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Abstract. The paper deals with the generalized smoothing problem in abstract
Hilbert spaces. This generalized problem involves particular cases such as the inter-
polating problem, the smoothing problem with weights, the smoothing problem with
obstacles, the problem on splines in convex sets and others. The theorem on the
existence and characterization of a solution of the generalized problem is proved. It
is shown how the theorem gives already known theorems in special cases as well as
some new results.
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1 Introduction

The connection between variational problems and the theory of splines origi-
nates from the paper by J.C. Holladay [8]. An essential step in the development
of the theory of splines was the generalization of the notion of a spline in ab-
stract Hilbert spaces, which was obtained by applying methods of functional
analysis: the interpolating and smoothing problems were investigated by P.M.
Anselone, P.J. Laurent [1]; the problem on splines in a convex set was formu-
lated and the conditions of existence and characterization of a solution of this
problem were obtained by M. Attea [5,6]. The first systematic approach to the
smoothing problem using operators in abstract Hilbert spaces was expounded
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in the monograph by P.J. Laurent [15]. In the framework of this theory (con-
cerning the variational theory of splines in Hilbert spaces we refer to [7,15,19])
the necessary and sufficient conditions for existence and uniqueness of interpo-
lating and smoothing splines as solutions of variational problems were obtained,
the splines in a convex set were investigated in a more general case. This gen-
eral point of view promoted the study of known problems for spline-functions
as well as was helpful for setting and solving new problems. Now it is a usual
practice to consider splines as solutions of some optimization (interpolating or
smoothing) problems (see, e.g., [9,11,12,14,16,17,18] and references to research
papers therein).

There are several works, where some generalizations of interpolating and
smoothing variational splines were considered by combining interpolating and
smoothing conditions. Mixed interpolating-smoothing problems are studied
in [7]. P. Oja and E. Leetma [16, 17, 18] have investigated smoothing prob-
lems with obstacles and weights with a generalization for the case of mixed
interpolating-smoothing conditions in Bepo Levi space. In general, the varia-
tional theory of splines in the case, when instead of Hilbert spaces semi-Hilbert
spaces are considered, is developed in [2]. In the similar framework A. Kouibia
and M. Pasadas (see [9, 10, 11, 12, 13, 14]) by specifying the spaces and opera-
tors have considered variational interpolating and smoothing splines including
those in convex sets. These authors have considered different optimization
problems where the objective functional is composed by the classical smooth-
ness measure and other terms, which present some different conditions, as, for
example, fairness conditions, for specified spaces of solution. Variational in-
terpolating splines corresponding to such objective functional are considered
in [11], smoothing problems with weights for objective functionals with some
additional terms are studied in [9,10,12,14]. A. Kouibia and M. Pasadas have
considered also the problem on splines in convex sets in oder to provide, for
example, monotonicity constraints for interpolating spline [13]. In this paper
we suggest some generalization of smoothing problems on splines in convex
sets, which is new in comparison with all approaches mentioned above.

The paper deals with generalized smoothing problem with weights

‖Tx‖2 +
∥∥R(Ax− v)

∥∥2 −→ min
x∈B−1(C)

,

where T : X → Y , A : X → Rn and B : X → Rm are linear continuous
operators, X and Y are Hilbert spaces, v ∈ Rn, R = diag(

√
ρi)i=1,...,n is a

diagonal matrix with parameters ρi ≥ 0, i = 1, . . . , n, and C ⊂ Rm is a closed
convex set.

This problem generalizes:

• the interpolating problem,

• the smoothing problem with weights,

• the smoothing problem with obstacles,

• the problem on splines in convex sets.
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The classic formulations of these special cases are given in Section “Prelimi-
naries”. Section “Generalized smoothing problem” is devoted to the generalized
problem and contains the theorem on the existence and characterization of a
solution of it. In the next section we consider special cases of the generalized
theorem. Firstly, we show how the theorem gives already known results for
the interpolating problem, the smoothing problem with weights, the smooth-
ing problem with obstacles, the mixed smoothing-interpolating problem and
the problem on splines in convex sets. Secondly, we consider some new special
cases of the theorem. The last section illustrates our approaches with some
numerical examples.

This research is closely related to our previous papers [3,4] about particular
cases of the generalized problem where the spaces and operators were specified.
The main aim of the present paper is to provide the general approach to all
types of particular problems mentioned above and in this framework to prove
the general theorem on the existence and characterization of a solution.

2 Preliminaries

Let X, Y be Hilbert spaces and assume that linear operators T : X → Y ,
A : X → Rn are continuous, A(X) and T (X) are closed. Operators T and A
define the corresponding space of splines

S(T,A) =
{
s ∈ X : 〈Ts, Tx〉Y = 0 for all x ∈ kerA

}
.

Here and in the sequel 〈 , 〉Y is a scalar product in Y (in the sequel in the article
the index of scalar product will not be shown when it is clear from the context),
kerA is the kernel of operator A.

It is known (e.g. [19]) that an element s ∈ X is the spline from S(T,A) if
and only if there exists such vector α ∈ Rn that

T ∗Ts = A∗α.

For given parameters ρi > 0, i = 1, . . . , n, matrix R = diag(
√
ρi)i=1,...,n,

closed convex set C ⊂ Rn and vector u ∈ Rn we consider three conditional
minimization problems.

Problem 1 [The interpolating problem].

‖Tx‖ −→ min
x∈X
Ax=u

. (2.1)

A solution of Problem 1 (if it exists) is a spline from S(T,A) called the
interpolating spline for u (see, e.g., [15, 19]).

Problem 2 [The problem on splines in a convex set].

‖Tx‖ −→ min
x∈A−1(C)

. (2.2)

A solution of Problem 2 (if it exists) is a spline from S(T,A) called the
spline in a convex set (see, e.g., [15, 19]).
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Problem 3 [The smoothing problem with weights].

‖Tx‖2 +
∥∥R(Ax− u)

∥∥2 −→ min
x∈X

. (2.3)

A solution of Problem 3 (if it exists) is a spline from S(T,A) called the
smoothing spline (see, e.g., [15, 19]).

Now let B : X → Rm be a linear continuous operator and C ⊂ Rm be a
closed convex. As the first attempt of generalization of Problems 1 and 3 we
consider (see [7]) the following problem.

Problem 4 [The mixed interpolating-smoothing problem].

‖Tx‖2 +
∥∥R2(Ax− u)

∥∥2 −→ min
x∈X
Bx=v

, (2.4)

where the restriction given by operator B describes interpolating conditions
and the smoothing functional is defined by operators T and A. A solution of
this problem (if it exists) is a spline from the space S(T, (A,B)) (see, e.g., [7]).
Here

(A,B) : X → Rn+m, t.i. (A,B)x = (Ax,Bx).

Taking into account

(A,B)∗(α,β) = A∗α+B∗β,

we obtain that an element s ∈ X is a spline from S(T, (A,B)) if and only if
there exist such vectors α ∈ Rn and β ∈ Rm that

T ∗Ts = A∗α+B∗β.

3 Generalized Smoothing Problem

Let X, Y be Hilbert spaces and assume that linear operators

T : X → Y, A : X → Rn and B : X → Rm

are continuous,

T (X) = Y, A(X) = Rn, B(X) = Rm.

Let parameters ρi ≥ 0, i = 1, . . . , n, matrix R = diag(
√
ρi)i=1,...,n, vector

v ∈ Rn and convex closed set C ⊂ Rm be given.
Our aim is to consider and investigate a generalized smoothing problem

with weights in a convex set, which involves all previous problems (Problems
1, 2, 3 and 4) as particular cases of its statement.

Problem 5 [The generalized smoothing problem].

‖Tx‖2 +
∥∥R(Ax− v)

∥∥2 −→ min
x∈B−1(C)

. (3.1)
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We formulate the following theorem on the existence and characterization of
a solution of Problem 5 in a way which gives a possibility to obtain this solution
by using characterization formulas for splines from S(T,A) and S(T,B). It
simplifies the use of this result.

Theorem 1. Under the assumptions that

kerT + kerRA and kerT ∩ kerRA+B−1(C) are closed,

a solution of Problem 5 exists. An element s ∈ B−1(C) is a solution of this
problem if and only if there exist vectors α ∈ Rn and β ∈ Rm such that

T ∗Ts = A∗α+B∗β

and 〈
α+ R2(As− v),d−As

〉
+ 〈β, c−Bs〉 ≥ 0

for all c ∈ C and d ∈ A(B−1(c)).

Proof. By the pair of operators T and A we introduce the operator L:

Lx = (Tx,RAx), x ∈ X,

taking values in the space V = Y × Rn with the scalar product〈(
y1, z1

)
,
(
y2, z2

)〉
V

=
〈
y1, y2

〉
Y

+
〈
z1, z2

〉
Rn

and the norm ∥∥(y,z)
∥∥
V

=
√
‖y‖2Y + ‖z‖2Rn .

We introduce the vector e = (θY ,Rv) ∈ V and rewrite Problem 5 in the form

‖Lx− e‖V −→ min
x∈B−1(C)

.

To prove the existence of a solution of this problem we check that L(B−1(C))
is closed. At first we show the closeness of L(X), which is equivalent to the
closeness of L∗(V ). The equality〈

Lx, (y,z)
〉
V

= 〈Tx, y〉Y + 〈RAx, z〉Rn

implies

L∗(V ) = T ∗(Y ) + (RA)∗(Rn)=T ∗(Y )+(RA)∗(Rn) = (kerT )⊥ + (kerRA)⊥.

Taking into account that kerT + kerRA is closed, we obtain that (kerT )⊥ +
(kerRA)⊥ is closed also. Therefore L∗(V ) and also L(X) are closed.

We note that kerL = kerT ∩ kerRA and consider operator L⊥ which is
obtained as the restriction of L on (kerL)⊥. This operator is a bijection between

Math. Model. Anal., 20(3):311–328, 2015.
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(kerL)⊥ and closed subspace L(X). We denote the inverse continuous linear
operator for L⊥ by D. Now, taking into account

L
(
B−1(C)

)
= L

(
B−1(C) + kerL

)
= L

((
B−1(C) + kerL

)
∩ (kerL)⊥

)
= D−1

((
B−1(C) + kerL

)
∩ (kerL)⊥

)
,

we get that L(B−1(C)) is closed. The existence of a solution of Problem 5
follows from the existence of the element of the minimal norm in a convex
closed set.

To prove the characterization of a solution of Problem 5, we denote it by s.
So s ∈ B−1(C) and for any x ∈ B−1(C) the inequality

‖Lx− e‖V ≥ ‖Ls− e‖V (3.2)

holds. Taking into account that Bs ∈ C, we take arbitrary c ∈ C and consider
c−Bs. There exists such f ∈ X that Bf = c−Bs. We denote cλ = B(s+λf)
for λ ∈ [0; 1]. Obviously cλ ∈ C and s + λf ∈ B−1(C). Now by (3.2) for any
λ ∈ [0; 1] we get ∥∥L(s+ λf)− e

∥∥2
V
≥ ‖Ls− e‖2V ,

so

‖Ls− e+ λLf‖2V − ‖Ls− e‖2V = 2λ〈Ls− e, Lf〉V + λ2〈Lf, Lf〉V
= 2λ〈Ls− e, Lf〉V + λ2‖Lf‖2V
= λ

(
2〈Ls− e, Lf〉V + λ‖Lf‖2V

)
≥ 0.

Therefore for any λ ∈ [0; 1] we get 2〈Ls − e, Lf〉V + λ‖Lf‖2V ≥ 0. It means
that 〈Ls− e, Lf〉V ≥ 0 or〈(

Ts,R(As− v)
)
, (Tf,RAf)

〉
V
≥ 0

or
〈Ts, Tf〉Y +

〈
R(As− v),RAf

〉
Rn ≥ 0. (3.3)

We note that for all f ∈ kerB the inequality (3.3) holds because in the special
case we can take c = Bs.

Now we prove that s ∈ S(T, (A,B)). It is easy to see by (3.3) that for
f ∈ kerA ∩ kerB

〈Ts, Tf〉Y ≥ 0 and
〈
Ts, T (−f)

〉
Y
≥ 0.

Therefore for any f ∈ kerA ∩ kerB〈Ts, Tf〉Y = 0, i.e. s ∈ S(T, (A,B)).
The definition of the space of splines S(T, (A,B)) implies that s ∈

S(T, (A,B)) if and only if there exist vectors α ∈ Rn and β ∈ Rm such that

T ∗Ts = A∗α+B∗β.

From this equality by using (3.3) we get

〈A∗α, f〉X + 〈B∗β, f〉X +
〈
R(As− v),RAf

〉
Rn ≥ 0
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or
〈α, Af〉Rn + 〈β, Bf〉Rm +

〈
R2(As− v), Af

〉
Rn ≥ 0. (3.4)

Taking into account that by our denotation Bf = c−Bs we rewrite (3.4) as〈
α+ R2(As− v),d−As

〉
Rn + 〈β, c−Bs〉Rm ≥ 0, (3.5)

where d = Af + As. Thereby we proved that (3.5) is true for all c ∈ C and
d ∈ A(B−1(c)).

To prove the second part of our theorem, we assume that for s ∈ B−1(C)
there exist vectors α ∈ Rn and β ∈ Rm such that

T ∗Ts = A∗α+B∗β,

i.e. s ∈ S(T, (A,B)), and for all c ∈ C, and d ∈ A(B−1(c)) it holds〈
α+ R2(As− v),d−As

〉
Rn + 〈β, c−Bs〉Rm ≥ 0.

To prove that s is a solution of Problem 5 we should show that for any x from
B−1(C) the inequality

‖Lx− e‖V ≥ ‖Ls− e‖V

holds. We rewrite

‖Lx− e‖2V − ‖Ls− e‖2V = 〈Lx− e, Lx− e〉V − 〈Ls− e, Ls− e〉V
= 〈Lx− Ls, Lx− Ls〉V + 2〈Ls− e, Lx− Ls〉V
= ‖Lx− Ls‖2V + 2〈Ls− e, Lx− Ls〉V .

To prove that the last expression is nonnegative we analyze the last term of
this expression. We rewrite it as

〈Ls− e, Lx− Ls〉V =
〈
Ts, T (x− s)

〉
Y

+
〈
R(As− v),R(Ax−As)

〉
Rn

=
〈
T ∗Ts, (x− s)

〉
X

+
〈
R2(As− v), Ax−As

〉
Rn

=
〈
A∗α, (x− s)

〉
X

+
〈
B∗β, (x− s)

〉
X

+
〈
R2(As− v), Ax−As

〉
Rn

=
〈
α+ R2(As− v), Ax−As

〉
Rn + 〈β, Bx−Bs〉Rm . (3.6)

For any x ∈ B−1(C) by denotation c = Bx we have x ∈ B−1(c) and therefore
Ax ∈ A(B−1(c)). We denote this vector Ax by d and rewrite (3.6) as〈

α+ R2(As− v),d−As
〉
Rn + 〈β, c−Bs〉Rm .

The last expression is nonnegative for all c ∈ C and d ∈ A(B−1(c)) by the
conditions of the theorem. Therefore

‖Lx− e‖2V − ‖Ls− e‖2V ≥ 0. ut

The characterization theorem implies that a solution of Problem 5 is a
spline from the space of splines S(T, (A,B)). An element s ∈ X is a spline of
S(T, (A,B)) if and only if there exist such vectors α ∈ Rn and β ∈ Rm that

T ∗Ts = A∗α+B∗β.

Taking into account that

Math. Model. Anal., 20(3):311–328, 2015.
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• s1 ∈ S(T,A) if and only if there exists such α ∈ Rn that T ∗Ts1 = A∗α,

• s2 ∈ S(T,B) if and only if there exists such β ∈ Rm that T ∗Ts2 = B∗β,

we obtain S(T,A)+S(T,B) ⊂ S(T, (A,B)), but in general the spaces S(T,A)+
S(T,B) and S(T, (A,B)) are not equal. At the same time this approach gives
a possibility to write the formula for splines from S(T, (A,B)) by using known
formulas for splines from each space: S(T,A) and S(T,B).

To illustrate this fact we consider two examples.

Example 1. We consider histosplines, i.e. splines for approximation of the den-
sity function of a random value by information of the frequencies of a density
histogram on a given mesh a = t0 < t1 < · · · < tn = b with additional boundary
conditions.

We take X = Wr
2[a, b], Y = L2[a, b], Tg = g(r), A = (k1, . . . , kn) and

B = (l1, l2), where

kig =

∫ ti

ti−1

g(t)dt, i = 1, . . . , n, l1g = g(a), l2g = g(b).

A function s1 is a spline from the space of histosplines S(T,A) if and only if

s1(t) =

r−1∑
j=0

djt
j +

(−1)r+1

(2r)!

n∑
i=1

αi
(
(t− ti)2r+ − (t− ti−1)2r+

)
,

n∑
i=1

αi
(
tj+1
i − tj+1

i−1
)

= 0, j = 0, . . . , r − 1.

Space S(T,B) consists of polynomials

s2(t) =

r−1∑
j=0

cjt
j +

(−1)rβ1
(2r − 1)!

(t− a)2r−1

with coefficients which satisfy the equalities

β1a
j + β2b

j = 0, j = 0, . . . , r − 1.

By using both formulas we obtain the formula for spline s ∈ S(T, (A,B)) :

s(t) =

r−1∑
j=0

%jt
j +

(−1)r+1

(2r)!

n∑
i=1

αi
(
(t− ti)2r+ − (t− ti−1)

2r
+

)
+

(−1)rβ1
(2r − 1)!

(t− a)
2r−1

(3.7)
with the following conditions on the coefficients

β1a
j +

n∑
i=1

αi
j + 1

(
tj+1
i − tj+1

i−1
)

+ β2b
j = 0, j = 0, 1, . . . , r − 1. (3.8)
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Example 2. We consider splines for approximation of a function f by using data

fi,j = f (j)(ti), j = 0, 1, i = 1, . . . , n,

on a given mesh a = t1 < t2 < · · · < tn = b under boundary conditions on

λ1f1,0 + µ1f1,1 and λ2fn,0 + µ2fn,1

for given numbers λ1, λ2, µ1, µ2.
We take X = Wr

2[a, b], Y = L2[a, b], Tg = g(r), and

kig = g(ti), ki+ng = g′(ti), i = 1, . . . , n,

Ag = (k2g, . . . , kn−1g, kn+2g, . . . , k2n−1g),

Bg = (λ1k1g + µ1kn+1g, λ2kng + µ2k2ng).

A function s1 is a spline from the space S(T,A) of Hermite splines if and only
if

s1(t) =

r−1∑
i=0

dit
i +

n−1∑
i=2

(−1)r
(
αi0

(t− ti)2r−1+

(2r − 1)!
− αi1

(t− ti)2r−2+

(2r − 2)!

)
with the conditions on the coefficients

n−1∑
i=2

αi0 = 0,

n−1∑
i=2

αi0t
j
i +

n−1∑
i=2

αi1jt
j−1
i = 0, j = 1, . . . , r − 1.

Space S(T,B) consists of polynomials

s2(t) =

r−1∑
i=0

cit
i + (−1)rβ1

(
λ1

(t− a)2r−1

(2r − 1)!
− µ1

(t− a)2r−2

(2r − 2)!

)
with coefficients, which satisfy the equalities

β1(λ1 + µ1) + β2(λ2 + µ2) = 0,

β1
(
λ1a

j + µ1ja
j−1)+ β2

(
λ2b

j + µ2jb
j−1) = 0, j = 1, . . . , r − 1.

By using both formulas we obtain the formula for spline s ∈ S(T, (A,B)):

s(t) =

r−1∑
i=0

%it
i +

n−1∑
i=2

(−1)r
(
αi0

(t− ti)2r−1+

(2r − 1)!
− αi1

(t− ti)2r−2+

(2r − 2)!

)
+ (−1)rβ1

(
λ1

(t− a)2r−1

(2r − 1)!
− µ1

(t− a)2r−2

(2r − 2)!

)
,

with the following conditions on the coefficients

n−1∑
i=2

αi0 + β1(λ1 + µ1) + β2(λ2 + µ2) = 0,

n−1∑
i=2

αi0t
j
i +

n−1∑
i=2

αi1jt
j−1
i + β1

(
λ1a

j + µ1ja
j−1)+ β2

(
λ2b

j + µ2jb
j−1) = 0,

j = 1, . . . , r − 1.

Math. Model. Anal., 20(3):311–328, 2015.
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4 Special Cases of the Generalized Theorem

Firstly, we show that Theorem 1 gives in some special cases the known results
for Problems 1, 2, 3 and 4.

By taking A = B, ρi > 0, i = 1, . . . , n, and C = {v} in problem (3.1) we get
the interpolating problem (2.1) and the well known theorem from the theory
of splines (see, e.g., [7, 15,19]).

Theorem 2. Under the assumption that kerT + kerA is closed, a solution of
(2.1) exists. An element s ∈ X such that As = v is a solution of this problem
if and only if there exists a vector α ∈ Rn such that

T ∗Ts = A∗α.

For the case A = B, ρi = 0, i = 1, . . . , n, our problem (3.1) is coincided
with the problem on splines in convex set (2.2), and Theorem 1 gives the known
result (see, e.g., [19]).

Theorem 3. Under the assumption that kerT + A−1(C) is closed, a solution
of problem (2.2) exists. An element s ∈ A−1(C) is a solution of this problem
if and only if there exists a vector α ∈ Rn such that

T ∗Ts = A∗α

and 〈α, c−As〉 ≥ 0 for all c ∈ C.

In the case when A = B, C = Rn, ρi > 0, i = 1, . . . , n, problem (3.1) could
be rewritten as the smoothing problem with weights (2.3).

Theorem 4. If kerT + kerA is closed, then a solution of problem (2.3) exists.
An element s ∈ X is a solution of this problem if and only if there exists a
vector α ∈ Rn such that

T ∗Ts = A∗α and α+ R2(As− v) = 0.

For the case A=(k1, . . . , kn), B=(l1, . . . , lm), where functionals k1, . . . , kn,
l1, . . . , lm are linear independent, ρi > 0, i = 1, . . . , n, and C = {u}, from
problem (3.1) we obtain the classical mixed interpolating-smoothing problem
(2.4), for which the following theorem holds.

Theorem 5. If kerT + kerA is closed, then a solution of problem (2.4) exists.
An element s ∈ X such that Bs = u is a solution of this problem if and only if
there exist vectors α ∈ Rn and β ∈ Rm such that

T ∗Ts = A∗α+B∗β and α+ R2(As− v) = 0.

On the other hand, from Theorem 1 we can obtain also new results for other
special cases. For example, if we take A = MB, where M is a given matrix
n×m, then we can consider problem

‖Tx‖2 +
∥∥R(MBx− v)

∥∥2 −→ min
x∈B−1(C)

(4.1)

and obtain the following theorem.
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Theorem 6. Under the assumption that

kerT + kerRMB and kerT ∩ kerRMB +B−1(C) are closed,

a solution of problem (4.1) exists. An element s ∈ B−1(C) is a solution of this
problem if and only if there exists a vector λ ∈ Rm such that

T ∗Ts = B∗λ

and for all c ∈ C 〈
λ+ MTR2(MBs− v), c−Bs

〉
≥ 0.

From this theorem it follows that a solution of (4.1) is from S(T,B).

Proof. The existence of a solution follows from Theorem 1. By it we also have
that there exist vectors α ∈ Rn and β ∈ Rm such that

T ∗Ts = A∗α+B∗β

and 〈
α+ R2(As− v),d−As

〉
+ 〈β, c−Bs〉 ≥ 0

for all c ∈ C and for all d ∈ A(B−1(c)).
Let us consider how these conditions could be rewritten in our case. We

start with

〈T ∗Ts, x〉 = 〈A∗α, x〉+ 〈B∗β, x〉 = 〈α, Ax〉+ 〈β, Bx〉
= 〈α,MBx〉+ 〈β, Bx〉 =

〈
MTα+ β, Bx

〉
.

We denote λ = MTα+ β and obtain that T ∗Ts = B∗λ.
In our case kerB ⊂ kerA. It means that for a vector c ∈ C we have

A(B−1(c)) = A(xc + kerB) = Axc, where xc is an element from B−1(c). If
Ax = MBx, then d = Axc = MBxc = Mc and for all c ∈ Rm and d = Mc
we have

0 ≤
〈
α+ R2(As− v),Mc−MBs

〉
+ 〈β, c−Bs〉

=
〈
MTα+ MTR2(As− v), c−Bs

〉
+ 〈β, c−Bs〉

=
〈
MTα+ β + MTR2(As− v), c−Bs

〉
.

Therefore for all c ∈ C〈
λ+ MTR2(MBs− v), c−Bs

〉
≥ 0. ut

Now we consider (4.1) for C = Πm
i=1[ai; bi] ⊂ Rm :

‖Tx‖2 +
∥∥R(MBx− v)

∥∥2 −→ min
ai≤(Bx)i≤bi, i=1,...,m

. (4.2)
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Theorem 7. Under the assumption that

kerT + kerRMB and kerT ∩ kerRMB +B−1(C) are closed,

a solution of problem (4.2) exists. An element s ∈ B−1(C) is a solution of this
problem if and only if there exist a vector λ ∈ Rm such that

T ∗Ts = B∗λ

and

• (λ+ MTR2(MBs− v))i ≤ 0 if (Bs)i = bi,

• (λ+ MTR2(MBs− v))i ≥ 0 if (Bs)i = ai,

• (λ+ MTR2(MBs− v))i = 0 if (Bs)i ∈ (ai; bi), i = 1, . . . ,m.

Proof. To prove the result on the signs of the components of vector

λ+ MTR2(MBs− v),

we use the inequality〈
λ+ MTR2(MBs− v), c−Bs

〉
≥ 0,

which is true for all c ∈ C.
If (Bs)i = bi for some i, then we can take cj = (Bs)j , j = 1, . . . , n, j 6= i,

and ci ∈ (ai; bi), and obtain (λ+MTR2(MBs−v))i ≤ 0 because of ci−bi ≤ 0.
By analogy for the case (Bs)i = ai we can obtain (λ+MTR2(MBs−v))i ≥ 0
because of ci − ai ≥ 0.

If (Bs)i ∈ (ai; bi) for some i, then

1) we can take cj = (Bs)j , j = 1, . . . , n, j 6= i, and ci = bi, and obtain that
(λ+ MTR2(MBs− v))i ≥ 0 because of ci − (Bs)i > 0;

2) we can take cj = (Bs)j , j = 1, . . . , n, j 6= i, and ci = ai, and obtain that
(λ+ MTR2(MBs− v))i ≤ 0 because of ci − (Bs)i < 0.

Therefore in this case (λ+ MTR2(MBs− v))i = 0. ut

Now let us take B = MA, where M is a given matrix m× n, and consider
the following problem

‖Tx‖2 +
∥∥R(Ax− v)

∥∥2 −→ min
x∈(MA)−1(C)

. (4.3)

Theorem 8. Under the assumption that

kerT + kerRA and kerT ∩ kerRA+ (MA)−1(C) are closed,

a solution of problem (4.3) exists. An element s ∈ (MA)−1(C) is a solution of
this problem if and only if there exists a vector λ ∈ Rn such that

T ∗Ts = A∗λ

and for all d ∈ Rn, such that Md ∈ C, it holds〈
λ+ R2(As− v),d−As

〉
≥ 0.
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From this theorem it follows that a solution of (4.3) is from S(T,A).

Proof. We apply the technique which is analogous to the technique used in
the proof of Theorem 6. For a solution s of problem (4.3) and for x ∈ X we
rewrite

〈T ∗Ts, x〉 = 〈A∗α, x〉+ 〈B∗β, x〉 = 〈α, Ax〉+ 〈β, Bx〉
= 〈α, Ax〉+ 〈β,MAx〉 =

〈
α+ MTβ, Ax

〉
.

Now we denote λ = α+ MTβ and obtain that T ∗Ts = A∗λ.
For a vector c ∈ C we have A(B−1(c)) = Axc + A(KerB), where xc is

an element from B−1(c). In our case kerA ⊂ kerB, therefore d ∈ A(B−1(c))
for some vector c ∈ C if and only if Md ∈ C. By taking d ∈ Rn, such that
Md ∈ C, we obtain

0 ≤
〈
α+ R2(As− v),d−As

〉
+ 〈β,Md−MAs〉

=
〈
α+ MTβ + R2(As− v),d−As

〉
.

It means that 〈λ+ R2(As− v),d−As〉 ≥ 0. ut

5 Examples

To show how our result works we consider some simple numerical examples.
Let us start with the problem of approximation of the density function of a
random value given by a histogram F = {f1, . . . , fn}. Here fi is a frequency
for the interval [ti−1, ti] (we denote hi = ti−ti−1), i = 1, . . . , n, of a given mesh
a = t0 < t1 < · · · < tn = b of the interval [a, b]. We consider the following
smoothing problem with the additional boundary conditions:∫ b

a

(
x′′(t)

)2
dt+

n∑
i=1

ρi

( ∫ ti

ti−1

x(t)dt− fihi

)2

−→ min
x(t)∈W2

2[a,b],
x(a)=0, x(b)=0

. (5.1)

The solution s of problem (5.1) belongs to the space of mixed splines (see
Example 1) and it could be written by formula (3.7)–(3.8) with r = 2. Spline s
could be obtained taking into account Theorem 5 as the solution of the following
system of linear equations:

αi + ρi

∫ ti

ti−1

s(t)dt = ρifihi, i = 1, . . . , n,

s(a) = 0, s(b) = 0.

The solution of this system in the case

f1 =
1

58
, f2 =

2

58
, f3 =

6

29
, f4 =

1

58
, f5 =

15

58
, f6 =

9

58
, f7 =

2

58
,

f8 =
1

58
, f9 =

9

58
, f10 =

5

58
, f11 =

1

58
,

a = 0, b = 11, hi = 1, ρi = 103, i = 1, . . . , 11
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gives us

s(t) = 0, 091968t+ 0, 142064t4 − 0.353077 (t− 1)4+ + 0, 505788 (t− 2)4+

− 0, 614901 (t−3)4++0, 570003 (t−4)4+−0, 383120 (t−5)4++0.209387 (t− 6)4+

− 0, 170771 (t−7)4++0, 193087 (t−8)4+−0, 153887 (t−9)4++0, 073022 (t−10)4+

− 0, 017595 (t− 11)4+ − 0, 242297 t3.

The graph of s is shown in Figure 1.

Figure 1. The solution of problem (5.1).

It is easy to see that this spline could not be considered as a solution of the
problem of approximation of the density function because of negativity of it in
some subintervals of [a, b]. We cannot solve problem (5.1) with the additional
condition x(t) ≥ 0 and we suggest to consider instead of (5.1) the following
problem with nonnegativity conditions at some control points τj ∈ (a; b), j =
3, . . . ,m:∫ b

a

(
x′′(t)

)2
dt+

n∑
i=1

ρi

( ∫ ti

ti−1

x(t)dt− fihi
)2

−→ min
x(t)∈W2

2[a,b],
x(a)=0, x(b)=0,
x(τj)≥0, j=3,...,m

. (5.2)

By Theorem 1 the solution of (5.2) is a spline s from S(T, (A,B)), where

kix =

∫ ti

ti−1

x(t)dt, i = 1, . . . , n,

l1x = x(a), l2x = x(b), ljx = x(τj), j = 3, . . . ,m.

It means, that spline s is in the form

s(t) =

r−1∑
j=0

%jt
j +

(−1)r+1

(2r)!

n∑
i=1

αi
(
(t− ti)2r+ − (t− ti−1)

2r
+

)
+

+
(−1)rβ1
(2r − 1)!

(t− a)
2r−1

+

m∑
j=3

(−1)rβj
(2r − 1)!

(t− τj)2r−1 (5.3)
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with the following conditions on the coefficients:

β1a
p+

n∑
i=1

αi
(
tp+1
i − tp+1

i−1
)

+ β2b
p +

m∑
j=3

βj(τj)
p = 0, p = 0, 1, . . . , r−1. (5.4)

We take C = {(0, 0, u3, . . . , um) | uj ≥ 0, j = 3, . . . ,m}. Now by using
Theorem 8 we can obtain that an element s ∈ B−1(C) is a solution of (5.2) if
and only if

• αi + ρi(kis− fivi) = 0 for all i = 1, . . . , n;

• βj ≥ 0 if ljs = 0, j = 3, . . . ,m;

• βj = 0 if ljs > 0, j = 3, . . . ,m.

To obtain this result we consider Ãx = (k1x, . . . , knx, l1x, . . . , lmx), B̃ = MÃ
and ρn+j = 0, j = 1, . . . ,m, where M ism×(n+m) matrix with the components
which correspond to the conditions of (5.2). The first n columns of M consist
only of zeroes. By Theorem 8 the solution of (5.2) is a spline s from S(T, Ã),
i.e. there exists a vector λ = (α1, . . . , αn, β1, . . . , βm) such that

T ∗Ts = Ã∗λ

and for all d ∈ Rn+m, such that Md ∈ C, it holds〈
λ+ R2(Ãs− v),d− Ãs

〉
≥ 0.

By taking di 6= (Ãs)i for some i ∈ {1, . . . , n} and dj = (Ãs)j for all j 6= i

we obtain αi + ρi(kis− fihi) = 0, since we can take di > (Ãs)i and di < (Ãs)i.

In the case, when ljs = 0 for some j ∈ {3, . . . ,m}, by taking dn+j > 0 and

di = (Ãs)i for all i 6= n+ j we obtain βj ≥ 0.

In the case, when ljs > 0 for some j ∈ {3, . . . ,m}, by taking dn+j 6= ljs

and di = (Ãs)i for all i 6= n+ j we obtain βj = 0, since we can take dn+j > ljs
and dn+j < ljs.

The solution of (5.2) with control points τ3 = 1.17, τ4 = 3.5, τ5 = 7.2 is

s(t) = 0, 07369t+ 0, 087607 t4 − 0.402177 (t− 1)4+ + 0, 660935 (t− 2)4+

− 1, 011544 (t− 3)4+ + 0.941866 (t− 4)4+ − 0, 410172 (t− 5)4+ + 0.192637

× (t− 6)4+ − 0, 214509 (t− 7)4+ + 0, 269641 (t− 8)4+ − 0, 174781 (t− 9)4+

+ 0, 074955 (t− 10)4+ − 0, 014459 (t− 11)4+ − 0, 155669 t3

+ 0, 450560 (t− 1.17)3+ + 1.176316 (t− 3.5)3+ + 0, 250122 (t− 7.2)3+.

The graph of s is shown in Figure 2.

Let us note that one additional condition is very important in the case of
approximation of density functions as the property of density histograms (the
area under them is equal to 1). That is why we insert this additional condition
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Figure 2. The solution of problem (5.2).

into (5.2) and consider the following problem:∫ b

a

(
x′′(t)

)2
dt+

n∑
i=1

ρi

( ∫ ti

ti−1

x(t)dt− fihi
)2

−→ min
x(t)∈W2

2[a,b],∫ b
a
x(t)dt=1,

x(a)=0, x(b)=0,
x(τj)≥0, j=3,...,m.

(5.5)

Therefore now we take

kix =

∫ ti

ti−1

x(t)dt, i = 1, . . . , n, l0x =

n∑
i=1

kix,

l1x = x(a), l2x = x(b), ljx = x(τj), j = 3, . . . ,m.

For this case in contrast to (5.2) we have l0 which is linear dependent on all ki,
i = 1, . . . , n. To solve (5.5) we use Theorem 8 with

Ãx = (k1x, . . . , knx, l1x, . . . , lmx), B̃ = MÃ

and ρn+j = 0, j = 1, . . . ,m, where M is (m + 1) × (n + m) matrix with the
components which correspond to the conditions of (5.5),

C =
{

(1, 0, 0, u3, . . . , um) | uj ≥ 0, j = 3, . . . ,m
}
.

By Theorem 8 the solution of (5.5) is a spline s from S(T, Ã), i.e. there exists
a vector λ = (α1, . . . , αn, β1, . . . , βm) such that

T ∗Ts = Ã∗λ.

It means that the formula for s is the same as in the previous example (see
(5.3)–(5.4)). By applying the technique which is analogous to the technique
used in the previous case from Theorem 8 we could obtain that an element
s ∈ (MÃ)−1(C) is a solution of (5.5) if and only if

• (αi − 1
n

∑n
j=1 αj) + ρi(kis− fihi) = 0 for all i = 1, . . . , n;
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• βj ≥ 0 if ljs = 0, j = 3, . . . ,m;

• βj = 0 if ljs > 0, j = 3, . . . ,m.

The solution of problem (5.5) with the same data as in (5.2) is spline

s(t) = 0.068636 t+ 0.081903 t4 − 0.404141 (t− 1)4+ + 0.671881 (t− 2)4+

− 1.034427 (t− 3)4+ + 0.962872 (t− 4)4+ − 0.411178 (t− 5)4+ + 0.190207

× (t− 6)4+ − 0.218965 (t− 7)4+ + 0.277659 (t− 8)4+ − 0.176466 (t− 9)4+

+ 0.074978 (t− 10)4+ − 0.014322 (t− 11)4+ − 0.145754 t3 + 0.487652

× (t− 1.17)3+ + 1.242923 (t− 3.5)3+ + 0.277414 (t− 7.2)3+.

Its graph is very similar to the graph from Figure 2.

6 Conclusion

In this paper we suggested a new generalization of smoothing problems in
abstract Hilbert spaces and proved the theorem on the existence and char-
acterization of a solution of the generalized problem. It was shown how the
theorem gives already known theorems in special cases as well as some new
results. The obtained results were illustrated with numerical examples, which
motivate the generalization presented here. Last numerical examples could not
be solved without the obtained theorem; this clarifies the importance of the
result. Future work will mainly focus on investigation of new special cases of
the generalized problem by specifying the spaces and operators, including the
framework of multivariate variational splines.
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