
modes are described mathematically, and from such me-
asurements it is possible not only to determine the kine-
tics of a surface, but also to calculate the geometry and 
quality of the electrode (Cornut et al. 2011). To achieve 
reaction kinetics from approach curves, the redox com-
petition model was created (Ivanauskas et al. 2016). It 
was found that the absolute current signal depends not 
only on electrochemical reactions close to the electrode, 
but also on the diffusion rate, when some chemicals are 
added to the solution.

Approach curves, from which information about di-
ffusion of electroactive species could be determined, are 
obtained by moving the UME vertically until zero position 
is reached. However, there are some problems: if UME is 
of non-ideal geometry, the current signal never reaches zero 
at zero distance. Therefore, some techniques for distance 
determination should be used, and several of them are dis-
cussed in this paper.

Scanning electrochemical microscopy

The main part of the SECM is the ultramicroelectrode 
(UME), with a diameter in the micrometer range, it is usual-
ly used as a moving working electrode in an electrochemi-
cal cell (Bard, Mirkin 2001). UME can be moved in three 
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Introduction

SECM was introduced as a technique, in which the local 
electrochemical activity of surfaces could be visualized 
(Bard et al. 1989). The advantage of SECM is that the 
technique can be applied for in-situ studies without any 
damage to the system of interest, and this feature is very 
important for surface-activity analysis of enzymatic bio-
sensors (Morkvenaite-Vilkonciene et al. 2014, 2015). 
SECM can be applied for high-resolution imaging of 
chemical reactivity, electrocatalytic activity, and topo-
graphy of enzyme-based interfaces formed in enzyme 
immunoassays (Yasukawa et al. 2007), biosensors and 
biochips (Zhao, Wittstock 2005; Lau et al. 2014). Until 
now, SECM has been widely used for investigating the 
viability of living cells (Morkvenaite-Vilkonciene et al. 
2016). SECM is capable to provide local information from 
electrochemically active surface in several different ways: 
i) amperometric; ii) potentiometric; iii) electrochemical 
impedance. Measurements of local electrochemical im-
pedance gives a lot of information about surface’s re-
activity, by mean of applied equivalent circuits models 
(Morkvenaite-Vilkonciene et al. 2017). One of the most 
informative SECM modes is based on the vertical move-
ment of an UME vs sample (approaching curves) becau-
se it allows to register a concentration profile. Feedback 
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directions and the current is registered as a function of the 
coordinates. The experimental SECM scheme is shown in 
Figure 1. Here a four-electrode electrochemical cell is sho-
wn with an UME as a moving working electrode, reference 
and counter electrodes, and the substrate is connected as a 
second working electrode. All electrodes are connected to 
the bipotentiostat. The control and movement of the UME 
and also current registration at the same time are controlled 
and recorded by a computer program.

Positioning of the probe electrode

All SECM experiments can be carried out in constant 
height and constant distance modes. In constant height 
mode the UME is moved only laterally in the x and y 
directions, while in constant distance mode UME can 
be moved in x-y-z directions. The constant height mode 
is appropriate for the evaluating surface smoothness (if 
roughness is smaller than the UME radius) in samples (Li, 
Yu 2008). In this mode the UME current depends on the 
distance between UME and the surface of interest and on 
the reactivity of compounds immobilized on the surface. 
To determine the distance, which is the most suitable for 
appropriate resolution of SECM constant height mode 
measurement, the current vs distance dependence could 
be measured in feedback mode by approaching the UME 
to the surface of interest; and distance between UME and 
sample could be calculated from the SECM theory, where 
iT/iT,∞ (ratio of UME current and steady-state current far 
from electrochemically active surface) can be related to 
d/a (the ratio of distance between sample and UME and 
UME radius). However, this approach is not accurate and 
can lead to the tip crashing or damaging the biological 
sample. Attempts to overcome these restrictions include: 
tip positioning to distances outside the feedback range 
(Yasukawa et al. 1998), into cavities (Shiku et al. 2001; 

Hirano et al. 2004; Shiku et al. 2004; Kaya et al. 2003; 
Torisawa et al. 2003; Torisawa et al. 2005), embedding 
the cells or efforts to subtract topographic contributions 
after cell death (Zhu et al. 2008). Moreover, as living cells 
are irregular in dimension, the tip-to-cell distance varies 
with the tip position. These limitations can be overcome 
by using a shear-force based constant-distance control 
(Ludwig et al. 1995). The microelectrode vibrates at its 
resonance frequency with typical amplitudes of only a few 
nanometers with the use of a piezo-pusher (Hengstenberg 
et al. 2000). Simultaneously, a laser beam is focused onto 
the very end of the vibrating electrode and the resulting 
Fresnel diffraction pattern is projected onto a split pho-
todiode. The amplitude and phase information about the 
vibrating tip is obtained by the amplification of the diffe-
rences in signals from the split photodiode with respect 
to the agitation signal used by a lock-in amplifier. With 
decreasing tip-to-sample distance, increasing shear forces 
between tip and sample surface lead to a damping of the 
vibration amplitude and to a phase shift, which can be 
used to continuously keep a predefined damping value 
related to a constant distance of about 50±100 nm by me-
ans of a software-controlled feedback loop (Hengstenberg 
et al. 2000). Another method of the shear-force detection 
is accomplished by mechanically attaching a set of two 
piezoelectric plates to the scanning probe (Ballesteros 
Katemann et al. 2003a). One of the plates is used to excite 
the SECM tip causing it to resonate, and the other acts as a 
piezoelectric detector of the amplitude of the tip oscillati-
on. Increasing shear forces in close proximity to the sam-
ple surface lead to a damping of the vibration amplitude 
and a phase shift, effects that are registered by connecting 
the detecting piezoelectric plate to a dual-phase analogue 
lock-in amplifier (Ballesteros Katemann et al. 2003a). 
Also, a shear force-based method is able to work at vario-
us tip-to-sample separations. It can hence detect complete 
diffusion profiles in the surroundings of sources or sinks 
of redox-active species (Nebel et al. 2010). In particular, 
coupling SECM with scanning probe techniques, such 
as atomic force microscopy (AFM) (Macpherson et al. 
1996) and scanning ion conductance microscopy (SICM) 
(Comstock et al. 2010), shear force (Ludwig et al. 1995; 
Ballesteros Katemann et al. 2003b; James et al. 1998; 
Ballesteros Katemann et al. 2003a) and impedance-based 
techniques, (Alpuche-Aviles, Wipf 2001) as well as led to 
efficient strategies to control the tip-to-sample separation. 
In the combined technique of AFM-SECM, AFM tip is 
used as a working electrode and as the force sensor at the 
same time (Eckhard et al. 2007; Kranz, Wiedemair 2008). 
This technique allows to achieve the best resolution and 

Fig. 1. Scheme of typical SECM experiments. WE(UME) – 
working ultramicroelectrode, RE – reference electrode, 

CE – counter electrode, WE 2 – second working electrode, 
connected to a substrate
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to measure different properties of the surface. For living 
cells, it could be force curves measured at the same time 
with current-distance curves. To investigate the influence 
of toxic chemicals, or to distinguish cancer cells from the 
healthy ones. Both data are interesting: cells, depending 
on whether they’re healthy, become softer/harder and at 
the same time more/less active.

Positioning experiment

The accurate determination of distance was performed by 
approaching UME to the surface (Fig. 2a). Usually, current 
vs distance curve minimal current value is zero, because 
diffusion of electroactive species to the UME is blocked. 
However, accurate distance could not be known, since di-
ffusion could not be blocked close to surface due to micro-
roughness of UME surface. Therefore, at zero-distance the 
small amount of current is still registered. It is clear from 
the results that height signal decreases sharply, and this 
means that UME is very close to the surface. This distance 
is evaluated as zero distance. Meanwhile, when current 
is decreased, zero distance is not seen, because electrode 
always show some current. It is seen from the picture, that 
decrease of current meets change in the height, but in zero 
distance current is still measured, and if no control occurs, 
the sample could be damaged.

Conclusions

Positioning of UME is crucial factor in SECM researches. 
Current, if concentration of electroactive species is cons-
tant, depends on distance from the surface of interest, and 
on UME geometry. Close to the surface, if UME geometry 
is ideal, current should be close to zero. However, UME 
with non-ideal geometry gives small current signal even if 
UME reaches zero distance. This leads to tip crashing or 
sample damage. Therefore, new techniques for UME po-
sitioning is needed, and this will be part of our next work.
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SKENUOJANČIOJO ELEKTROCHEMINIO 
MIKROSKOPO POZICIONAVIMAS IR VALDYMAS
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Santrauka

Tinkamas skenuojančiojo elektrocheminio mikroskopo (SECM) 
ultramikroelektrodo (UME) pozicionavimas yra aktualus ekspe-
rimentuojant su gyvomis ląstelėmis, nes gali pažeisti ląstelių pa-
viršių. Šiame straipsnyje pateikiami SECM veikimo principas 
ir darbo režimai. Nagrinėjamas gyvų ląstelių oksidavimo ir 
redukavimo aktyvumas. Straipnyje pateikiama problemų, kurių 
kyla matuojant pastovaus aukščio ir pastovaus atstumo metodais, 
analizė. Pateikiami techniniai pozicionavimo sprendimai, iššūkiai 
ir progresas, taikant matuoti SECM gyvoms ląstelėms.

Reikšminiai žodžiai: skenuojantysis elektrocheminis mikrosko-
pas, gyvos ląstelės, ultramikroelektrodas, žmogaus ląstelės, 
priartėjimo kreivės, šlyties jėgos SECM.


