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Abstract. In this paper we deal with the problem of asymptotic integration of a
class of fractional differential equations of the Caputo type. The left-hand side of
such type of equation is the Caputo derivative of the fractional order r ∈ (n − 1, n)
of the solution, and the right-hand side depends not only on ordinary derivatives up
to order n− 1 but also on the Caputo derivatives of fractional orders 0 < r1 < · · · <
rm < r, and the Riemann–Liouville fractional integrals of positive orders. We give
some conditions under which for any global solution x(t) of the equation, there is a
constant c ∈ R such that x(t) = ctR + o(tR) as t→∞, where R = max{n− 1, rm}.
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1 Introduction

In the asymptotic theory of n-th order nonlinear ordinary differential equations

y(n) = f
(
t, y, y′, . . . , y(n−1)

)
, (1.1)

the classic problem is to establish some conditions for the existence of a solution
approaching a polynomial of degree 1 ≤ m ≤ n− 1 as t→∞. The first paper
concerning this problem was published by D. Caligo [9] in 1941.
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The first paper on the nonlinear second order differential equations

y′′(t) = f
(
t, y(t)

)
(1.2)

was published by W.F. Trench [32] in 1963, and then by D.S. Cohen [10],
T. Kusano and W.F. Trench [14,15], F.M. Dannan [13], A. Constantin [11,12],
Yu.V. Rogovchenko [29], S.P. Rogovchenko [28], O.G. Mustafa and Yu.V. Ro-
govchenko [24], J. Tong [31], O. Lipovan [16] and others. In the proofs of their
results the key role plays the Bihari inequality (see [4]) which is a generalization
of the Gronwall inequality. Some results on the existence of solutions of the
n-th order differential equation

y(n)(t) = f
(
t, y(t)

)
, n > 1, t ≥ t0 > 0,

approaching a polynomial function of the degree m with 1 ≤ m ≤ n − 1, are
proved by Ch.G. Philos, I.K. Purnaras and P.Ch. Tsamatos [25]. Their proofs
are based on an application of the Schauder fixed point theorem. The paper
by R.P. Agarwal, S. Djebali, T. Moussaoui and O.G. Mustafa [2] surveys the
literature concerning the topic in asymptotic integration theory of ordinary
differential equations. Several conditions, under which all solutions of the one-
dimensional p-Laplacian equation(

|y′|p−1y′
)′

= f(t, y, y′), p > 1

are asymptotic to a + bt as t → ∞ for some real numbers a, b, are proved
in [23], and some sufficient conditions for the existence of such solutions of the
equation (

Φ
(
y(n)

))′
= f(t, y), n ≥ 1,

where Φ : R → R is an increasing homeomorphism with a locally Lipschitz
inverse, satisfying Φ(0) = 0, are given in the paper [22].

The problem of asymptotic integration for a class of linear fractional dif-
ferential equations of the Riemann–Liouville type is studied in the papers by
D. Băleanu, O.G. Mustafa and R.P. Agarwal [7, 8], where some conditions for
the existence of at least one solution of this type of equations, approaching a
linear function as t→∞, are given. In [7] a result on the existence of a solution
of the equation

0D
α
t

[
tx′ − x+ x(0)

]
+ a(t)x = 0, t > 0,

(0D
α
t is the Riemann–Liouville derivative of the order α ∈ (0, 1)), approaching

a function ct+ d+ o(1) for t→∞ is proved. In the paper [8], some results for
the existence of a solution of the equations

i
0O1+α

t x+ a(t)x = 0, t > 0,

approaching a function a+btα+O(tα−1) for i = 1, and a function btα+O(tα−1)
for i = 2, 3 as t → ∞, where 1

0O1+α
t := 0D

α ◦ d
dt ,

2
0O1+α

t := d
dt ◦ 0D

α
t and

3
0O1+α

t := 0D
α
t ◦ (t d

dt − idRLα((0,+∞),R)) with

RLα
(
(0,+∞),R

)
=
{
f ∈ C

(
(0,∞),R

) ∣∣∣ lim
t→0+

[
t1−αf(t)

]
∈ R

}
,

α ∈ (0, 1). In the proofs of all these results a fixed point method is applied.
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The problem of the asymptotic integration for the equation

x∆∆ + f(t, u) = 0

on a time scale T is studied in the paper [3].
In the paper [5], a sufficient condition for all solutions of the equation

u′′(t) + f
(
t, u(t), u′(t)

)
+

m∑
i=1

ri(t)

∫ t

0

(t− s)αi−1fi
(
τ, u(τ), u′(τ)

)
dτ = 0

to be asymptotic to a straight line is proved.
The problem of the asymptotic integration for a class of sublinear fractional

differential equations is investigated by D. Băleanu and O.G. Mustafa in [6],
where a condition for the existence of a solution with the asymptotic behavior
o(tα) for a convenient 0 < α < 1 as t→∞, is proved.

In the paper [21] (see also [20]), the fractional differential equation with
Caputo derivative

CDr
ax(t) = f

(
t, x(t), x′(t), . . . , x(n−1)(t)

)
, t ≥ a ≥ 1

for n− 1 < r < n 3 N is considered, and a sufficient condition for the existence
of a constant c ∈ R, such that all solutions x(t) of the above equation behave
like ctn−1 + o(tn−1) as t→∞, is proved.

In the present paper, we prove similar results for a more general case when
the right-hand side depends on Caputo fractional derivatives of the solution
of orders r̃ < r. Finally, we investigate the problem of asymptotic integration
for fractional differential equations with right-hand side depending on Caputo
derivatives as well as on Riemann–Liouville fractional integrals of the solution.
In the proofs of our results, we apply a desingularization method of nonlinear
integral inequalities with weakly singular kernels proposed in [18,19]. Note that
all our results are stated for global solution assuming they exist. The problem
of existence of global solutions for the below-considered initial value problems
is beyond the scope of this paper.

Throughout the paper, we denote R+ = [0,∞).

2 Preliminaries

In this section, we recall some definitions (see e.g. [26, 30]) and basic results.

Definition 1. For z > 0, the Euler gamma function is defined as

Γ (z) :=

∫ ∞
0

tz−1 e−tdt.

For u, v > 0, the Euler beta function is defined as

B(u, v) :=

∫ 1

0

tu−1(1− t)v−1dt.

Math. Model. Anal., 20(4):471–489, 2015.
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Definition 2. Let r > 0. The Riemann–Liouville integral of a function
h : [a,∞)→ R of order r is defined as

Irah(t) =
1

Γ (r)

∫ t

a

(t− s)r−1h(s)ds.

Definition 3. Let r > 0 and n ∈ N be such that n− 1 < r < n. The Caputo
derivative of a Cn function x(t) of order r on the interval [a,∞), a ≥ 0 is
defined as

CDr
ax(t) := In−ra x(n)(t) =

1

Γ (n− r)

∫ t

a

(t− s)n−r−1x(n)(s)ds.

Definition 4. Let r > 0, n ∈ N be such that n − 1 < r < n, a ≥ 0, f ∈
C([a,∞),R), c0, c1, . . . , cn−1 ∈ R. A function x : [a, T ) → R, a < T ≤ ∞ is
called a solution of the initial value problem

CDr
ax(t) = f(t), t ≥ a, (2.1)

x(i)(a) = ci, i = 0, 1, . . . , n− 1 (2.2)

if x ∈ Cn([a, T ),R), x satisfies equation (2.1) and initial condition (2.2). This
solution is called global if it exists for all t ∈ [a,∞).

Lemma 1. Let r > 0, n ∈ N be such that n − 1 < r < n, a ≥ 0, f ∈
C([a,∞),R), c0, c1, . . . , cn−1 ∈ R. Then the initial value problem (2.1), (2.2)
has the solution

x(t) = c0 + c1(t− a) + · · ·+ cn−1
(n− 1)!

(t− a)n−1 +
1

Γ (r)

∫ t

a

(t− s)r−1f(s)ds.

The next lemma can be found in [27, 2.2.4.8] or [17].

Lemma 2. Let a ≥ 0, t > a, p(α− 1) + 1 > 0, p(γ − 1) + 1 > 0. Then∫ t

a

(t− s)p(α−1)sp(γ−1)ds ≤ tΘB
(
p(γ − 1) + 1, p(α− 1) + 1

)
,

where Θ = p(α+ γ − 2) + 1 and B(u, v) is the Euler beta function.

Lemma 3. For any z > 0, it holds

Γ (z) >
e− 1

e

.
= 0.63212.

Proof. By its definition the Euler gamma function is positive on (0,∞). So,

its derivative, Γ ′, and its logarithmic derivative [1], Ψ = Γ ′

Γ , have the same sign
on (0,∞). Next, by [1, 6.4.10], Ψ ′(z) =

∑∞
k=0

1
(k+z)2 > 0 for z > 0, i.e., Ψ is

increasing on (0,∞). Since by [1, 6.3.5]

Ψ(1) = −C
.
= −0.57722 < 0 (C is Euler’s constant),

Ψ(2) = Ψ(1) + 1
.
= 0.42278 > 0,
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Ψ is negative on (0, 1] and positive on [2,∞). Therefore, Γ is decreasing on
(0, 1], increasing on [2,∞), and it has a minimum in (1, 2). For any z ∈ (1, 2),
we estimate

Γ (z) >

∫ 1

0

t e−tdt+

∫ ∞
1

e−tdt =
e− 1

e
,

and the proof is complete. ut

Due to the latter lemma, CΓ := e
e−1

.
= 1.58198 satisfies CΓ > 1

Γ (z) on

(0,∞).

3 Asymptotic Behavior of Fractional Differential Equa-
tions with Fractional Derivative on the Right-Hand Side

This section is devoted to the study of asymptotic behavior of the solutions
of fractional differential equations with the right-hand side depending also on
fractional derivatives of the solution.

Theorem 1. Suppose that 0 < r̃ < r < 1, p > 1, p(r − r̃ − 1) + 1 > 0, a > 0,
q = p

p−1 and the function f : M := [a,∞) × R2 → R satisfy the following
conditions:

1. f ∈ C(M,R),

2. there are continuous functions from R+ to R+, g1, g2, h0, h1, h2, such
that g1, g2 are nondecreasing,

∣∣f(t, u, v)
∣∣ ≤ tγ−1(h0(t) + h1(t)g1

(
|u|
tr̃

)
+ h2(t)g2

(
|v|
))

for some γ ∈ (1− 1
p , 2− r + r̃ − 1

p ], and

Hi :=

∫ ∞
a

hqi (s)ds <∞, i = 0, 1, 2,

3.

∫ ∞
a

τ q−1dτ

gq1(τ) + gq2(τ)
=∞.

Then for any global solution x(t) of the initial value problem

CDr
ax(t) = f

(
t, x(t),CDr̃

ax(t)
)
, t ≥ a, (3.1)

x(a) = c0, (3.2)

there exists a constant c ∈ R such that

x(t) = ctr̃ + o
(
tr̃
)

as t→∞.

Math. Model. Anal., 20(4):471–489, 2015.
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Proof. For simplicity, we denote F (t) := f(t, x(t),CDr̃
ax(t)). By Lemma 1,

the solution x(t) has the form

x(t) = c0 +
1

Γ (r)

∫ t

a

(t− s)r−1F (s)ds, t ≥ a.

Clearly,

|x(t)|
tr̃
≤ |c0|

tr̃
+

1

Γ (r)

∫ t

a

(
t− s
t

)r̃
(t− s)r−r̃−1

∣∣F (s)
∣∣ds

≤ |c0|
ar̃

+
1

Γ (r)

∫ t

a

(t− s)r−r̃−1
∣∣F (s)

∣∣ds ≤ z(t), t ≥ a (3.3)

for

z(t) := C + CΓ

∫ t

a

(t− s)r−r̃−1
∣∣F (s)

∣∣ds, C =
|c0|
ar̃

.

The fractional derivative CDr̃
ax(t) can be obtained by applying the operator

Ir−r̃a to equation (3.1) (see [26, 2.3.2]):

Ir−r̃a

(
CDr

ax
)
(t) = Ir−r̃a

(
I1−ra x′

)
(t) = I1−r̃a x′(t) = CDr̃

ax(t) = Ir−r̃a F (t). (3.4)

Hence, by Definition 2,

CDr̃
ax(t) =

1

Γ (r − r̃)

∫ t

a

(t− s)r−r̃−1F (s)ds

yielding the estimation |CDr̃
ax(t)| ≤ z(t) for t ≥ a. Using the assumptions on

f and the nondecreasing properties of g1, g2, we estimate

z(t) ≤ C + CΓ

∫ t

a

(t− s)r−r̃−1sγ−1
(
h0(s) + h1(s)g1

(
z(s)

)
+ h2(s)g2

(
z(s)

))
ds.

Now, by Hölder inequality and Lemma 2 with α = r − r̃, we get∫ t

a

(t− s)r−r̃−1sγ−1hi(s)gi
(
z(s)

)
ds ≤ t

Θ
p B1

(∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

) 1
q

for i = 1, 2, where B1 = B
1
p (p(r − r̃ − 1) + 1, p(γ − 1) + 1) and Θ = p(r − r̃ +

γ − 2) + 1 ∈ (p(r − r̃ − 1), 0]. Thus∫ t

a

(t− s)r−r̃−1sγ−1hi(s)gi
(
z(s)

)
ds ≤ a

Θ
p B1

(∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

) 1
q

for each i = 1, 2, t ≥ a. Similarly,∫ t

a

(t− s)r−r̃−1sγ−1h0(s)ds ≤ a
Θ
p B1

(∫ t

a

hq0(s)ds

) 1
q

, t ≥ a.
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Therefore,

z(t) ≤ C + C̃

((∫ t

a

hq0(s)ds

) 1
q

+

(∫ t

a

hq1(s)gq1
(
z(s)

)
ds

) 1
q

+

(∫ t

a

hq2(s)gq2
(
z(s)

)
ds

) 1
q
)

with C̃ = CΓa
Θ
p B1. Now, we apply the inequality (

∑4
i=1 ai)

q ≤ 4q−1
∑4
i=1 ai

for any nonnegative ai, i = 1, 2, 3, 4, to get

zq(t) ≤ 4q−1
(
Cq + C̃q

(∫ t

a

hq0(s)ds+

∫ t

a

hq1(s)gq1
(
z(s)

)
ds

+

∫ t

a

hq2(s)gq2
(
z(s)

)
ds

))
≤ 4q−1

(
Cq + C̃qH0

)
+ 4q−1C̃q

(∫ t

a

hq1(s)gq1
(
z(s)

)
ds+

∫ t

a

hq2(s)gq2
(
z(s)

)
ds

)
.

Denoting u(t) := zq(t), A := 4q−1(Cq + C̃qH0), D := 4q−1C̃q, we rewrite the
last inequality as

u(t) ≤ A+D

(∫ t

a

hq1(s)gq1
(
u

1
q (s)

)
ds+

∫ t

a

hq2(s)gq2
(
u

1
q (s)

)
ds

)
≤ A+D

∫ t

a

(
hq1(s) + hq2(s)

)
ω
(
u(s)

)
ds

for ω(u) = gq1(u
1
q ) + gq2(u

1
q ). The Bihari inequality implies

u(t) ≤ Ω−1
(
Ω(A) +D

∫ t

a

hq1(s) + hq2(s)ds

)
≤ Ω−1

(
Ω(A) +D(H1 +H2)

)
=: K0 <∞

for

Ω(v) :=

∫ v

v0

ds

ω(s)
, 0 < v0 ≤ v.

Note that Ω(A) + D(H1 + H2) is always in the range of Ω, as Ω(∞) = ∞
by the assumption of the theorem. For z(t) it means that z(t) ≤ K

1
q

0 < ∞.
Consequently from (3.3) it follows that

0 ≤
∫ t

a

(
t− s
t

)r̃
(t− s)r−r̃−1

∣∣F (s)
∣∣ds ≤ Γ (r)K

1
q

0 <∞, t ≥ a,

i.e., the integral ∫ ∞
a

(
t− s
t

)r̃
(t− s)r−r̃−1F (s)ds

Math. Model. Anal., 20(4):471–489, 2015.
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converges. In conclusion, we obtain the existence of the limit

lim
t→∞

x(t)

tr̃
=: c,

which is what had to be proved. ut

Theorem 2. Suppose that 0 < r̃ < 1 < r < 2, p > 1, p(r − 2) + 1 > 0,
a > 0, q = p

p−1 and the function f : M := [a,∞)×R3 → R satisfy the following
conditions:

1. f ∈ C(M,R),

2. there are continuous functions from R+ to R+, g1, g2, g3, h0, h1, h2, h3,
such that g1, g2, g3 are nondecreasing,∣∣f(t, u, v, w)

∣∣ ≤ tγ−1(h0(t) + h1(t)g1

(
|u|
t

)
+ h2(t)g2(|v|) + h3(t)g3

(
|w|
t1−r̃

))
for some γ ∈ (1− 1

p , 3− r −
1
p ], and

Hi :=

∫ ∞
a

hqi (s)ds <∞, i = 0, 1, 2, 3,

3.

∫ ∞
a

τ q−1dτ

gq1(τ) + gq2(τ) + gq3(τ)
=∞.

Then for any global solution x(t) of the initial value problem

CDr
ax(t) = f

(
t, x(t), x′(t),CDr̃

ax(t)
)
, t ≥ a,

x(a) = c0, x′(a) = c1,

there exists a constant c ∈ R such that

x(t) = ct+ o(t) as t→∞.

Proof. For simplicity, we denote F (t) := f(t, x(t), x′(t),CDr̃
ax(t)). Then by

Lemma 1, the solution x(t) has the form

x(t) = c0 + c1(t− a) +
1

Γ (r)

∫ t

a

(t− s)r−1F (s)ds, t ≥ a.

By differentiation, one gets

x′(t) = c1 +
1

Γ (r − 1)

∫ t

a

(t− s)r−2F (s)ds, t ≥ a.

Consequently,

|x(t)|
t
≤ |c0|

t
+
|c1|(t− a)

t
+

1

Γ (r)

∫ t

a

(
t− s
t

)
(t− s)r−2

∣∣F (s)
∣∣ds

≤ |c0|
a

+ |c1|+
1

Γ (r)

∫ t

a

(t− s)r−2
∣∣F (s)

∣∣ds ≤ z(t), t ≥ a,



Asymptotic Integration of Fractional DEs 479

and ∣∣x′(t)∣∣ ≤ |c1|+ 1

Γ (r − 1)

∫ t

a

(t− s)r−2
∣∣F (s)

∣∣ds ≤ z(t), t ≥ a (3.5)

for

z(t) := C + CΓ

∫ t

a

(t− s)r−2
∣∣F (s)

∣∣ds, C =
|c0|
a

+ CΓ |c1|.

By Definition 3, CDr̃
ax(t) is computed as

CDr̃
ax(t) =

1

Γ (1− r̃)

∫ t

a

(t− s)−r̃x′(s)ds =
c1

Γ (1− r̃)

∫ t

a

(t− s)−r̃ds

+
1

Γ (1− r̃)Γ (r − 1)

∫ t

a

(t− s)−r̃
∫ s

a

(s− w)r−2F (w)dwds

=
c1(t− a)1−r̃

Γ (2− r̃)
+

1

Γ (1− r̃)Γ (r − 1)

∫ t

a

F (w)

∫ t

w

(t− s)−r̃(s− w)r−2dsdw.

Then, taking the substitution s = w + ζ(t − w) and using B(1 − r̃, r − 1) =
Γ (1−r̃)Γ (r−1)

Γ (r−r̃) ,

CDr̃
ax(t) =

c1(t− a)1−r̃

Γ (2− r̃)
+

1

Γ (r − r̃)

∫ t

a

(t− s)r−r̃−1F (s)ds.

Hence,

|CDr̃
ax(t)|
t1−r̃

≤ |c1|
Γ (2− r̃)

+
1

Γ (r − r̃)

∫ t

a

(t− s)r−2
∣∣F (s)

∣∣ds ≤ z(t), t ≥ a.

Now, we apply the assumptions on f and the nondecreasing properties of func-
tions g1, g2, g3 to estimate z(t):

z(t) ≤ C + CΓ

∫ t

a

(t− s)r−2sγ−1
(
h0(s) +

3∑
i=1

hi(s)gi
(
z(s)

))
ds.

Hölder inequality and Lemma 2 with α = r − 1 yield∫ t

a

(t− s)r−2sγ−1hi(s)gi
(
z(s)

)
ds ≤ a

Θ
p B1

(∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

) 1
q

, t ≥ a

for i = 1, 2, 3, where B1 = B
1
p (p(r−2)+1, p(γ−1)+1) and Θ = p(r+γ−3)+1 ∈

(p(r − 2), 0]. Similarly,∫ t

a

(t− s)r−2sγ−1h0(s)ds ≤ a
Θ
p B1

(∫ t

a

hq0(s)ds

) 1
q

, t ≥ a.

Summarizing the above,

z(t) ≤ C + CΓa
Θ
p B1

((∫ t

a

hq0(s)ds

) 1
q

+

3∑
i=1

(∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

) 1
q
)

Math. Model. Anal., 20(4):471–489, 2015.
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for any t ≥ a. Taking the q-th power and using the inequality (
∑5
i=1 ai)

q ≤
5q−1

∑5
i=1 a

q
i for any ai ≥ 0, i = 1, 2, . . . , 5, we obtain

u(t) := zq(t) ≤ A+D

3∑
i=1

∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

≤ A+D

∫ t

a

(
hq1(s) + hq2(s) + hq3(s)

)
ω
(
u(s)

)
ds, t ≥ a

for A = 5q−1(Cq + CqΓa
Θ(q−1)Bq1H0), D = 5q−1CqΓa

Θ(q−1)Bq1 , ω(u) =∑3
i=1 g

q
i (u

1
q ). Finally, Bihari inequality implies

u(t) ≤ Ω−1
(
Ω(A) +D

∫ t

a

hq1(s) + hq2(s) + hq3(s)ds

)
≤ Ω−1

(
Ω(A) +D(H1 +H2 +H3)

)
=: K0 <∞,

where Ω(v) =
∫ v
v0

ds
ω(s) , 0 < v0 ≤ v. Thus z(t) ≤ K

1
q

0 for t ≥ a, and by (3.5),

0 ≤
∫ t

a

(t− s)r−2
∣∣F (s)

∣∣ds ≤ Γ (r − 1)
(
K

1
q

0 − |c1|
)
<∞, t ≥ a,

i.e., the integral
∫∞
a

(t − s)r−2F (s)ds converges. So, there exists a constant c
such that limt→∞ x′(t) = c, and by applying l’Hôpital’s rule,

lim
t→∞

x(t)

t
= lim
t→∞

x′(t) = c.

This concludes the proof. ut

The following theorem considers a general case when the order r is a positive
real non-integer number.

Theorem 3. Suppose that r > 0 and n ∈ N be such that n−1 < r < n, m ∈ N,
r̃1, . . . , r̃m ∈ R\N satisfy 0 < r̃1 < · · · < r̃m < r, R := max{n− 1, r̃m}, p > 1,
p(r−R−1)+1 > 0, a > 0, q = p

p−1 and the function f : M := [a,∞)×Rn+m →
R satisfy the following conditions:

1. f ∈ C(M,R),

2. there are continuous functions from R+ to R+, g1, g2, . . . , gn+m, h0, h1,
. . . , hn+m, such that g1, g2, . . . , gn+m are nondecreasing,∣∣f(t, u0, . . . , un−1, v1, . . . , vm)

∣∣
≤ tγ−1

(
h0(t) +

n∑
i=1

hi(t)gi

(
|ui−1|
tR+1−i

)
+

m∑
j=1

hn+j(t)gn+j

(
|vj |
tR−r̃j

))
for some γ ∈ (1− 1

p , 2− r +R− 1
p ], and

Hi :=

∫ ∞
a

hqi (s)ds <∞, i = 0, 1, . . . , n+m,
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3.
∫ ∞
a

τ q−1dτ∑n+m
i=1 gqi (τ)

=∞.

Then for any global solution x(t) of the initial value problem{
CDr

ax(t) = f
(
t, x(t), x′(t), . . . , x(n−1)(t),CDr̃1

a x(t), . . . ,CDr̃m
a x(t)

)
, t ≥ a,

x(i)(a) = ci, i = 0, 1, . . . , n− 1,
(3.6)

there exists a constant c ∈ R such that

x(t) = ctR + o
(
tR
)

as t→∞.

Proof. In the whole proof,

F (t) := f
(
t, x(t), x′(t), . . . , x(n−1)(t),CDr̃1

a x(t), . . . ,CDr̃m
a x(t)

)
.

By Lemma 1,

x(t) = c0+c1(t−a)+· · ·+ cn−1
(n− 1)!

(t−a)n−1+
1

Γ (r)

∫ t

a

(t−s)r−1F (s)ds. (3.7)

We define

z(t) := C + CΓ

∫ t

a

(t− s)r−R−1
∣∣F (s)

∣∣ds, C =
|c0|
aR

+ CΓ

n−1∑
i=1

|ci|
aR−i

.

Differentiating (3.7), we get

x(i)(t) = ci+ci+1(t−a)+· · ·+ cn−1(t− a)n−1−i

(n− 1− i)!
+

1

Γ (r − i)

∫ t

a

(t−s)r−1−iF (s)ds

(3.8)
for i = 1, 2, . . . , n− 1. It is easy to see, that

|x(i)(t)|
tR−i

≤ |ci|
tR−i

+
|ci+1|(t− a)

tR−i
+ · · ·+ |cn−1|(t− a)n−1−i

(n− 1− i)! tR−i

+
1

Γ (r − i)

∫ t

a

(
t− s
t

)R−i
(t− s)r−R−1

∣∣F (s)
∣∣ds

≤ |ci|
aR−i

+
|ci+1|
aR−i−1

+ · · ·+ |cn−1|
(n− 1− i)! aR−n+1

+
1

Γ (r − i)

∫ t

a

(t− s)r−R−1
∣∣F (s)

∣∣ds ≤ z(t), t ≥ a (3.9)

for each i = 0, 1, . . . , n − 1. Now for each j ∈ {1, 2, . . . ,m} there exists ij ∈
{1, 2, . . . , n} such that ij − 1 < r̃j < ij .
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If ij < n, then CD
r̃j
a x(t) = I

ij−r̃j
a x(ij)(t), and we apply the formula (3.8) to

get

CDr̃j
a x(t) =

cij
Γ (ij − r̃j)

∫ t

a

(t− s)ij−r̃j−1ds

+
cij+1

Γ (ij − r̃j)

∫ t

a

(t− s)ij−r̃j−1(s− a)ds

+ · · ·+ cn−1
(n− 1− ij)!Γ (ij − r̃j)

∫ t

a

(t− s)ij−r̃j−1(s− a)n−1−ijds

+
1

Γ (r − ij)Γ (ij − r̃j)

∫ t

a

(t− s)ij−r̃j−1
∫ s

a

(s− w)r−1−ijF (w)dwds.

Substituting s = a+ ζ(t− a) and using the beta function give

ck
(k − ij)!Γ (ij − r̃j)

∫ t

a

(t− s)ij−r̃j−1(s− a)k−ijds =
ck(t− a)k−r̃j

Γ (k + 1− r̃j)
for k = ij , ij + 1, . . . , n − 1, and changing the order of integration and substi-
tution of s = w + ζ(t− w) yield

1

Γ (r − ij)Γ (ij − r̃j)

∫ t

a

(t− s)ij−r̃j−1
∫ s

a

(s− w)r−1−ijF (w)dwds

=
1

Γ (r − r̃j)

∫ t

a

(t− w)r−1−r̃jF (w)dw.

Therefore,

CDr̃j
a x(t) =

cij (t− a)ij−r̃j

Γ (ij − r̃j + 1)
+
cij+1(t− a)ij−r̃j+1

Γ (ij − r̃j + 2)

+ · · ·+ cn−1(t− a)n−1−r̃j

Γ (n− r̃j)
+

1

Γ (r − r̃j)

∫ t

a

(t− s)r−1−r̃jF (s)ds.

Consequently,

|CDr̃j
a x(t)|
tR−r̃j

≤
|cij |

Γ (ij − r̃j + 1)tR−ij

(
t− a
t

)ij−r̃j
+

|cij+1|
Γ (ij − r̃j + 2)tR−ij−1

(
t− a
t

)ij−r̃j+1

+ · · ·+ |cn−1|
Γ (n− r̃j)tR−n+1

(
t− a
t

)n−1−r̃j
+

1

Γ (r − r̃j)

∫ t

a

(
t− s
t

)R−r̃j
(t− s)r−R−1

∣∣F (s)
∣∣ds

≤
|cij |

Γ (ij − r̃j + 1)aR−ij
+

|cij+1|
Γ (ij − r̃j + 2)aR−ij−1

+ · · ·+ |cn−1|
Γ (n− r̃j)aR−n+1

+
1

Γ (r − r̃j)

∫ t

a

(t− s)r−R−1
∣∣F (s)

∣∣ds
≤ z(t)
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for any t ≥ a.

In the other case, when ij = n, the fractional derivative CD
r̃j
a x(t) is obtained

by applying the integral operator I
r−r̃j
a on equation (3.6) (as in (3.4)). So we

get

CDr̃j
a x(t) =

1

Γ (r − r̃j)

∫ t

a

(t− s)r−r̃j−1F (s)ds,

hence

|CDr̃j
a x(t)|
tR−r̃j

=
1

Γ (r − r̃j)

∫ t

a

(
t− s
t

)R−r̃j
(t− s)r−R−1

∣∣F (s)
∣∣ds ≤ z(t) (3.10)

for any t ≥ a.

Now, we use the assumptions on f , the above estimates (3.9) and (3.10),
and the nondecreasing properties of functions g1, g2, . . . , gn+m to estimate

z(t) ≤ C + CΓ

∫ t

a

(t− s)r−R−1sγ−1

×
(
h0(s) +

n∑
i=1

hi(s)gi

(
|x(i−1)(s)|
tR+1−i

)
+

m∑
j=1

hn+j(s)gn+j

(
|CDr̃j

a x(s)|
tR−r̃j

))
ds

≤ C + CΓ

∫ t

a

(t− s)r−R−1sγ−1
(
h0(s) +

n+m∑
i=1

hi(s)gi
(
z(s)

))
ds, t ≥ a.

Hölder inequality and Lemma 2 with α = r −R imply

∫ t

a

(t− s)r−R−1sγ−1hi(s)gi
(
z(s)

)
ds ≤ a

Θ
p B1

(∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

) 1
q

, t ≥ a

for i = 1, 2, . . . , n + m, where B1 = B
1
p (p(r − R − 1) + 1, p(γ − 1) + 1) and

Θ = p(r −R+ γ − 2) + 1 ∈ (p(r −R− 1), 0]. Similarly,

∫ t

a

(t− s)r−R−1sγ−1h0(s)ds ≤ a
Θ
p B1

(∫ t

a

hq0(s)ds

) 1
q

, t ≥ a.

Thus

z(t) ≤ C + CΓa
Θ
p B1

((∫ t

a

hq0(s)ds

) 1
q

+

n+m∑
i=1

(∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

) 1
q
)
,

and after taking the q-th power and using the inequality(n+m+2∑
i=1

ai

)q
≤ (n+m+ 2)q−1

n+m+2∑
i=1

aqi
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for any ai ≥ 0, i = 1, 2, . . . , n+m+ 2, one arrives at

u(t) := zq(t) ≤ A+D

n+m∑
i=1

∫ t

a

hqi (s)g
q
i

(
z(s)

)
ds

≤ A+D

∫ t

a

(n+m∑
i=1

hqi (s)

)
ω
(
u(s)

)
ds

with A=(n+m+2)q−1(Cq+CqΓa
Θ(q−1)Bq1H0), D=(n+m+2)q−1CqΓa

Θ(q−1)Bq1 ,

ω(u) =
∑n+m
i=1 gqi (u

1
q ). Finally, by Bihari inequality

u(t) ≤ Ω−1
(
Ω(A) +D

∫ t

a

n+m∑
i=1

hqi (s)ds

)

≤ Ω−1
(
Ω(A) +D

n+m∑
i=1

Hi

)
=: K0 <∞, t ≥ a,

where

Ω(v) =

∫ v

v0

ds

ω(s)
, 0 < v0 ≤ v,

i.e., z(t) ≤ K
1
q

0 for any t ≥ a. Note that for (3.9) with i = n − 1, this means
that

|x(n−1)(t)|
tR−n+1

≤ |cn−1|
tR−n+1

+
1

Γ (r − n+ 1)

∫ t

a

(
t− s
t

)R−n+1

(t− s)r−R−1
∣∣F (s)

∣∣ds
≤ z(t) ≤ K

1
q

0 <∞, t ≥ a.

In other words,∫ t

a

(
t− s
t

)R−n+1

(t− s)r−R−1
∣∣F (s)

∣∣ds ≤ Γ (r − n+ 1)K
1
q

0 , t ≥ a,

and so there exists the limit

lim
t→∞

∫ t

a

(
t− s
t

)R−n+1

(t− s)r−R−1F (s)ds =: c̃ ∈ [0,∞).

The statement follows by applying the l’Hôpital rule

lim
t→∞

x(t)

tR
=

1∏n−2
i=0 (R− i)

lim
t→∞

x(n−1)(t)

tR−n+1

=
1∏n−2

i=0 (R− i)

(
lim
t→∞

cn−1
tR−n+1

+
c̃

Γ (r − n+ 1)

)
=: c,

where the value of c depends on R. ut

At the end, we consider the case when the right-hand side depends also on
Riemann–Liouville integrals of the solution.
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Theorem 4. Suppose that r > 0 and n ∈ N be such that n−1 < r < n, m ∈ N,
r̃1, . . . , r̃m ∈ R\N satisfy 0 < r̃1 < · · · < r̃m < r, R := max{n− 1, r̃m}, m̃ ∈ N,
q1, . . . , qm̃ > 0, p > 1, p(r − R − 1) + 1 > 0, a > 0, q = p

p−1 and the function

f : M := [a,∞)× Rn+m+m̃ → R satisfy the following conditions:

1. f ∈ C(M,R),

2. there are continuous functions from R+ to R+, g1, g2, . . . , gn+m+m̃, h0,
h1, . . . , hn+m+m̃, such that g1, g2, . . . , gn+m+m̃ are nondecreasing,∣∣f(t, u0, . . . , un−1, v1, . . . , vm, w1, . . . , wm̃)

∣∣
≤ tγ−1

(
h0(t) +

n∑
i=1

hi(t)gi

(
|ui−1|
tR+1−i

)
+

m∑
j=1

hn+j(t)gn+j

(
|vj |
tR−r̃j

)

+

m̃∑
j=1

hn+m+j(t)gn+m+j

(
|wj |
tR+qj

))

for some γ ∈ (1− 1
p , 2− r +R− 1

p ], and

Hi :=

∫ ∞
a

hqi (s)ds <∞, i = 0, 1, . . . , n+m+ m̃,

3.

∫ ∞
a

τ q−1dτ∑n+m+m̃
i=1 gqi (τ)

=∞.

Then for any global solution x(t) of the initial value problem
CDr

ax(t) = f
(
t, x(t), x′(t), . . . , x(n−1)(t),CDr̃1

a x(t), . . . ,CDr̃m
a x(t),

Iq1a x(t), . . . , Iqm̃a x(t)
)
, t ≥ a,

x(i)(a) = ci, i = 0, 1, . . . , n− 1,

(3.11)

there exists a constant c ∈ R such that

x(t) = ctR + o(tR) as t→∞.

Proof. For simplicity we denote,

F (t) := f
(
t, x(t), x′(t), . . . , x(n−1)(t),CDr̃1

a x(t), . . . ,CDr̃m
a x(t),

Iq1a x(t), . . . , Iqm̃a x(t)
)
.

By Lemma 1, the solution x(t) of (3.11) has the form (3.7). Note that the
estimations (3.9) and (3.10) remain valid for

z(t) := C + CΓ

∫ t

a

(t− s)r−R−1
∣∣F (s)

∣∣ds, C = CΓ

n−1∑
i=0

|ci|
aR−i

.
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For each j = 1, 2, . . . , m̃, the fractional integral I
qj
a x(t) is obtained by integrat-

ing formula (3.7) to get

Iqja x(t) =
c0

Γ (qj)

∫ t

a

(t− s)qj−1ds+
c1

Γ (qj)

∫ t

a

(t− s)qj−1(s− a)ds

+ · · ·+ cn−1
Γ (qj)(n− 1)!

∫ t

a

(t− s)qj−1(s− a)n−1ds

+
1

Γ (r)Γ (qj)

∫ t

a

(t− s)qj−1
∫ s

a

(s− w)r−1F (w)dwds

=
c0(t− a)qj

Γ (qj + 1)
+
c1(t− a)qj+1

Γ (qj + 2)

+ · · ·+ cn−1(t− a)qj+n−1

Γ (qj + n)
+

1

Γ (qj + r)

∫ t

a

(t− s)qj+r−1F (s)ds.

Therefore,

|Iqja x(t)|
tR+qj

≤ |c0|
Γ (qj + 1)tR

(
t− a
t

)qj
+

|c1|
Γ (qj + 2)tR−1

(
t− a
t

)qj+1

+ · · ·+ |cn−1|
Γ (qj + n)tR−n+1

(
t− a
t

)qj+n−1
+

1

Γ (qj + r)

∫ t

a

(
t− s
t

)R+qj

(t− s)r−R−1
∣∣F (s)

∣∣ds
≤ |c0|
Γ (qj + 1)aR

+
|c1|

Γ (qj + 2)aR−1
+ · · ·+ |cn−1|

Γ (qj + n)aR−n+1

+
1

Γ (qj + r)

∫ t

a

(t− s)r−R−1
∣∣F (s)

∣∣ds ≤ z(t)
for any t ≥ a, j = 1, 2, . . . , m̃. So, after applying the assumption on f , one
arrives at

z(t) ≤ C + CΓ

∫ t

a

(t− s)r−R−1sγ−1
(
h0(s) +

n∑
i=1

hi(s)gi

(
|x(i−1)(s)|
tR+1−i

)

+

m∑
j=1

hn+j(s)gn+j

(
|CDr̃j

a x(s)|
tR−r̃j

)
+

m̃∑
j=1

hn+m+j(s)gn+m+j

(
|Iqja x(s)|
tR+qj

))
ds

≤ C + CΓ

∫ t

a

(t− s)r−R−1sγ−1
(
h0(s) +

n+m+m̃∑
i=1

hi(s)gi
(
z(s)

))
ds, t ≥ a.

The rest of the proof can be carried out as the proof of Theorem 3. ut

4 Conclusion

In this paper, we considered fractional differential equations with Caputo deri-
vative of any positive non-integer order of a solution on the left-hand side and
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a general right-hand side depending on a solution, its integer and fractional
derivatives, and its Riemann–Liouville integrals of arbitrary order. We stated
sufficient conditions for any global solution to behave like ctR + o(tR) for a
convenient R > 0 as t → ∞. The existence of the global solution for these
equations was not investigated, and it remains to be proved in another paper.
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[6] D. Băleanu and O.G. Mustafa. On the asymptotic integration of a class of
sublinear fractional differential equations. J. Math. Phys, 50:Article Nr. 123520,
2009. http://dx.doi.org/10.1063/1.3271111.
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