometres, or those located in warm climate zones. With 
their ability to forecast the variability of a given time series 
with determined accuracy, ANNs have been used multiple 
times to provide broad models of water resources. As an 
example, they were effectively used for modelling drainage 
of rainwater (Shamseldin 1997; Sajikumar, Thandaveswara 
1999), predicting flow (Clair, Ehrman 1998; Campolo 
et al. 1999; Zealand et al. 1999), forecasting groundwater 
level (Chełmicki et  al. 2003; Daliakopoulos et  al. 2005; 

Nayak et  al. 2006; Yang et  al. 2009; Adamowski, Chan 
2011), proglacial discharge simulation (Nowak, Sobota 
2015) and also in issues related to water management 
in cities (Jain et al. 2001; Muleta, Nicklow 2005; Herrera 
et al. 2010; Campisi-Pinto et al. 2012).

The aim of this study is to compare the accuracy of 
water level forecasts based on artificial neural networks 
and multiple linear regression for a relatively small, post-
glacial lake located in a temperate climate zone. The main 
limitations of this study is the fact that it concentrates on 
only one lake (due to the data availability) and some po-
tentially influencing factors impacting water level – such 
as snow cover has been neglected (due to the data avail-
ability) but mentioned. What is more this study compares 
only two commonly used forecasting methods but the ob-
tained results build foundation for further research.    

1. Area of study

The object of this study was Lake Serwy in northeastern 
Poland, which, similarly to most of the lakes located in the 
Central European Lowlands, originated during the recent 
Baltic Glaciation (Fig. 1).

The selection of this lake is supported by following 
arguments. The meteorological and hydrological measure-
ments (in a form of time series) are taken by a meteoro-
logical station which is located not far from Lake Serwy. 
What is also important, those time series encompass rela-
tively long time period and do not exhibit any missing re-
cords. Additionally morphometric parameters of the Lake 
Serwy make this particular lake representative for this part 
of Europe. Finally there is no recorded significant impact 
of anthropogenic factors on water level fluctuations in this 
lake.  

In terms of area and volume, the analyzed lake is 
relatively large with regard to other lakes in this area. 
The lake has three islands, whose surfaces amount to 
0.12 km2. The basic morphometric parameters are pre-
sented in Table 1. 

Table 1. Morphometric parameters of Lake Serwy which enable 
its comparison with other lakes in this area

Parameter Value Unit

Area  (A) 4.6 km2

Volume (V) 67.1·106 m3

Maximal length (Lmax) 6900 m

Maximal width  (Wmax) 1100 m

Extension (λ = Lmax/Wmax) 6.2 –

Mean width (Wmean = A/ Lmax) 667 m

Shoreline length (SL) 16100 m
Maximal depth (Hmax) 41.5 m
Mean depth  (Hmean = V/A) 14.1 m
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Fig. 1. Lake Serwy location from the perspective of the map of Europe and Poland. Key: 1 – Lake Serwy; 2 – islands; 3 – 
other lakes; 4 – Lake Serwy catchment; 5 – watercourses

The lake is supplied with water from several small 
watercourses and ditches draining the surrounding marsh-
es and wetlands. The remaining water supply sources are: 
direct precipitation, surface runoff from own catchment, 
and underground inflow. The last of these water supplies 
seems to be of particular significance in the case of the 
analyzed lake because of its considerable depth. The catch-
ment area amounts to 53.9 km2. Forests (mainly conifer-
ous) cover 79% of its area, the remainder consists of agri-
cultural land (farmlands and pastures). A small drainage 
channel is located in the southern part of the lake. 

The climatic conditions of this area are typical of a 
temperate maritime/continental climate with significant 

influence of continentalism, which manifests itself in very 
low winter air temperatures, often exceeding –20 °C. Sub-
zero mean monthly temperatures occur from December to 
February, but also frequently in March in many years. The 
annual mean temperature does not exceed 7 °C and the 
annual sum of precipitation is 586 mm (Fig. 2). Precipita-
tion occurs mainly in summer (June–August). 

The highest water level is usually observed during 
spring (April–May). In the subsequent months the water 
level tends to decline as a result of intensified evaporation. 
In September and October the water level reaches its nadir 
(Fig. 3). Over the analyzed period the annual water level 
amplitude reached 42 cm. 
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been considered as independent variables for forecasting 
models: 

 – mean air temperature (T);
 – maximal air temperature (Tmax);
 – minimal air temperature (Tmin);
 – relative humidity (RH);
 – sum of rainfall – precipitation (PPT);
 – wind speed (WS);
 – evaporation (Evap).

Besides the above, vertical circulation (the difference 
between evaporation and precipitation) has also been 
considered. All these parameters have been observed and 
recorded by the meteorological station in Suwałki, which 
is 25 kilometres to the north of the analyzed lake. Con-
sequently, those monthly values correspond to the same 
time period as the water level values. 

The explanatory variables initially described above 
have been tested by means of a correlation coefficient, 
in order to determine whether they have a significant 
impact on water level (Tables 2 and 3). Based on the cal-
culations conducted a meaningful correlation between 
some of the variables has been observed. From further 
analyses, all those which exhibit mutual correlation have 
been excluded and only those presenting the highest cor-
relation with water level were used as input variables. As 
a result, the following variables were used in the model-
ing process:

 – maximal and minimal air temperature (Tmax, Tmin);
 – wind speed (WS);
 – vertical circulation;
 – water level from previous periods (WL).

It should be pointed out that, during the forecasting 
process, only explanatory variables of historical values re-
ferring to one (T-1) and two (T-2) previous months were 
used. 

The structure of forecasting models (their architec-
ture or formulas) is presented in Table 4. The quantitative 

Fig. 2. Monthly sums of precipitation and monthly mean 
temperatures observed at the meteorological station in Suwałki 
over the period 1980–2012. Key: 1 – sum of precipitation;  
2 – mean air temperature
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Fig. 3. Lake Serwy monthly mean water level, 1980–2012
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Annual water level changes over a 32-year period are 
as shown in Figure 4.

2. Materials and methods

In this study, monthly values of water level (WL) in 
Lake Serwy over the years 1980–2012 have been used. 
They have been calculated based on daily observations 
conducted by the Institute of Meteorology and Water 
Management: State Research Institute (IMGW-PIB). Pre-
liminarily, the following meteorological parameters have 
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Table 2. Coefficient of correlation matrix for one-month-lagged exogenous variables, bold font indicated correlation coefficients 
which exhibit statistical significance – P value <0.05. PPT stands for precipitation, whereas Temp for temperature  

  Water 
level T-1

Evapo-
ration Temp Wind 

speed Temp Max Temp Min Relative 
humidity PPT Vertical 

circulation 

Water level 0.885 –0.132 –0.260 0.245 –0.252 –0.267 0.028 –0.075 0.077

Water level T–1 1.000 0.177 0.006 0.061 0.021 –0.018 –0.197 –0.011 –0.180

Evaporation 0.177 1.000 0.898 –0.488 0.921 0.837 –0.838 0.324 –0.757

Temp 0.006 0.898 1.000 –0.484 0.995 0.988 –0.661 0.409 –0.597

Wind speed 0.061 –0.488 –0.484 1.000 –0.506 –0.428 0.402 –0.081 0.423

Temp Max 0.021 0.921 0.995 –0.506 1.000 0.971 –0.707 0.382 –0.638

Temp Min –0.018 0.837 0.988 –0.428 0.971 1.000 –0.557 0.444 –0.515

Relative humidity –0.197 –0.838 –0.661 0.402 –0.707 –0.557 1.000 –0.067 0.775

PPT –0.011 0.324 0.409 –0.081 0.382 0.444 –0.067 1.000 0.374

Vertical circulation –0.180 –0.757 –0.597 0.423 –0.638 –0.515 0.775 0.374 1.000

Table 3. Coefficient of correlation matrix for two-month-lagged exogenous variables, bold font indicated correlation coefficients 
which exhibit statistical significance. Presented abbreviations are coherent with those presented in Table 2

  Water 
level T-2

Evapo-
ration Temp Wind 

speed 
Temp  
Max 

Temp  
Min 

Relative 
humidity PPT Vertical 

circulation 

Water level 0.653 –0.406 –0.472 0.363 –0.473 –0.462 0.242 –0.145 0.298

Water level T-2 1.000 0.172 0.003 0.073 0.017 –0.021 –0.191 –0.022 –0.183

Evaporation 0.172 1.000 0.899 –0.491 0.922 0.839 –0.838 0.316 –0.761

Temp 0.003 0.899 1.000 –0.485 0.995 0.988 –0.663 0.405 –0.602

Wind speed 0.073 –0.491 –0.485 1.000 –0.508 –0.429 0.409 –0.084 0.422

Temp Max 0.017 0.922 0.995 –0.508 1.000 0.971 –0.709 0.378 –0.643

Temp Min –0.021 0.839 0.988 –0.429 0.971 1.000 –0.559 0.439 –0.520

Relative humidity –0.191 –0.838 –0.663 0.409 –0.709 –0.559 1.000 –0.063 0.775

PPT –0.022 0.316 0.405 –0.084 0.378 0.439 –0.063 1.000 0.375

Vertical circulation –0.183 –0.761 –0.602 0.422 –0.643 –0.520 0.775 0.375 1.000

Table 4. Structure, parameters and equations for MLP and MLR models. SOS stands for sum of squared error, BFGS – is a teaching 
algorithm and its name is an abbreviation from its developers, namely Broyden–Fletcher–Goldfarb–Shanno

Name Structure Teaching 
quality

Testing 
quality

Validation 
quality

Teaching 
algorithm

Error 
function

Activation 
hidden layer

Activation 
output layer

MLP_Bin+ MLP 8-6-1 0.963 0.934 0.920 BFGS 108 SOS Tanh Tanh

MLP_Bin– MLP 7-8-1 0.958 0.917 0.915 BFGS 60 SOS Tanh Logistic

MLR_Bin+ WL(t)=1.1985×WL(T – 1)+1.0123×WS(T – 1) 0 0.2118×Tmin(T – 1) – 0.361×WL(T – 2) – 0.2808×WS(T – 2) – 
0.06836×Tmax(T – 2) + 0.0091×CV (T – 2) – 0.7577×Bin + 35.8324

MLR_Bin– WL(t) = 1.1978×WL(T – 1) + 1.1271×WS(T – 1) – 0.2647×Tmin(T – 1) – 0.3654×WL(T – 1) – 0.3414× 
WS(T – 2) – 0.0357×Tmax(T – 2) + 0.0185×VC(T – 2) + 36.1983

Conventions: WL – water level, WS – wind speed, Tmin – minimal temperature, Tmax – maximal temperature, VC – vertical circulation, 
T – 1 – one-month lag, T – 2 – two-month lag 
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variables have been supplemented by one qualitative (bi-
nary) variable which refers to the winter or summer half-
year, where 1 is the summer and 0 is the winter half-year. 
After input variable selection, two artificial neural network 
MLP (Multilayer Perceptron) models and two multilinear 
regression equations were built. The procedure of creat-
ing ANN models have described by Dayhoff and DeLeo in 
(Dayhoff, DeLeo 2001) whereas MLR by Kutner et al. in 
(Kutner et al. 1996). The sets of quantitative variables for 
the MLP and MLR models are the same, but within both 
methods, models taking into account the binary variable 
(Bin+) and those not taking into account the binary vari-
able (Bin–) have been separated. MLR and ANN models 
were created using Statistica 10 software.

The constructed models were assessed based on four 
performance measures described below. The most com-
monly used and easily interpreted is MAPE (mean abso-
lute percentage error) defined as:

 

( )  ( )
( )
−

=MAPE ·100%
WL t WL t

WL t
, (1)

where ( )WL t  is water level measured in time t, and 
 ( )WL t  is the forecasted value of water level. MAPE is 

an important criterion for the assessment of forecasting 
models from the perspective of presenting their quality 
to people familiar with the mean values of the considered 
time series. This criterion cannot be used when forecast-
ing values should be equal to zero, due to the division by 
zero. The perfect match exists when MAPE is 0, but no 
upper value of this criterion exists. The next used per-
formance measure was the so-called mean biased error 
(MBE), which indicated whether the created model ex-
pressed a tendency to over- or underestimate the values of 
forecasts. It has been calculated as:

 
( )  ( )( )

=

= −∑
1

1MBE
N

t
WL t WL t

N
, (2)

where N is the sample size. In the case of an ideal match, 
and when overestimations equal underestimations the 
value of MBE amounts to 0. 

The next criterion was RMSE (root mean square er-
ror), which is used to assess the variance of forecast error 
based on error standard deviation.

 
( )  ( )( )

=

= −∑
2

1

1RMSE
N

t
WL t WL t

N
. (3)

The last performance measure was the coefficient of 
determination, which ranges from 0 to 1, and for which, 
values above 0.9 are perceived as very satisfactory and 
below 0.8 as unsatisfactory (Legates et al. 1999). It is ex-
pressed as:

 

( )
( )

σ −
= −

σ

2
2

2

ˆ
R 1

W W

W
, (4)

where σ2  is set variation. 

Due to the particularities of the process of ANN 
model creation, which requires the division of time series 
into teaching, validating and testing subsets, MLR and 
MLP models have been assessed only on the basis of the 
testing subset. 

3. Results and discussion

The obtained results, which are presented in Table 5, are 
similar for all forecasting models. The most precise fore-
casts were derived for an ANN model which used the ad-
ditional binary variable (MLP_B+). It got the most ben-
eficial values of MAPE, RMSE and R2 criteria, while the 
value of MBE did not diverge far from that of the MLR 
models. Similar values of individual forecasting criteria 
have been obtained by other researchers, despite the dif-
ferent characteristics of the lakes investigated (Kisi et al. 
2012; Noury et  al. 2014; Young 2015; Yarar et  al. 2009; 
Vaziri 1997). This confirms the possibility of an efficient 
application of ANN to forecasting water level of lakes lo-
cated in temperate climates (with cold winters) and having 
a relatively low area (under 100 km2). 

Table 5. Values of forecasting performance measures

  MLR_B+ MLR_B– MLP_B+ MLP_B–

MAPE 2.055% 2.054% 1.838% 2.017%

MBE 0.060 0.061 0.067 –0.245

RMSE 6.654 6.700 5.706 6.374

R2 0.909 0.908 0.934 0.917

The graphical representation of forecasts obtained 
from the four models shows an approximate congruence 
to the real values. In Figure 5, the values of the testing set 
have been sorted in increasing order, in order to depict the 
model’s behaviour in the face of extreme values. This is not 
related to the trend in water level changes, which over the 
last 30 years has been in slight decline. Additionally, a hor-
izontal steady line has been marked on the chart and can 
be used as a benchmark for the values of relative errors. 
The highest values of deviation from observed water level 
occurred in the same months. This may suggest that, in 
forecasting models, not all essential explanatory variables 
have been considered. Confirmation of this suggestion is 
provided by the juxtaposition of periods when those de-
viations were observed. The highest errors occurred dur-
ing spring months, namely April and May. In this period, 
the Lake is heavily supplied with water stored in snow and 
ice sheets. In order to improve forecast quality, knowledge 
of ice and snow sheet cover thickness in the winter period 
is essential. The lack of this kind of data for the analyzed 
area made their application in this study impossible. 

It is worth noting that, so far in papers reporting re-
search related to the modeling and forecasting of water 
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Fig. 5. Observed and forecasted values of water level for various models. Charts have been 
arranged from the lowest to the highest values of water level along with the forecasted water level 
and the value of relative errors
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level, the issue of snow and ice sheets has gone unnoticed. 
The vast majority of this research concerned lakes with 
much greater areas and often located in warm climates. 
The best example here is Lake Van in Turkey, for which 
satisfactory forecasting performance of water level was ob-
tained from models based only on water level values from 
previous periods (Altunkaynak 2007). A set of explana-
tory variables similar to those presented in this study, with 
values for: water flow in two supplying rivers (Gilgil and 
Malewa), evaporation, rainfall and simple time harmonics, 

was used in case of Lake Naivasha in Africa (Ondimu, 
Murase 2007). 

An investigation into how individual models deal 
with the forecasting of extreme values appears to be of in-
terest. In those cases, models tend very often to over- or 
underestimate the real values. From a testing set amount-
ing to 57 samples, five extreme (minimal and maximal) 
samples were selected. The sum of relative errors among 
those subsets has been presented in Table 6. In both ana-
lyzed methods there is a similar tendency to overestimate 
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the value of forecasts in the case of low water level and 
vice versa when the water level was high. However, in the 
case of low water level, the ANN model performed bet-
ter, as seen in the case of the MLP_B+ model, for which 
the sum of relative error was over two times smaller 
than for the MLR models. Also worthy of note is the fact 
that the MLP_B– model equally under- and overesti-
mated its forecasts. However, in the case of that model, 
the quality of forecasts was slightly worse than for other 
models. Based on this comparison, it is possible to state 
that for a given time series (and testing set) and for the 
presented input variables, the multiple linear regression 
models have a tendency to overestimate forecasts for ex-
treme values. In the case of ANN models those values are 
smaller, and, depending on input set characteristics, they 
may level out. 

Table 6. Sum of relative errors for extreme water level values

Water 
Level MLR B+ MLR B– MLP B+ MLP B–

Low 40.9 40.9 17.8 30.7

High –28.0 –28.4 –27.2 –31.1

Confirmation of the better forecasting performance 
of MLP_B+ for extreme values is provided in Figure  6, 
which presents absolute values of deviation. It is impor-
tant to note that only in the case of the MLP_B+ model 
were the obtained values smaller than 18 cm, while in 
other cases they were over 24 cm. 

Conclusions

The attempt to forecast water level in a relatively small 
lake located in a temperate climate zone by means of MLP 
and MLR models gave satisfactory results. The values of 
selected performance measures among analyzed models 
were approximate and similar to those obtained by other 
researchers. This is of significance mainly because of the 
distinct climate conditions and morphological parameters 
of the lakes considered in all studies previous to this. Small 
post-glacial lakes located in the Central European Low-
lands, to which Lake Serwy belongs, are far more prone to 
climate factors which determine water level fluctuations. 
In relation to this, the phenomenon of ice sheet cover-
ing lake in winter period and resulting thaw in spring has 
been brought to attention. Due to the lack of data con-
cerning ice and snow cover in the given area, it was im-
possible to investigate and consider the additional water 
supply resulting from the spring thaw. In consequence, 
the biggest observed forecast error occurred during early 
spring (April–May). 

Taking into consideration the selected performance 
measures and the absolute deviations from real values, 
it can be said that the best forecasts were obtained from 
an ANN model using the additional binary variable and 
denoted as MLP_B+. The determining factor in the bet-
ter forecasting performance of this model was the abso-
lute value of deviations from observed values. In the case 
of MLP_B+ they were much smaller than for the other 
models. 

Fig. 6. Histogram of absolute errors for multi-layer perceptron (MLP) and multiple 
linear regression (MLR) models, with (+B) and without (–B) binary variable
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In conclusion, it must be said that ANN models are 
an efficient tool when it comes to water level fluctuation 
forecasting, including in the case of relatively small lakes 
located in temperate climate zones. Their application en-
ables water level forecasting with greater precision and 
with lower maximal deviations from observed values than 
the use of multiple linear regression models. 

Obtained results indicate several interesting direc-
tions for the future research. One should definitely try to 
compare results of various forecasting models applied to 
predict water level fluctuation for at least several lakes. 
Additionally it is also very important to apply other mod-
ern forecasting techniques such as those using wavelet 
transform or fuzzy logic.

Models and results coming from the application of 
the artificial neural networks in lake water level forecast-
ing may be a crucial parameter in modelling the changes 
in the natural environment. Such models seems to be of 
great importance when it comes to investigating various 
scenarios of water ecosystems operation in the context 
of observed climate fluctuations. A majority of issues re-
lated to the environment protection, especially from the 
engineering perspective is based upon models and fore-
casts of changes occurring in the environment which are 
a consequence of natural and anthropogenic factors. By 
using artificial neural networks in area of environmental 
engineering one may get closer to understand the phe-
nomena which drive certain processes like water level 
fluctuations. Changes in available outflow or water level 
have huge impact on the operation of hydropower plants 
in the context of the energy yield as well as their struc-
tural performance (Povilaitis, Querner 2008; Šadzevičius 
et al. 2013).
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