Asymptotic Integration of Fractional Differential Equations with Integrodifferential Right-Hand Side

Milan Medved ${ }^{\prime a}$ and Michal Pospísili ${ }^{b, c}$
${ }^{a}$ Department of Mathematical Analysis and Numerical Mathematics, Comenius University
Mlynská dolina, 84248 Bratislava, Slovakia
${ }^{b}$ CEITEC - Central European Institute of Technology, Brno University of Technology
Technická 3058/10, 61600 Brno, Czech Republic
${ }^{c}$ Centre for Research and Utilization of Renewable Energy, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 3058/10, 61600 Brno, Czech Republic
E-mail: Milan.Medved@fmph.uniba.sk
E-mail(corresp.): pospisilm@feec.vutbr.cz

Received June 28, 2014; revised June 22, 2015; published online July 15, 2015

Abstract

In this paper we deal with the problem of asymptotic integration of a class of fractional differential equations of the Caputo type. The left-hand side of such type of equation is the Caputo derivative of the fractional order $r \in(n-1, n)$ of the solution, and the right-hand side depends not only on ordinary derivatives up to order $n-1$ but also on the Caputo derivatives of fractional orders $0<r_{1}<\cdots<$ $r_{m}<r$, and the Riemann-Liouville fractional integrals of positive orders. We give some conditions under which for any global solution $x(t)$ of the equation, there is a constant $c \in \mathbb{R}$ such that $x(t)=c t^{R}+o\left(t^{R}\right)$ as $t \rightarrow \infty$, where $R=\max \left\{n-1, r_{m}\right\}$.

Keywords: Caputo fractional derivative, nonlinear equation, asymptotic property, desingularization.

AMS Subject Classification: 34E10; 34A08; 26A33.

1 Introduction

In the asymptotic theory of n-th order nonlinear ordinary differential equations

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1.1}
\end{equation*}
$$

the classic problem is to establish some conditions for the existence of a solution approaching a polynomial of degree $1 \leq m \leq n-1$ as $t \rightarrow \infty$. The first paper concerning this problem was published by D. Caligo [9] in 1941.

The first paper on the nonlinear second order differential equations

$$
\begin{equation*}
y^{\prime \prime}(t)=f(t, y(t)) \tag{1.2}
\end{equation*}
$$

was published by W.F. Trench [32] in 1963, and then by D.S. Cohen [10], T. Kusano and W.F. Trench [14, 15], F.M. Dannan [13], A. Constantin [11, 12], Yu.V. Rogovchenko [29], S.P. Rogovchenko [28], O.G. Mustafa and Yu.V. Rogovchenko [24], J. Tong [31], O. Lipovan [16] and others. In the proofs of their results the key role plays the Bihari inequality (see [4]) which is a generalization of the Gronwall inequality. Some results on the existence of solutions of the n-th order differential equation

$$
y^{(n)}(t)=f(t, y(t)), \quad n>1, t \geq t_{0}>0
$$

approaching a polynomial function of the degree m with $1 \leq m \leq n-1$, are proved by Ch.G. Philos, I.K. Purnaras and P.Ch. Tsamatos [25]. Their proofs are based on an application of the Schauder fixed point theorem. The paper by R.P. Agarwal, S. Djebali, T. Moussaoui and O.G. Mustafa [2] surveys the literature concerning the topic in asymptotic integration theory of ordinary differential equations. Several conditions, under which all solutions of the onedimensional p-Laplacian equation

$$
\left(\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}=f\left(t, y, y^{\prime}\right), \quad p>1
$$

are asymptotic to $a+b t$ as $t \rightarrow \infty$ for some real numbers a, b, are proved in [23], and some sufficient conditions for the existence of such solutions of the equation

$$
\left(\Phi\left(y^{(n)}\right)\right)^{\prime}=f(t, y), \quad n \geq 1
$$

where $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing homeomorphism with a locally Lipschitz inverse, satisfying $\Phi(0)=0$, are given in the paper [22].

The problem of asymptotic integration for a class of linear fractional differential equations of the Riemann-Liouville type is studied in the papers by D. Băleanu, O.G. Mustafa and R.P. Agarwal [7,8], where some conditions for the existence of at least one solution of this type of equations, approaching a linear function as $t \rightarrow \infty$, are given. In [7] a result on the existence of a solution of the equation

$$
{ }_{0} D_{t}^{\alpha}\left[t x^{\prime}-x+x(0)\right]+a(t) x=0, \quad t>0
$$

(${ }_{0} D_{t}^{\alpha}$ is the Riemann-Liouville derivative of the order $\alpha \in(0,1)$), approaching a function $c t+d+o(1)$ for $t \rightarrow \infty$ is proved. In the paper [8], some results for the existence of a solution of the equations

$$
{ }_{0}^{i} \mathcal{O}_{t}^{1+\alpha} x+a(t) x=0, \quad t>0,
$$

approaching a function $a+b t^{\alpha}+O\left(t^{\alpha-1}\right)$ for $i=1$, and a function $b t^{\alpha}+O\left(t^{\alpha-1}\right)$ for $i=2,3$ as $t \rightarrow \infty$, where ${ }_{0}^{1} \mathcal{O}_{t}^{1+\alpha}:={ }_{0} D^{\alpha} \circ \frac{\mathrm{d}}{\mathrm{d} t},{ }_{0}^{2} \mathcal{O}_{t}^{1+\alpha}:=\frac{\mathrm{d}}{\mathrm{d} t} \circ{ }_{0} D_{t}^{\alpha}$ and ${ }_{0}^{3} \mathcal{O}_{t}^{1+\alpha}:={ }_{0} D_{t}^{\alpha} \circ\left(t \frac{\mathrm{~d}}{\mathrm{~d} t}-i d_{R L^{\alpha}((0,+\infty), \mathbb{R})}\right)$ with

$$
R L^{\alpha}((0,+\infty), \mathbb{R})=\left\{f \in C((0, \infty), \mathbb{R}) \mid \lim _{t \rightarrow 0^{+}}\left[t^{1-\alpha} f(t)\right] \in \mathbb{R}\right\}
$$

$\alpha \in(0,1)$. In the proofs of all these results a fixed point method is applied.

The problem of the asymptotic integration for the equation

$$
x^{\Delta \Delta}+f(t, u)=0
$$

on a time scale \mathbb{T} is studied in the paper [3].
In the paper [5], a sufficient condition for all solutions of the equation

$$
u^{\prime \prime}(t)+f\left(t, u(t), u^{\prime}(t)\right)+\sum_{i=1}^{m} r_{i}(t) \int_{0}^{t}(t-s)^{\alpha_{i}-1} f_{i}\left(\tau, u(\tau), u^{\prime}(\tau)\right) \mathrm{d} \tau=0
$$

to be asymptotic to a straight line is proved.
The problem of the asymptotic integration for a class of sublinear fractional differential equations is investigated by D. Băleanu and O.G. Mustafa in [6], where a condition for the existence of a solution with the asymptotic behavior $o\left(t^{\alpha}\right)$ for a convenient $0<\alpha<1$ as $t \rightarrow \infty$, is proved.

In the paper [21] (see also [20]), the fractional differential equation with Caputo derivative

$$
{ }^{C} D_{a}^{r} x(t)=f\left(t, x(t), x^{\prime}(t), \ldots, x^{(n-1)}(t)\right), \quad t \geq a \geq 1
$$

for $n-1<r<n \ni \mathbb{N}$ is considered, and a sufficient condition for the existence of a constant $c \in \mathbb{R}$, such that all solutions $x(t)$ of the above equation behave like $c t^{n-1}+o\left(t^{n-1}\right)$ as $t \rightarrow \infty$, is proved.

In the present paper, we prove similar results for a more general case when the right-hand side depends on Caputo fractional derivatives of the solution of orders $\tilde{r}<r$. Finally, we investigate the problem of asymptotic integration for fractional differential equations with right-hand side depending on Caputo derivatives as well as on Riemann-Liouville fractional integrals of the solution. In the proofs of our results, we apply a desingularization method of nonlinear integral inequalities with weakly singular kernels proposed in [18,19]. Note that all our results are stated for global solution assuming they exist. The problem of existence of global solutions for the below-considered initial value problems is beyond the scope of this paper.

Throughout the paper, we denote $\mathbb{R}_{+}=[0, \infty)$.

2 Preliminaries

In this section, we recall some definitions (see e.g. $[26,30]$) and basic results.
Definition 1. For $z>0$, the Euler gamma function is defined as

$$
\Gamma(z):=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t
$$

For $u, v>0$, the Euler beta function is defined as

$$
B(u, v):=\int_{0}^{1} t^{u-1}(1-t)^{v-1} \mathrm{~d} t
$$

Definition 2. Let $r>0$. The Riemann-Liouville integral of a function $h:[a, \infty) \rightarrow \mathbb{R}$ of order r is defined as

$$
I_{a}^{r} h(t)=\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-1} h(s) \mathrm{d} s
$$

Definition 3. Let $r>0$ and $n \in \mathbb{N}$ be such that $n-1<r<n$. The Caputo derivative of a C^{n} function $x(t)$ of order r on the interval $[a, \infty), a \geq 0$ is defined as

$$
{ }^{C} D_{a}^{r} x(t):=I_{a}^{n-r} x^{(n)}(t)=\frac{1}{\Gamma(n-r)} \int_{a}^{t}(t-s)^{n-r-1} x^{(n)}(s) \mathrm{d} s
$$

Definition 4. Let $r>0, n \in \mathbb{N}$ be such that $n-1<r<n, a \geq 0, f \in$ $C([a, \infty), \mathbb{R}), c_{0}, c_{1}, \ldots, c_{n-1} \in \mathbb{R}$. A function $x:[a, T) \rightarrow \mathbb{R}, a<T \leq \infty$ is called a solution of the initial value problem

$$
\begin{align*}
{ }^{C} D_{a}^{r} x(t) & =f(t), \quad t \geq a, \tag{2.1}\\
x^{(i)}(a) & =c_{i}, \quad i=0,1, \ldots, n-1 \tag{2.2}
\end{align*}
$$

if $x \in C^{n}([a, T), \mathbb{R}), x$ satisfies equation (2.1) and initial condition (2.2). This solution is called global if it exists for all $t \in[a, \infty)$.

Lemma 1. Let $r>0, n \in \mathbb{N}$ be such that $n-1<r<n, a \geq 0, f \in$ $C([a, \infty), \mathbb{R}), c_{0}, c_{1}, \ldots, c_{n-1} \in \mathbb{R}$. Then the initial value problem (2.1), (2.2) has the solution

$$
x(t)=c_{0}+c_{1}(t-a)+\cdots+\frac{c_{n-1}}{(n-1)!}(t-a)^{n-1}+\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-1} f(s) \mathrm{d} s
$$

The next lemma can be found in [27, 2.2.4.8] or [17].
Lemma 2. Let $a \geq 0, t>a, p(\alpha-1)+1>0, p(\gamma-1)+1>0$. Then

$$
\int_{a}^{t}(t-s)^{p(\alpha-1)} s^{p(\gamma-1)} \mathrm{d} s \leq t^{\Theta} B(p(\gamma-1)+1, p(\alpha-1)+1),
$$

where $\Theta=p(\alpha+\gamma-2)+1$ and $B(u, v)$ is the Euler beta function.
Lemma 3. For any $z>0$, it holds

$$
\Gamma(z)>\frac{\mathrm{e}-1}{\mathrm{e}} \doteq 0.63212
$$

Proof. By its definition the Euler gamma function is positive on $(0, \infty)$. So, its derivative, Γ^{\prime}, and its logarithmic derivative $[1], \Psi=\frac{\Gamma^{\prime}}{\Gamma}$, have the same sign on $(0, \infty)$. Next, by [1, 6.4.10], $\Psi^{\prime}(z)=\sum_{k=0}^{\infty} \frac{1}{(k+z)^{2}}>0$ for $z>0$, i.e., Ψ is increasing on $(0, \infty)$. Since by $[1,6.3 .5]$

$$
\begin{aligned}
& \Psi(1)=-\mathrm{C} \doteq-0.57722<0 \quad(\mathrm{C} \text { is Euler's constant }) \\
& \Psi(2)=\Psi(1)+1 \doteq 0.42278>0
\end{aligned}
$$

Ψ is negative on $(0,1]$ and positive on $[2, \infty)$. Therefore, Γ is decreasing on $(0,1]$, increasing on $[2, \infty)$, and it has a minimum in $(1,2)$. For any $z \in(1,2)$, we estimate

$$
\Gamma(z)>\int_{0}^{1} t \mathrm{e}^{-t} \mathrm{~d} t+\int_{1}^{\infty} \mathrm{e}^{-t} \mathrm{~d} t=\frac{\mathrm{e}-1}{\mathrm{e}}
$$

and the proof is complete.
Due to the latter lemma, $C_{\Gamma}:=\frac{\mathrm{e}}{\mathrm{e}-1} \doteq 1.58198$ satisfies $C_{\Gamma}>\frac{1}{\Gamma(z)}$ on $(0, \infty)$.

3 Asymptotic Behavior of Fractional Differential Equations with Fractional Derivative on the Right-Hand Side

This section is devoted to the study of asymptotic behavior of the solutions of fractional differential equations with the right-hand side depending also on fractional derivatives of the solution.

Theorem 1. Suppose that $0<\tilde{r}<r<1, p>1, p(r-\tilde{r}-1)+1>0, a>0$, $q=\frac{p}{p-1}$ and the function $f: M:=[a, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy the following conditions:

1. $f \in C(M, \mathbb{R})$,
2. there are continuous functions from \mathbb{R}_{+}to $\mathbb{R}_{+}, g_{1}, g_{2}, h_{0}, h_{1}, h_{2}$, such that g_{1}, g_{2} are nondecreasing,

$$
|f(t, u, v)| \leq t^{\gamma-1}\left(h_{0}(t)+h_{1}(t) g_{1}\left(\frac{|u|}{t^{\tilde{r}}}\right)+h_{2}(t) g_{2}(|v|)\right)
$$

for some $\gamma \in\left(1-\frac{1}{p}, 2-r+\tilde{r}-\frac{1}{p}\right]$, and

$$
\begin{aligned}
H_{i}:= & \int_{a}^{\infty} h_{i}^{q}(s) \mathrm{d} s<\infty, \quad i=0,1,2, \\
& \int_{a}^{\infty} \frac{\tau^{q-1} \mathrm{~d} \tau}{g_{1}^{q}(\tau)+g_{2}^{q}(\tau)}=\infty .
\end{aligned}
$$

Then for any global solution $x(t)$ of the initial value problem

$$
\begin{align*}
{ }^{C} D_{a}^{r} x(t) & =f\left(t, x(t),{ }^{C} D_{a}^{\tilde{r}} x(t)\right), \quad t \geq a \tag{3.1}\\
x(a) & =c_{0} \tag{3.2}
\end{align*}
$$

there exists a constant $c \in \mathbb{R}$ such that

$$
x(t)=c t^{\tilde{r}}+o\left(t^{\tilde{r}}\right) \quad \text { as } t \rightarrow \infty .
$$

Proof. For simplicity, we denote $F(t):=f\left(t, x(t),{ }^{C} D_{a}^{\tilde{r}} x(t)\right)$. By Lemma 1, the solution $x(t)$ has the form

$$
x(t)=c_{0}+\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-1} F(s) \mathrm{d} s, \quad t \geq a
$$

Clearly,

$$
\begin{align*}
\frac{|x(t)|}{t^{\tilde{r}}} & \leq \frac{\left|c_{0}\right|}{t^{\tilde{r}}}+\frac{1}{\Gamma(r)} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{\tilde{r}}(t-s)^{r-\tilde{r}-1}|F(s)| \mathrm{d} s \\
& \leq \frac{\left|c_{0}\right|}{a^{\tilde{r}}}+\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-\tilde{r}-1}|F(s)| \mathrm{d} s \leq z(t), \quad t \geq a \tag{3.3}
\end{align*}
$$

for

$$
z(t):=C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-\tilde{r}-1}|F(s)| \mathrm{d} s, \quad C=\frac{\left|c_{0}\right|}{a^{\tilde{r}}} .
$$

The fractional derivative ${ }^{C} D_{a}^{\tilde{r}} x(t)$ can be obtained by applying the operator $I_{a}^{r-\tilde{r}}$ to equation (3.1) (see [26, 2.3.2]):

$$
\begin{equation*}
I_{a}^{r-\tilde{r}}\left({ }^{C} D_{a}^{r} x\right)(t)=I_{a}^{r-\tilde{r}}\left(I_{a}^{1-r} x^{\prime}\right)(t)=I_{a}^{1-\tilde{r}} x^{\prime}(t)={ }^{C} D_{a}^{\tilde{r}} x(t)=I_{a}^{r-\tilde{r}} F(t) \tag{3.4}
\end{equation*}
$$

Hence, by Definition 2,

$$
{ }^{C} D_{a}^{\tilde{r}} x(t)=\frac{1}{\Gamma(r-\tilde{r})} \int_{a}^{t}(t-s)^{r-\tilde{r}-1} F(s) \mathrm{d} s
$$

yielding the estimation $\left|{ }^{C} D_{a}^{\tilde{r}} x(t)\right| \leq z(t)$ for $t \geq a$. Using the assumptions on f and the nondecreasing properties of g_{1}, g_{2}, we estimate
$z(t) \leq C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-\tilde{r}-1} s^{\gamma-1}\left(h_{0}(s)+h_{1}(s) g_{1}(z(s))+h_{2}(s) g_{2}(z(s))\right) \mathrm{d} s$.
Now, by Hölder inequality and Lemma 2 with $\alpha=r-\tilde{r}$, we get

$$
\int_{a}^{t}(t-s)^{r-\tilde{r}-1} s^{\gamma-1} h_{i}(s) g_{i}(z(s)) \mathrm{d} s \leq t^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}
$$

for $i=1,2$, where $B_{1}=B^{\frac{1}{p}}(p(r-\tilde{r}-1)+1, p(\gamma-1)+1)$ and $\Theta=p(r-\tilde{r}+$ $\gamma-2)+1 \in(p(r-\tilde{r}-1), 0]$. Thus

$$
\int_{a}^{t}(t-s)^{r-\tilde{r}-1} s^{\gamma-1} h_{i}(s) g_{i}(z(s)) \mathrm{d} s \leq a^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}
$$

for each $i=1,2, t \geq a$. Similarly,

$$
\int_{a}^{t}(t-s)^{r-\tilde{r}-1} s^{\gamma-1} h_{0}(s) \mathrm{d} s \leq a^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s\right)^{\frac{1}{q}}, \quad t \geq a
$$

Therefore,

$$
\begin{aligned}
z(t) \leq & C+\widetilde{C}\left(\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{a}^{t} h_{1}^{q}(s) g_{1}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}+\left(\int_{a}^{t} h_{2}^{q}(s) g_{2}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}\right)
\end{aligned}
$$

with $\widetilde{C}=C_{\Gamma} a^{\frac{\Theta}{p}} B_{1}$. Now, we apply the inequality $\left(\sum_{i=1}^{4} a_{i}\right)^{q} \leq 4^{q-1} \sum_{i=1}^{4} a_{i}$ for any nonnegative $a_{i}, i=1,2,3,4$, to get

$$
\begin{aligned}
z^{q}(t) \leq & 4^{q-1}\left(C^{q}+\widetilde{C}^{q}\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s+\int_{a}^{t} h_{1}^{q}(s) g_{1}^{q}(z(s)) \mathrm{d} s\right.\right. \\
& \left.\left.+\int_{a}^{t} h_{2}^{q}(s) g_{2}^{q}(z(s)) \mathrm{d} s\right)\right) \\
\leq & 4^{q-1}\left(C^{q}+\widetilde{C}^{q} H_{0}\right)+4^{q-1} \widetilde{C}^{q}\left(\int_{a}^{t} h_{1}^{q}(s) g_{1}^{q}(z(s)) \mathrm{d} s+\int_{a}^{t} h_{2}^{q}(s) g_{2}^{q}(z(s)) \mathrm{d} s\right) .
\end{aligned}
$$

Denoting $u(t):=z^{q}(t), A:=4^{q-1}\left(C^{q}+\widetilde{C}^{q} H_{0}\right), D:=4^{q-1} \widetilde{C}^{q}$, we rewrite the last inequality as

$$
\begin{aligned}
u(t) & \leq A+D\left(\int_{a}^{t} h_{1}^{q}(s) g_{1}^{q}\left(u^{\frac{1}{q}}(s)\right) \mathrm{d} s+\int_{a}^{t} h_{2}^{q}(s) g_{2}^{q}\left(u^{\frac{1}{q}}(s)\right) \mathrm{d} s\right) \\
& \leq A+D \int_{a}^{t}\left(h_{1}^{q}(s)+h_{2}^{q}(s)\right) \omega(u(s)) \mathrm{d} s
\end{aligned}
$$

for $\omega(u)=g_{1}^{q}\left(u^{\frac{1}{q}}\right)+g_{2}^{q}\left(u^{\frac{1}{q}}\right)$. The Bihari inequality implies

$$
\begin{aligned}
u(t) & \leq \Omega^{-1}\left(\Omega(A)+D \int_{a}^{t} h_{1}^{q}(s)+h_{2}^{q}(s) \mathrm{d} s\right) \\
& \leq \Omega^{-1}\left(\Omega(A)+D\left(H_{1}+H_{2}\right)\right)=: K_{0}<\infty
\end{aligned}
$$

for

$$
\Omega(v):=\int_{v_{0}}^{v} \frac{\mathrm{~d} s}{\omega(s)}, \quad 0<v_{0} \leq v .
$$

Note that $\Omega(A)+D\left(H_{1}+H_{2}\right)$ is always in the range of Ω, as $\Omega(\infty)=\infty$ by the assumption of the theorem. For $z(t)$ it means that $z(t) \leq K_{0}^{\frac{1}{q}}<\infty$. Consequently from (3.3) it follows that

$$
0 \leq \int_{a}^{t}\left(\frac{t-s}{t}\right)^{\tilde{r}}(t-s)^{r-\tilde{r}-1}|F(s)| \mathrm{d} s \leq \Gamma(r) K_{0}^{\frac{1}{q}}<\infty, \quad t \geq a
$$

i.e., the integral

$$
\int_{a}^{\infty}\left(\frac{t-s}{t}\right)^{\tilde{r}}(t-s)^{r-\tilde{r}-1} F(s) \mathrm{d} s
$$

converges. In conclusion, we obtain the existence of the limit

$$
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{\tilde{r}}}=: c
$$

which is what had to be proved.
Theorem 2. Suppose that $0<\tilde{r}<1<r<2, p>1, p(r-2)+1>0$, $a>0, q=\frac{p}{p-1}$ and the function $f: M:=[a, \infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfy the following conditions:

1. $f \in C(M, \mathbb{R})$,
2. there are continuous functions from \mathbb{R}_{+}to $\mathbb{R}_{+}, g_{1}, g_{2}, g_{3}, h_{0}, h_{1}, h_{2}, h_{3}$, such that g_{1}, g_{2}, g_{3} are nondecreasing,

$$
|f(t, u, v, w)| \leq t^{\gamma-1}\left(h_{0}(t)+h_{1}(t) g_{1}\left(\frac{|u|}{t}\right)+h_{2}(t) g_{2}(|v|)+h_{3}(t) g_{3}\left(\frac{|w|}{t^{1-\tilde{r}}}\right)\right)
$$

for some $\gamma \in\left(1-\frac{1}{p}, 3-r-\frac{1}{p}\right]$, and

$$
H_{i}:=\int_{a}^{\infty} h_{i}^{q}(s) \mathrm{d} s<\infty, \quad i=0,1,2,3,
$$

$$
\text { 3. } \quad \int_{a}^{\infty} \frac{\tau^{q-1} \mathrm{~d} \tau}{g_{1}^{q}(\tau)+g_{2}^{q}(\tau)+g_{3}^{q}(\tau)}=\infty
$$

Then for any global solution $x(t)$ of the initial value problem

$$
\begin{aligned}
{ }^{C} D_{a}^{r} x(t) & =f\left(t, x(t), x^{\prime}(t),{ }^{C} D_{a}^{\tilde{r}} x(t)\right), \quad t \geq a, \\
x(a) & =c_{0}, \quad x^{\prime}(a)=c_{1},
\end{aligned}
$$

there exists a constant $c \in \mathbb{R}$ such that

$$
x(t)=c t+o(t) \quad \text { as } t \rightarrow \infty .
$$

Proof. For simplicity, we denote $F(t):=f\left(t, x(t), x^{\prime}(t),{ }^{C} D_{a}^{\tilde{r}} x(t)\right)$. Then by Lemma 1, the solution $x(t)$ has the form

$$
x(t)=c_{0}+c_{1}(t-a)+\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-1} F(s) \mathrm{d} s, \quad t \geq a .
$$

By differentiation, one gets

$$
x^{\prime}(t)=c_{1}+\frac{1}{\Gamma(r-1)} \int_{a}^{t}(t-s)^{r-2} F(s) \mathrm{d} s, \quad t \geq a .
$$

Consequently,

$$
\begin{aligned}
\frac{|x(t)|}{t} & \leq \frac{\left|c_{0}\right|}{t}+\frac{\left|c_{1}\right|(t-a)}{t}+\frac{1}{\Gamma(r)} \int_{a}^{t}\left(\frac{t-s}{t}\right)(t-s)^{r-2}|F(s)| \mathrm{d} s \\
& \leq \frac{\left|c_{0}\right|}{a}+\left|c_{1}\right|+\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-2}|F(s)| \mathrm{d} s \leq z(t), \quad t \geq a
\end{aligned}
$$

and

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \leq\left|c_{1}\right|+\frac{1}{\Gamma(r-1)} \int_{a}^{t}(t-s)^{r-2}|F(s)| \mathrm{d} s \leq z(t), \quad t \geq a \tag{3.5}
\end{equation*}
$$

for

$$
z(t):=C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-2}|F(s)| \mathrm{d} s, \quad C=\frac{\left|c_{0}\right|}{a}+C_{\Gamma}\left|c_{1}\right| .
$$

By Definition 3, ${ }^{C} D_{a}^{\tilde{r}} x(t)$ is computed as

$$
\begin{aligned}
{ }^{C} D_{a}^{\tilde{r}} x(t)= & \frac{1}{\Gamma(1-\tilde{r})} \int_{a}^{t}(t-s)^{-\tilde{r}} x^{\prime}(s) \mathrm{d} s=\frac{c_{1}}{\Gamma(1-\tilde{r})} \int_{a}^{t}(t-s)^{-\tilde{r}} \mathrm{~d} s \\
& +\frac{1}{\Gamma(1-\tilde{r}) \Gamma(r-1)} \int_{a}^{t}(t-s)^{-\tilde{r}} \int_{a}^{s}(s-w)^{r-2} F(w) \mathrm{d} w \mathrm{~d} s \\
= & \frac{c_{1}(t-a)^{1-\tilde{r}}}{\Gamma(2-\tilde{r})}+\frac{1}{\Gamma(1-\tilde{r}) \Gamma(r-1)} \int_{a}^{t} F(w) \int_{w}^{t}(t-s)^{-\tilde{r}}(s-w)^{r-2} \mathrm{~d} s \mathrm{~d} w
\end{aligned}
$$

Then, taking the substitution $s=w+\zeta(t-w)$ and using $B(1-\tilde{r}, r-1)=$ $\frac{\Gamma(1-\tilde{r}) \Gamma(r-1)}{\Gamma(r-\tilde{r})}$,

$$
{ }^{C} D_{a}^{\tilde{r}} x(t)=\frac{c_{1}(t-a)^{1-\tilde{r}}}{\Gamma(2-\tilde{r})}+\frac{1}{\Gamma(r-\tilde{r})} \int_{a}^{t}(t-s)^{r-\tilde{r}-1} F(s) \mathrm{d} s
$$

Hence,

$$
\frac{\left|{ }^{C} D_{a}^{\tilde{r}} x(t)\right|}{t^{1-\tilde{r}}} \leq \frac{\left|c_{1}\right|}{\Gamma(2-\tilde{r})}+\frac{1}{\Gamma(r-\tilde{r})} \int_{a}^{t}(t-s)^{r-2}|F(s)| \mathrm{d} s \leq z(t), \quad t \geq a
$$

Now, we apply the assumptions on f and the nondecreasing properties of functions g_{1}, g_{2}, g_{3} to estimate $z(t)$:

$$
z(t) \leq C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-2} s^{\gamma-1}\left(h_{0}(s)+\sum_{i=1}^{3} h_{i}(s) g_{i}(z(s))\right) \mathrm{d} s
$$

Hölder inequality and Lemma 2 with $\alpha=r-1$ yield

$$
\int_{a}^{t}(t-s)^{r-2} s^{\gamma-1} h_{i}(s) g_{i}(z(s)) \mathrm{d} s \leq a^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}, \quad t \geq a
$$

for $i=1,2,3$, where $B_{1}=B^{\frac{1}{p}}(p(r-2)+1, p(\gamma-1)+1)$ and $\Theta=p(r+\gamma-3)+1 \in$ ($p(r-2), 0]$. Similarly,

$$
\int_{a}^{t}(t-s)^{r-2} s^{\gamma-1} h_{0}(s) \mathrm{d} s \leq a^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s\right)^{\frac{1}{q}}, \quad t \geq a
$$

Summarizing the above,

$$
z(t) \leq C+C_{\Gamma} a^{\frac{\Theta}{p}} B_{1}\left(\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s\right)^{\frac{1}{q}}+\sum_{i=1}^{3}\left(\int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}\right)
$$

for any $t \geq a$. Taking the q-th power and using the inequality $\left(\sum_{i=1}^{5} a_{i}\right)^{q} \leq$ $5^{q-1} \sum_{i=1}^{5} a_{i}^{q}$ for any $a_{i} \geq 0, i=1,2, \ldots, 5$, we obtain

$$
\begin{aligned}
u(t):=z^{q}(t) & \leq A+D \sum_{i=1}^{3} \int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s \\
& \leq A+D \int_{a}^{t}\left(h_{1}^{q}(s)+h_{2}^{q}(s)+h_{3}^{q}(s)\right) \omega(u(s)) \mathrm{d} s, \quad t \geq a
\end{aligned}
$$

for $A=5^{q-1}\left(C^{q}+C_{\Gamma}^{q} a^{\Theta(q-1)} B_{1}^{q} H_{0}\right), \quad D=5^{q-1} C_{\Gamma}^{q} a^{\Theta(q-1)} B_{1}^{q}, \omega(u)=$ $\sum_{i=1}^{3} g_{i}^{q}\left(u^{\frac{1}{q}}\right)$. Finally, Bihari inequality implies

$$
\begin{aligned}
u(t) & \leq \Omega^{-1}\left(\Omega(A)+D \int_{a}^{t} h_{1}^{q}(s)+h_{2}^{q}(s)+h_{3}^{q}(s) \mathrm{d} s\right) \\
& \leq \Omega^{-1}\left(\Omega(A)+D\left(H_{1}+H_{2}+H_{3}\right)\right)=: K_{0}<\infty
\end{aligned}
$$

where $\Omega(v)=\int_{v_{0}}^{v} \frac{\mathrm{~d} s}{\omega(s)}, 0<v_{0} \leq v$. Thus $z(t) \leq K_{0}^{\frac{1}{q}}$ for $t \geq a$, and by (3.5),

$$
0 \leq \int_{a}^{t}(t-s)^{r-2}|F(s)| \mathrm{d} s \leq \Gamma(r-1)\left(K_{0}^{\frac{1}{q}}-\left|c_{1}\right|\right)<\infty, \quad t \geq a
$$

i.e., the integral $\int_{a}^{\infty}(t-s)^{r-2} F(s) \mathrm{d} s$ converges. So, there exists a constant c such that $\lim _{t \rightarrow \infty} x^{\prime}(t)=c$, and by applying l'Hôpital's rule,

$$
\lim _{t \rightarrow \infty} \frac{x(t)}{t}=\lim _{t \rightarrow \infty} x^{\prime}(t)=c
$$

This concludes the proof.
The following theorem considers a general case when the order r is a positive real non-integer number.

Theorem 3. Suppose that $r>0$ and $n \in \mathbb{N}$ be such that $n-1<r<n, m \in \mathbb{N}$, $\tilde{r}_{1}, \ldots, \tilde{r}_{m} \in \mathbb{R} \backslash \mathbb{N}$ satisfy $0<\tilde{r}_{1}<\cdots<\tilde{r}_{m}<r, R:=\max \left\{n-1, \tilde{r}_{m}\right\}, p>1$, $p(r-R-1)+1>0, a>0, q=\frac{p}{p-1}$ and the function $f: M:=[a, \infty) \times \mathbb{R}^{n+m} \rightarrow$ \mathbb{R} satisfy the following conditions:

1. $f \in C(M, \mathbb{R})$,
2. there are continuous functions from \mathbb{R}_{+}to $\mathbb{R}_{+}, g_{1}, g_{2}, \ldots, g_{n+m}, h_{0}, h_{1}$, \ldots, h_{n+m}, such that $g_{1}, g_{2}, \ldots, g_{n+m}$ are nondecreasing,

$$
\begin{aligned}
& \left|f\left(t, u_{0}, \ldots, u_{n-1}, v_{1}, \ldots, v_{m}\right)\right| \\
& \quad \leq t^{\gamma-1}\left(h_{0}(t)+\sum_{i=1}^{n} h_{i}(t) g_{i}\left(\frac{\left|u_{i-1}\right|}{t^{R+1-i}}\right)+\sum_{j=1}^{m} h_{n+j}(t) g_{n+j}\left(\frac{\left|v_{j}\right|}{t^{R-\tilde{r}_{j}}}\right)\right)
\end{aligned}
$$

for some $\gamma \in\left(1-\frac{1}{p}, 2-r+R-\frac{1}{p}\right]$, and

$$
H_{i}:=\int_{a}^{\infty} h_{i}^{q}(s) \mathrm{d} s<\infty, \quad i=0,1, \ldots, n+m
$$

3.

$$
\int_{a}^{\infty} \frac{\tau^{q-1} \mathrm{~d} \tau}{\sum_{i=1}^{n+m} g_{i}^{q}(\tau)}=\infty
$$

Then for any global solution $x(t)$ of the initial value problem

$$
\left\{\begin{align*}
{ }^{C} D_{a}^{r} x(t) & =f\left(t, x(t), x^{\prime}(t), \ldots, x^{(n-1)}(t),{ }^{C} D_{a}^{\tilde{r}_{1}} x(t), \ldots,{ }^{C} D_{a}^{\tilde{r}_{m}} x(t)\right), \quad t \geq a \tag{3.6}\\
x^{(i)}(a) & =c_{i}, \quad i=0,1, \ldots, n-1
\end{align*}\right.
$$

there exists a constant $c \in \mathbb{R}$ such that

$$
x(t)=c t^{R}+o\left(t^{R}\right) \quad \text { as } t \rightarrow \infty
$$

Proof. In the whole proof,

$$
F(t):=f\left(t, x(t), x^{\prime}(t), \ldots, x^{(n-1)}(t),{ }^{C} D_{a}^{\tilde{r}_{1}} x(t), \ldots,{ }^{C} D_{a}^{\tilde{r}_{m}} x(t)\right)
$$

By Lemma 1,

$$
\begin{equation*}
x(t)=c_{0}+c_{1}(t-a)+\cdots+\frac{c_{n-1}}{(n-1)!}(t-a)^{n-1}+\frac{1}{\Gamma(r)} \int_{a}^{t}(t-s)^{r-1} F(s) \mathrm{d} s \tag{3.7}
\end{equation*}
$$

We define

$$
z(t):=C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-R-1}|F(s)| \mathrm{d} s, \quad C=\frac{\left|c_{0}\right|}{a^{R}}+C_{\Gamma} \sum_{i=1}^{n-1} \frac{\left|c_{i}\right|}{a^{R-i}} .
$$

Differentiating (3.7), we get
$x^{(i)}(t)=c_{i}+c_{i+1}(t-a)+\cdots+\frac{c_{n-1}(t-a)^{n-1-i}}{(n-1-i)!}+\frac{1}{\Gamma(r-i)} \int_{a}^{t}(t-s)^{r-1-i} F(s) \mathrm{d} s$
for $i=1,2, \ldots, n-1$. It is easy to see, that

$$
\begin{align*}
\frac{\left|x^{(i)}(t)\right|}{t^{R-i}} \leq & \frac{\left|c_{i}\right|}{t^{R-i}}+\frac{\left|c_{i+1}\right|(t-a)}{t^{R-i}}+\cdots+\frac{\left|c_{n-1}\right|(t-a)^{n-1-i}}{(n-1-i)!t^{R-i}} \\
& +\frac{1}{\Gamma(r-i)} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{R-i}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \\
\leq & \frac{\left|c_{i}\right|}{a^{R-i}}+\frac{\left|c_{i+1}\right|}{a^{R-i-1}}+\cdots+\frac{\left|c_{n-1}\right|}{(n-1-i)!a^{R-n+1}} \\
& +\frac{1}{\Gamma(r-i)} \int_{a}^{t}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \leq z(t), \quad t \geq a \tag{3.9}
\end{align*}
$$

for each $i=0,1, \ldots, n-1$. Now for each $j \in\{1,2, \ldots, m\}$ there exists $i_{j} \in$ $\{1,2, \ldots, n\}$ such that $i_{j}-1<\tilde{r}_{j}<i_{j}$.

If $i_{j}<n$, then ${ }^{C} D_{a}^{\tilde{r}_{j}} x(t)=I_{a}^{i_{j}-\tilde{r}_{j}} x^{\left(i_{j}\right)}(t)$, and we apply the formula (3.8) to get

$$
\begin{aligned}
{ }^{C} D_{a}^{\tilde{r}_{j}} x(t) & =\frac{c_{i_{j}}}{\Gamma\left(i_{j}-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{i_{j}-\tilde{r}_{j}-1} \mathrm{~d} s \\
& +\frac{c_{i_{j}+1}}{\Gamma\left(i_{j}-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{i_{j}-\tilde{r}_{j}-1}(s-a) \mathrm{d} s \\
& +\cdots+\frac{c_{n-1}}{\left(n-1-i_{j}\right)!\Gamma\left(i_{j}-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{i_{j}-\tilde{r}_{j}-1}(s-a)^{n-1-i_{j}} \mathrm{~d} s \\
& +\frac{1}{\Gamma\left(r-i_{j}\right) \Gamma\left(i_{j}-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{i_{j}-\tilde{r}_{j}-1} \int_{a}^{s}(s-w)^{r-1-i_{j}} F(w) \mathrm{d} w \mathrm{~d} s
\end{aligned}
$$

Substituting $s=a+\zeta(t-a)$ and using the beta function give

$$
\frac{c_{k}}{\left(k-i_{j}\right)!\Gamma\left(i_{j}-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{i_{j}-\tilde{r}_{j}-1}(s-a)^{k-i_{j}} \mathrm{~d} s=\frac{c_{k}(t-a)^{k-\tilde{r}_{j}}}{\Gamma\left(k+1-\tilde{r}_{j}\right)}
$$

for $k=i_{j}, i_{j}+1, \ldots, n-1$, and changing the order of integration and substitution of $s=w+\zeta(t-w)$ yield

$$
\begin{aligned}
& \frac{1}{\Gamma\left(r-i_{j}\right) \Gamma\left(i_{j}-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{i_{j}-\tilde{r}_{j}-1} \int_{a}^{s}(s-w)^{r-1-i_{j}} F(w) \mathrm{d} w \mathrm{~d} s \\
& \quad=\frac{1}{\Gamma\left(r-\tilde{r}_{j}\right)} \int_{a}^{t}(t-w)^{r-1-\tilde{r}_{j}} F(w) \mathrm{d} w .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
{ }^{C} D_{a}^{\tilde{r}_{j}} x(t)= & \frac{c_{i_{j}}(t-a)^{i_{j}-\tilde{r}_{j}}}{\Gamma\left(i_{j}-\tilde{r}_{j}+1\right)}+\frac{c_{i_{j}+1}(t-a)^{i_{j}-\tilde{r}_{j}+1}}{\Gamma\left(i_{j}-\tilde{r}_{j}+2\right)} \\
& +\cdots+\frac{c_{n-1}(t-a)^{n-1-\tilde{r}_{j}}}{\Gamma\left(n-\tilde{r}_{j}\right)}+\frac{1}{\Gamma\left(r-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{r-1-\tilde{r}_{j}} F(s) \mathrm{d} s
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\frac{\left|D_{a}^{\tilde{r}_{j}} x(t)\right|}{t^{R-\tilde{r}_{j}}} \leq & \frac{\left|c_{i_{j}}\right|}{\Gamma\left(i_{j}-\tilde{r}_{j}+1\right) t^{R-i_{j}}}\left(\frac{t-a}{t}\right)^{i_{j}-\tilde{r}_{j}} \\
& +\frac{\left|c_{i_{j}+1}\right|}{\Gamma\left(i_{j}-\tilde{r}_{j}+2\right) t^{R-i_{j}-1}}\left(\frac{t-a}{t}\right)^{i_{j}-\tilde{r}_{j}+1} \\
& +\cdots+\frac{\left|c_{n-1}\right|}{\Gamma\left(n-\tilde{r}_{j}\right) t^{R-n+1}}\left(\frac{t-a}{t}\right)^{n-1-\tilde{r}_{j}} \\
& +\frac{1}{\Gamma\left(r-\tilde{r}_{j}\right)} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{R-\tilde{r}_{j}}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \\
\leq & \frac{\left|c_{i_{j}}\right|}{\Gamma\left(i_{j}-\tilde{r}_{j}+1\right) a^{R-i_{j}}}+\frac{\left|c_{i_{j}+1}\right|}{\Gamma\left(i_{j}-\tilde{r}_{j}+2\right) a^{R-i_{j}-1}} \\
& +\cdots+\frac{\left|c_{n-1}\right|}{\Gamma\left(n-\tilde{r}_{j}\right) a^{R-n+1}}+\frac{1}{\Gamma\left(r-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \\
\leq & z(t)
\end{aligned}
$$

for any $t \geq a$.
In the other case, when $i_{j}=n$, the fractional derivative ${ }^{C} D_{a}^{\tilde{r}_{j}} x(t)$ is obtained by applying the integral operator $I_{a}^{r-\tilde{r}_{j}}$ on equation (3.6) (as in (3.4)). So we get

$$
{ }^{C} D_{a}^{\tilde{r}_{j}} x(t)=\frac{1}{\Gamma\left(r-\tilde{r}_{j}\right)} \int_{a}^{t}(t-s)^{r-\tilde{r}_{j}-1} F(s) \mathrm{d} s
$$

hence

$$
\begin{equation*}
\frac{\left|{ }^{C} D_{a}^{\tilde{r}_{j}} x(t)\right|}{t^{R-\tilde{r}_{j}}}=\frac{1}{\Gamma\left(r-\tilde{r}_{j}\right)} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{R-\tilde{r}_{j}}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \leq z(t) \tag{3.10}
\end{equation*}
$$

for any $t \geq a$.
Now, we use the assumptions on f, the above estimates (3.9) and (3.10), and the nondecreasing properties of functions $g_{1}, g_{2}, \ldots, g_{n+m}$ to estimate

$$
\begin{aligned}
z(t) & \leq C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-R-1} s^{\gamma-1} \\
& \times\left(h_{0}(s)+\sum_{i=1}^{n} h_{i}(s) g_{i}\left(\frac{\left|x^{(i-1)}(s)\right|}{t^{R+1-i}}\right)+\sum_{j=1}^{m} h_{n+j}(s) g_{n+j}\left(\frac{\left|{ }^{C} D_{a}^{\tilde{r}_{j}} x(s)\right|}{t^{R-\tilde{r}_{j}}}\right)\right) \mathrm{d} s \\
& \leq C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-R-1} s^{\gamma-1}\left(h_{0}(s)+\sum_{i=1}^{n+m} h_{i}(s) g_{i}(z(s))\right) \mathrm{d} s, \quad t \geq a .
\end{aligned}
$$

Hölder inequality and Lemma 2 with $\alpha=r-R$ imply

$$
\int_{a}^{t}(t-s)^{r-R-1} s^{\gamma-1} h_{i}(s) g_{i}(z(s)) \mathrm{d} s \leq a^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}, \quad t \geq a
$$

for $i=1,2, \ldots, n+m$, where $B_{1}=B^{\frac{1}{p}}(p(r-R-1)+1, p(\gamma-1)+1)$ and $\Theta=p(r-R+\gamma-2)+1 \in(p(r-R-1), 0]$. Similarly,

$$
\int_{a}^{t}(t-s)^{r-R-1} s^{\gamma-1} h_{0}(s) \mathrm{d} s \leq a^{\frac{\Theta}{p}} B_{1}\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s\right)^{\frac{1}{q}}, \quad t \geq a
$$

Thus

$$
z(t) \leq C+C_{\Gamma} a^{\frac{\Theta}{p}} B_{1}\left(\left(\int_{a}^{t} h_{0}^{q}(s) \mathrm{d} s\right)^{\frac{1}{q}}+\sum_{i=1}^{n+m}\left(\int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s\right)^{\frac{1}{q}}\right)
$$

and after taking the q-th power and using the inequality

$$
\left(\sum_{i=1}^{n+m+2} a_{i}\right)^{q} \leq(n+m+2)^{q-1} \sum_{i=1}^{n+m+2} a_{i}^{q}
$$

for any $a_{i} \geq 0, i=1,2, \ldots, n+m+2$, one arrives at

$$
\begin{aligned}
u(t):=z^{q}(t) & \leq A+D \sum_{i=1}^{n+m} \int_{a}^{t} h_{i}^{q}(s) g_{i}^{q}(z(s)) \mathrm{d} s \\
& \leq A+D \int_{a}^{t}\left(\sum_{i=1}^{n+m} h_{i}^{q}(s)\right) \omega(u(s)) \mathrm{d} s
\end{aligned}
$$

with $A=(n+m+2)^{q-1}\left(C^{q}+C_{\Gamma}^{q} a^{\Theta(q-1)} B_{1}^{q} H_{0}\right), D=(n+m+2)^{q-1} C_{\Gamma}^{q} a^{\Theta(q-1)} B_{1}^{q}$, $\omega(u)=\sum_{i=1}^{n+m} g_{i}^{q}\left(u^{\frac{1}{q}}\right)$. Finally, by Bihari inequality

$$
\begin{aligned}
u(t) & \leq \Omega^{-1}\left(\Omega(A)+D \int_{a}^{t} \sum_{i=1}^{n+m} h_{i}^{q}(s) \mathrm{d} s\right) \\
& \leq \Omega^{-1}\left(\Omega(A)+D \sum_{i=1}^{n+m} H_{i}\right)=: K_{0}<\infty, \quad t \geq a
\end{aligned}
$$

where

$$
\Omega(v)=\int_{v_{0}}^{v} \frac{\mathrm{~d} s}{\omega(s)}, \quad 0<v_{0} \leq v
$$

i.e., $z(t) \leq K_{0}^{\frac{1}{q}}$ for any $t \geq a$. Note that for (3.9) with $i=n-1$, this means that

$$
\begin{aligned}
\frac{\left|x^{(n-1)}(t)\right|}{t^{R-n+1}} & \leq \frac{\left|c_{n-1}\right|}{t^{R-n+1}}+\frac{1}{\Gamma(r-n+1)} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{R-n+1}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \\
& \leq z(t) \leq K_{0}^{\frac{1}{q}}<\infty, \quad t \geq a
\end{aligned}
$$

In other words,

$$
\int_{a}^{t}\left(\frac{t-s}{t}\right)^{R-n+1}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \leq \Gamma(r-n+1) K_{0}^{\frac{1}{q}}, \quad t \geq a
$$

and so there exists the limit

$$
\lim _{t \rightarrow \infty} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{R-n+1}(t-s)^{r-R-1} F(s) \mathrm{d} s=: \tilde{c} \in[0, \infty)
$$

The statement follows by applying the l'Hôpital rule

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{R}} & =\frac{1}{\prod_{i=0}^{n-2}(R-i)} \lim _{t \rightarrow \infty} \frac{x^{(n-1)}(t)}{t^{R-n+1}} \\
& =\frac{1}{\prod_{i=0}^{n-2}(R-i)}\left(\lim _{t \rightarrow \infty} \frac{c_{n-1}}{t^{R-n+1}}+\frac{\tilde{c}}{\Gamma(r-n+1)}\right)=: c
\end{aligned}
$$

where the value of c depends on R.
At the end, we consider the case when the right-hand side depends also on Riemann-Liouville integrals of the solution.

Theorem 4. Suppose that $r>0$ and $n \in \mathbb{N}$ be such that $n-1<r<n, m \in \mathbb{N}$, $\tilde{r}_{1}, \ldots, \tilde{r}_{m} \in \mathbb{R} \backslash \mathbb{N}$ satisfy $0<\tilde{r}_{1}<\cdots<\tilde{r}_{m}<r, R:=\max \left\{n-1, \tilde{r}_{m}\right\}, \widetilde{m} \in \mathbb{N}$, $q_{1}, \ldots, q_{\widetilde{m}}>0, p>1, p(r-R-1)+1>0, a>0, q=\frac{p}{p-1}$ and the function $f: M:=[a, \infty) \times \mathbb{R}^{n+m+\widetilde{m}} \rightarrow \mathbb{R}$ satisfy the following conditions:

1. $f \in C(M, \mathbb{R})$,
2. there are continuous functions from \mathbb{R}_{+}to $\mathbb{R}_{+}, g_{1}, g_{2}, \ldots, g_{n+m+\tilde{m}}, h_{0}$, $h_{1}, \ldots, h_{n+m+\widetilde{m}}$, such that $g_{1}, g_{2}, \ldots, g_{n+m+\widetilde{m}}$ are nondecreasing,

$$
\begin{aligned}
& \left|f\left(t, u_{0}, \ldots, u_{n-1}, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{\tilde{m}}\right)\right| \\
& \leq \\
& \quad t^{\gamma-1}\left(h_{0}(t)+\sum_{i=1}^{n} h_{i}(t) g_{i}\left(\frac{\left|u_{i-1}\right|}{t^{R+1-i}}\right)+\sum_{j=1}^{m} h_{n+j}(t) g_{n+j}\left(\frac{\left|v_{j}\right|}{t^{R-\tilde{r}_{j}}}\right)\right. \\
& \left.\quad+\sum_{j=1}^{\widetilde{m}} h_{n+m+j}(t) g_{n+m+j}\left(\frac{\left|w_{j}\right|}{t^{R+q_{j}}}\right)\right)
\end{aligned}
$$

for some $\gamma \in\left(1-\frac{1}{p}, 2-r+R-\frac{1}{p}\right]$, and

$$
H_{i}:=\int_{a}^{\infty} h_{i}^{q}(s) \mathrm{d} s<\infty, \quad i=0,1, \ldots, n+m+\widetilde{m}
$$

$$
\text { 3. } \quad \int_{a}^{\infty} \frac{\tau^{q-1} \mathrm{~d} \tau}{\sum_{i=1}^{n+m+\tilde{m}} g_{i}^{q}(\tau)}=\infty
$$

Then for any global solution $x(t)$ of the initial value problem

$$
\left\{\begin{align*}
{ }^{C} D_{a}^{r} x(t)= & f\left(t, x(t), x^{\prime}(t), \ldots, x^{(n-1)}(t),{ }^{C} D_{a}^{\tilde{r}_{1}} x(t), \ldots,{ }^{C} D_{a}^{\tilde{r}_{m}} x(t),\right. \tag{3.11}\\
& \left.I_{a}^{q_{1}} x(t), \ldots, I_{a}^{q_{\tilde{m}}} x(t)\right), \quad t \geq a \\
x^{(i)}(a)= & c_{i}, \quad i=0,1, \ldots, n-1,
\end{align*}\right.
$$

there exists a constant $c \in \mathbb{R}$ such that

$$
x(t)=c t^{R}+o\left(t^{R}\right) \quad \text { as } t \rightarrow \infty .
$$

Proof. For simplicity we denote,

$$
\begin{aligned}
F(t):= & f\left(t, x(t), x^{\prime}(t), \ldots, x^{(n-1)}(t),{ }^{C} D_{a}^{\tilde{r}_{1}} x(t), \ldots,{ }^{C} D_{a}^{\tilde{r}_{m}} x(t),\right. \\
& \left.I_{a}^{q_{1}} x(t), \ldots, I_{a}^{q_{\widetilde{m}}} x(t)\right) .
\end{aligned}
$$

By Lemma 1, the solution $x(t)$ of (3.11) has the form (3.7). Note that the estimations (3.9) and (3.10) remain valid for

$$
z(t):=C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-R-1}|F(s)| \mathrm{d} s, \quad C=C_{\Gamma} \sum_{i=0}^{n-1} \frac{\left|c_{i}\right|}{a^{R-i}}
$$

For each $j=1,2, \ldots, \widetilde{m}$, the fractional integral $I_{a}^{q_{j}} x(t)$ is obtained by integrating formula (3.7) to get

$$
\begin{aligned}
I_{a}^{q_{j}} x(t)= & \frac{c_{0}}{\Gamma\left(q_{j}\right)} \int_{a}^{t}(t-s)^{q_{j}-1} \mathrm{~d} s+\frac{c_{1}}{\Gamma\left(q_{j}\right)} \int_{a}^{t}(t-s)^{q_{j}-1}(s-a) \mathrm{d} s \\
& +\cdots+\frac{c_{n-1}}{\Gamma\left(q_{j}\right)(n-1)!} \int_{a}^{t}(t-s)^{q_{j}-1}(s-a)^{n-1} \mathrm{~d} s \\
& +\frac{1}{\Gamma(r) \Gamma\left(q_{j}\right)} \int_{a}^{t}(t-s)^{q_{j}-1} \int_{a}^{s}(s-w)^{r-1} F(w) \mathrm{d} w \mathrm{~d} s \\
= & \frac{c_{0}(t-a)^{q_{j}}}{\Gamma\left(q_{j}+1\right)}+\frac{c_{1}(t-a)^{q_{j}+1}}{\Gamma\left(q_{j}+2\right)} \\
& +\cdots+\frac{c_{n-1}(t-a)^{q_{j}+n-1}}{\Gamma\left(q_{j}+n\right)}+\frac{1}{\Gamma\left(q_{j}+r\right)} \int_{a}^{t}(t-s)^{q_{j}+r-1} F(s) \mathrm{d} s .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{\left|I_{a}^{q_{j}} x(t)\right|}{t^{R+q_{j}} \leq} & \frac{\left|c_{0}\right|}{\Gamma\left(q_{j}+1\right) t^{R}}\left(\frac{t-a}{t}\right)^{q_{j}}+\frac{\left|c_{1}\right|}{\Gamma\left(q_{j}+2\right) t^{R-1}}\left(\frac{t-a}{t}\right)^{q_{j}+1} \\
& +\cdots+\frac{\left|c_{n-1}\right|}{\Gamma\left(q_{j}+n\right) t^{R-n+1}}\left(\frac{t-a}{t}\right)^{q_{j}+n-1} \\
& +\frac{1}{\Gamma\left(q_{j}+r\right)} \int_{a}^{t}\left(\frac{t-s}{t}\right)^{R+q_{j}}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \\
\leq & \frac{\left|c_{0}\right|}{\Gamma\left(q_{j}+1\right) a^{R}}+\frac{\left|c_{1}\right|}{\Gamma\left(q_{j}+2\right) a^{R-1}}+\cdots+\frac{\left|c_{n-1}\right|}{\Gamma\left(q_{j}+n\right) a^{R-n+1}} \\
& +\frac{1}{\Gamma\left(q_{j}+r\right)} \int_{a}^{t}(t-s)^{r-R-1}|F(s)| \mathrm{d} s \leq z(t)
\end{aligned}
$$

for any $t \geq a, j=1,2, \ldots, \tilde{m}$. So, after applying the assumption on f, one arrives at

$$
\begin{aligned}
z(t) & \leq C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-R-1} s^{\gamma-1}\left(h_{0}(s)+\sum_{i=1}^{n} h_{i}(s) g_{i}\left(\frac{\left|x^{(i-1)}(s)\right|}{t^{R+1-i}}\right)\right. \\
& \left.+\sum_{j=1}^{m} h_{n+j}(s) g_{n+j}\left(\frac{\left|{ }^{C} D_{a}^{\tilde{r}_{j}} x(s)\right|}{t^{R-\tilde{r}_{j}}}\right)+\sum_{j=1}^{\tilde{m}} h_{n+m+j}(s) g_{n+m+j}\left(\frac{\left|I_{a}^{q_{j}} x(s)\right|}{t^{R+q_{j}}}\right)\right) \mathrm{d} s \\
& \leq C+C_{\Gamma} \int_{a}^{t}(t-s)^{r-R-1} s^{\gamma-1}\left(h_{0}(s)+\sum_{i=1}^{n+m+\widetilde{m}} h_{i}(s) g_{i}(z(s))\right) \mathrm{d} s, \quad t \geq a .
\end{aligned}
$$

The rest of the proof can be carried out as the proof of Theorem 3.

4 Conclusion

In this paper, we considered fractional differential equations with Caputo derivative of any positive non-integer order of a solution on the left-hand side and
a general right-hand side depending on a solution, its integer and fractional derivatives, and its Riemann-Liouville integrals of arbitrary order. We stated sufficient conditions for any global solution to behave like $c t^{R}+o\left(t^{R}\right)$ for a convenient $R>0$ as $t \rightarrow \infty$. The existence of the global solution for these equations was not investigated, and it remains to be proved in another paper.

Acknowledgements

M. Medved' was supported by the Slovak Grant Agency VEGA No. 1/0071/14. The work of M. Pospísil was realised in CEITEC - Central European Institute of Technology with research infrastructure supported by the project CZ.1.05/1.1.00/02.0068 financed from European Regional Development Fund.

References

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 10th ed. National Bureau of Standards, Washington, 1972.
[2] R.P. Agarwal, S. Djebali, T. Moussaoui and O.G. Mustafa. On the asymptotic integration of nonlinear differential equations. J. Comput. Appl. Math., 202:352376, 2007. http://dx.doi.org/10.1016/j.cam.2005.11.038.
[3] E. Akın-Bohner, M. Bohner, S. Djebali and T. Moussaoui. On the asymptotic integration of nonlinear dynamic equations. Adv. Differ. Equ., 2008:Article ID 739602, 17 pages, 2008. http://dx.doi.org/10.1155/2008/739602.
[4] I. Bihari. Researches of the boundedness and stability of solutions of non-linear differential equations. Acta Math. Hungar., 8:261-278, 1957. http://dx.doi.org/10.1007/BF02020315.
[5] E. Brestovanská and M. Medved'. Asymptotic behavior of solutions to secondorder differential equations with fractional derivative perturbations. Electron. J. Differ. Equ., 2014(201):1-10, 2014.
[6] D. Băleanu and O.G. Mustafa. On the asymptotic integration of a class of sublinear fractional differential equations. J. Math. Phys, 50:Article Nr. 123520, 2009. http://dx.doi.org/10.1063/1.3271111.
[7] D. Băleanu, O.G. Mustafa and R.P. Agarwal. Asymptotically linear solutions for some linear fractional differential equations. Abstract Appl. Anal., 2010:Article ID 865139, 8 pages, 2010. http://dx.doi.org/10.1155/2010/865139.
[8] D. Băleanu, O.G. Mustafa and R.P. Agarwal. Asymptotic integration of (1+ $1+$ order fractional differential equations. Comput. Math. Appl., 62(3):1492-1500, 2011. http://dx.doi.org/10.1016/j.camwa.2011.03.021.
[9] D. Caligo. Comportamento asintotico degli integrali dell'equazione $y^{\prime \prime}(x)+$ $A(x) y(x)=0$, nell'ipotesi $\lim _{x \rightarrow+\infty} A(x)=0$. Boll. Unione Mat. Ital., 6:286295, 1941.
[10] D.S. Cohen. The asymptotic behavior of a class of nonlinear differential equations. Proc. Amer. Math. Soc., 18:607-609, 1967. http://dx.doi.org/10.1090/S0002-9939-1967-0212289-3.
[11] A. Constantin. On the asymptotic behavior of second order nonlinear differential equations. Rend. Mat. Appl., 13(7):627-634, 1993.
[12] A. Constantin. On the existence of positive solutions of second order differential equations. Ann. Mat. Pura Appl., 184:131-138, 2005.
http://dx.doi.org/10.1007/s10231-004-0100-1.
[13] F.M. Dannan. Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations. J. Math. Anal. Appl., 108:151-164, 1985. http://dx.doi.org/10.1016/0022-247X(85)90014-9.
[14] T. Kusano and W.F. Trench. Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations. Ann. Mat. Pura Appl., 142:381-392, 1985. http://dx.doi.org/10.1007/BF01766602.
[15] T. Kusano and W.F. Trench. Global existence of second order differential equations with integrable coefficients. J. Lond. Math. Soc., 31:478-486, 1985. http://dx.doi.org/10.1112/jlms/s2-31.3.478.
[16] O. Lipovan. On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations. Glasg. Math. J., 45(1):179-187, 2003. http://dx.doi.org/10.1017/S0017089502001143.
[17] Q.-H. Ma, J. Pečarič and J.-M. Zhang. Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems. Comput. Math. Appl., 61:3258-3267, 2011. http://dx.doi.org/10.1016/j.camwa.2011.04.008.
[18] M. Medved'. A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl., 214:349-366, 1997. http://dx.doi.org/10.1006/jmaa.1997.5532.
[19] M. Medved'. Integral inequalities and global solutions of semilinear evolution equations. J. Math. Anal. Appl., 37:871-882, 2002.
[20] M. Medved'. On the asymptotic behavior of solutions of nonlinear differential equations of integer and also of non-integer order. In L. Hatvani, T. Krisztin and R. Vajda(Eds.), Proceedings of the 9'th Colloquium on the Qualitative Theory of Differential Equations, 2011 June 28-July 1, Ordinary Differential Equations, pp. 1-9, Szeged, Hungary, 2012.
[21] M. Medved'. Asymptotic integration of some classes of fractional differential equations. Tatra Mt. Math. Publ., 54:119-132, 2013.
[22] M. Medved' and T. Moussaoui. Asymptotic integration of nonlinear Φ-Laplacian differential equations. Nonlinear Anal., 72:1-8, 2010.
[23] M. Medved' and E. Pekárková. Large time behavior of solutions to second-order differential equations with p-Laplacian. Electron. J. Differ. Equ., 2008(108):112, 2008.
[24] O.G. Mustafa and Yu.V. Rogovchenko. Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations. Nonlinear Anal., 51:339-368, 2002.
http://dx.doi.org/10.1016/S0362-546X(01)00834-3.
[25] Ch.G. Philos, I.K. Purnaras and P.Ch. Tsamatos. Asymptotic to polynomials solutions for nonlinear differential equations. Nonlinear Anal., 59:1157-1179, 2004. http://dx.doi.org/10.1016/j.na.2004.08.011.
[26] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999.
[27] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev. Integrals and Series: Volume I. Elementary Functions. Nauka, Moscow, 1982. (in Russian)
[28] S.P. Rogovchenko and Yu.V. Rogovchenko. Asymptotics of solutions for a class of second order nonlinear differential equations. Port. Math., 57(1):17-32, 2000.
[29] Yu.V. Rogovchenko. On asymptotics behavior of solutions for a class of second order nonlinear differential equations. Collect. Math., 49(1):113-120, 1998.
[30] S.G. Samko, A.A. Kilbas and O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York, 1993.
[31] J. Tong. The asymptotic behavior of a class of nonlinear differential equations of second order. Proc. Amer. Math. Soc., 84:235-236, 1982. http://dx.doi.org/10.1090/S0002-9939-1982-0637175-4.
[32] W.F. Trench. On the asymptotic behavior of solutions of second order linear differential equations. Proc. Amer. Math. Soc., 54:12-14, 1963. http://dx.doi.org/10.1090/S0002-9939-1963-0142844-7.

