Arranging parameters of self-anchored stressed ribbon supported on arch pedestrian bridges / Vienajuosčių kabamųjų paremtų arka pėsčiųjų tiltų pusiausvirosios sistemos komponavimas



Published Dec 27, 2017
Vilius Karieta


Stressed ribbon pedestrian bridges are most graceful, efficient and economical strains of suspension bridges. However, these structures have a major disadvantage – very large horizontal support reactions, which result mainly to the construction cost. In order to discover new forms and to extend the limits of stressed ribbon bridges, in the end of twentieth century these constructions were started to combine with other bearing elements in cable­stayed, under­deck cable­stayed bridges and other structures. At the beginning of the twenty­first century stressed ribbon supported on arch structure was discovered. The paper presents reviews of suspension supported on arch footbridges and classification. Considered the main geometrical design parameters and their interdependence. The paper presents a method of how to balance self­anchored suspension supported on arch bridge design computational scheme.


Straipsnyje pateikiama kombinuotųjų kabamųjų vienajuosčių pėsčiųjų tiltų, paremtų arka, apžvalga ir klasifikavimas. Aptariami kombinuotos pusiausvirosios konstrukcijos pagrindiniai komponuojamieji parametrai, jų tarpusavio ryšys. Straipsnyje pateikta metodika, kaip subalansuoti pusiausvirojo kabamojo arkinio tilto konstrukciją.

Reikšminiai žodžiai: vienajuostis kabamasis tiltas; atraminė arka; pusiausviroji konstrukcija; racionalūs komponuojamieji parametrai; simetrinė apkrova; netiesinė analizė.

Copyright © 2018 The Author(s). Published by VGTU Press This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract 5 | PDF Downloads 2



stressed ribbon bridge, arch bridge, equilibrium structure, rational parameters, symmetrical load, nonlinear analysis