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Abstract. In this paper we consider the Neumann boundary value problem at res-
onance

−u′′(t) = f
(
t, u(t)

)
, 0 < t < 1, u′(0) = u′(1) = 0.

We assume that the nonlinear term satisfies the inequality f(t, z) + α2z + β(t) ≥ 0,
t ∈ [0, 1], z ≥ 0, where β : [0, 1]→ R+, and α 6= 0. The problem is transformed into
a non-resonant positone problem and positive solutions are obtained by means of a
Guo–Krasnosel’skĭı fixed point theorem.
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1 Introduction

We study the Neumann boundary value problem

−u′′(t) = f
(
t, u(t)

)
, 0 < t < 1, (1.1)

u′(0) = u′(1) = 0, (1.2)

with a sign-changing nonlinearity.
We will make the assumptions precise in the next section, we only mention

now that the continuous function f : [0, 1] ×R+ → R satisfies the inequality
f(t, z) ≥ −α2z−β(t) in [0, 1]×R+, for some constant α 6= 0 and a non-negative
valued function β(t).

One of the most frequently mentioned papers that stimulated the discussion
of semipositone problems is the paper [7] by Miciano and Shivaji. The authors
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of [7] used the bifurcation techniques to obtain multiple positive solutions for
the Neumann problem. We only mention several among many results based on
applications of a Guo–Krasnosel’skĭı fixed point theorem and fixed point index
computations. In [10], Sun and Wei obtained positive solutions of the non-local
boundary value problem

−u′′(t) = f
(
t, u(t)

)
, 0 < t < 1,

u(0) = αu(η), u(1) = βu(η),

where the right side is a continuous function with f(t, u) + M ≥ 0 for some
M > 0. Lu [5] obtained multiple positive solutions for singular semipositone
periodic boundary value problems. It should be mentioned that, in [5], the
nonhomogeneous term depends on the first order derivative. In this regard,
the results of [5] are similar to those obtained by Ma [6] who studied a fourth
order semipositone boundary value problem

u(4)(t) = λf
(
t, u(t), u′(t)

)
, 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Other interesting results for second order boundary value problems can be
found in [1, 4, 9, 13]. Semipositone boundary value problems of higher order
have been studied in [2, 6, 11, 12] just to name a few. It seems, however, that
resonant semipositone problems for ordinary differential equations have not
been studied as extensively as their “invertible” counterparts. Nkashama and
Santanilla [8] obtained nonpositive and nonnegative solutions of the Neumann
problem using generalized Ambrosetti-Prodi conditions. Since we are unaware
of results based on cone-theoretic methods, we believe that our study of the
Neumann problem provides new results. We only treat the most basic case of
(1.1) with a continuous right side.

2 Properties of Green’s Function

As a first step, we introduce g(t, z) = f(t, z) + α2z to transform (1.1) into

−u′′(t) + α2u(t) = g
(
t, u(t)

)
, t ∈ (0, 1), (2.1)

which we consider together with the boundary condition (1.2).
For β ∈ C[0, 1], the differential equation

−u′′(t) + α2u(t) = β(t), 0 < t < 1,

satisfying the boundary condition (1.2) has a unique solution

u0(t) =

∫ 1

0

G(t, s)β(s) ds (2.2)

with the Green function

G(t, s) =
1

α sinhα

{
coshα(1− t) coshαs, 0 ≤ s ≤ t ≤ 1,

coshαt coshα(1− s), 0 ≤ t ≤ s ≤ 1.
(2.3)
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It is obvious that

G(t, s) ≤ G(s, s), (t, s) ∈ [0, 1]× [0, 1].

If s ≤ t, then

G(t, s) =
1

α sinhα
coshα(1− t) coshαs

≥ 1

α sinhα
coshα(1− t) coshαs

coshα(1− s)
coshα

≥ coshα(1− t)
coshα

G(s, s).

Similarly, for t ≤ s,

G(t, s) ≥ coshαt

coshα
G(s, s).

Combining the inequalities above, we obtain

q(t)G(s, s) ≤ G(t, s) ≤ G(s, s), (t, s) ∈ [0, 1]× [0, 1], (2.4)

where

q(t) =
1

coshα
min

{
coshαt, coshα(1− t)

}
. (2.5)

Also,

L = max
t∈[0,1]

∫ 1

0

G(t, s) ds =
1

α2
. (2.6)

For 0 < γ < 1/2,∫ 1−γ

γ

G(1− t, s) ds =

∫ 1−γ

γ

G(1− t, 1− s) ds =

∫ 1−γ

γ

G(t, s) ds.

It suffices to consider∫ 1−γ

γ

G(t, s) ds

=
1

α2 sinhα

{
(sinhα(1− γ)− sinhαγ) coshαt, 0 ≤ t ≤ γ,
sinhα− sinhαγ(coshαt+ coshα(1− t)), γ ≤ t ≤ 1/2,

for t ∈ [0, 1/2], since the above function is symmetric about t = 1/2. Since it
is increasing in [0, 1/2],

C = max
t∈[0,1]

∫ 1−γ

γ

G(t, s) ds =
1

α2 sinhα
(sinhα− 2 sinhαγ coshα/2). (2.7)

Lemma 1. Let β ∈ C[0, 1] and β(t) ≥ 0 in [0, 1], β(τ) > 0 for some τ ∈ [0, 1].
Then the inequality

q(t) ≥ µu0(t), t ∈ [0, 1], (2.8)

holds for

µ =
α sinhα

cosh2 α
∫ 1

0
β(s) ds

. (2.9)
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Proof. Note that

u0(t) =

∫ 1

0

G(t, s)β(s) ds ≤ G(t, t)

∫ 1

0

β(s) ds.

Hence

q(t) =
1

coshα
min

{
coshαt, coshα(1− t)

}
≥ min

{
coshαt

coshα
,

coshα(1− t)
coshα

}
1

coshα
max

{
coshαt, coshα(1− t)

}
=

1

cosh2 α
coshαt coshα(1− t) =

α sinhα

cosh2 α
G(t, t)

= µG(t, t)

∫ 1

0

β(s) ds ≥ µu0(t)

for all t ∈ [0, 1]. ut

Suppose that the function f in (1.1) satisfies

(A) f ∈ C([0, 1]×R+,R);

(B) there exists a function β ∈ C[0, 1], β(t) ≥ 0 in [0, 1], β(τ) > 0 for some
τ ∈ [0, 1], and α ∈ R, α 6= 0, such that

f(t, z) + α2z + β(t) ≥ 0, (t, z) ∈ [0, 1]×R+.

We turn our attention to the equation

−v′′(t) + α2v(t) = fp
(
t, v(t)− u0(t)

)
, t ∈ (0, 1), (2.10)

where

fp(t, z) =

{
f(t, z) + α2z + β(t), (t, z) ∈ [0, 1]× (0,∞),

f(t, 0) + β(t), (t, z) ∈ [0, 1]× (−∞, 0],

and impose the boundary conditions (1.2).

Definition 1. A positive solution of the boundary value problem (1.1), (1.2)
is a function u ∈ C2[0, 1] satisfying (1.1), (1.2) and such that u(t) > 0 in [0, 1].

The next lemma discusses the relationship between the problems (1.1), (1.2)
and (2.10), (1.2) by means of a “shift” u 7→ u+u0 applied to the equation (2.1).

Lemma 2. The function u is a positive solution of the boundary value problem
(1.1), (1.2) if and only if the function v = u + u0, where u0 is given by (2.2),
is a solution of the boundary value problem (2.10), (1.2) satisfying v(t) > u0(t)
in (0, 1).
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In the Banach space B = C[0, 1] endowed with usual max-norm, we consider
the operator

Tv(t) =

∫ 1

0

G(t, s)fp
(
s, v(s)− u0(s)

)
ds, (2.11)

where G(t, s) is given by (2.3). By (A), T : B → B is completely continuous.
Using the function q defined by (2.5), we introduce the cone

C =
{
v ∈ B : v(t) ≥ q(t)‖v‖, t ∈ [0, 1]

}
.

By (2.4), T : C → C. One can easily confirm that a fixed point of T in C is a
solution of (2.10), (1.2), and conversely. In particular, for 0 < γ < 1/2,

v(t) ≥ ρ‖v‖, t ∈ [γ, 1− γ], (2.12)

where

ρ = min
t∈[γ,1−γ]

q(t) =
coshαγ

coshα
.

The following is a fixed point theorem due to Guo and Krasnosel’skĭı.

Theorem 1. [3] Let B be a Banach space and let C ⊂ B be a cone in B.
Assume that Ω1, Ω2 are open with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : C ∩ (Ω2 \Ω1)→ C

be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then T has a fixed point in C ∩ (Ω2 \Ω1).

3 Positive Solutions

To make use of Theorem 1, we introduce, following [11], the “height” functions
φ, ψ : R+ → R+ defined by

φ(r) = max
{
fp
(
t, z − u0(t)

)
: t ∈ [0, 1], z ∈ [0, r]

}
ψ(r) = min

{
fp
(
t, z − u0(t)

)
: t ∈ [γ, 1− γ], z ∈ [ρr, r]

}
, 0 < γ < 1/2.

We present our main results.

Theorem 2. Assume that (A) and (B) hold. Suppose that there exist r,R > 0
such that 1

µ < r < R, where µ > 0 satisfies (2.8), (2.9), and

(C) φ(r) ≤ α2r and ψ(R) ≥ α2 sinhα

sinhα− 2 sinhαγ coshα/2
R.

Then the boundary value problem (1.1), (1.2) has at least one positive solution.
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Proof. Let

Ω1 =
{
v ∈ B : ‖v‖ < r

}
and Ω2 =

{
v ∈ B : ‖v‖ < R

}
.

For v ∈ C ∩ ∂Ω1, by Lemma 1, we have

v(s)− u0(s) ≥ q(s)‖v‖ − u0(s) ≥ (µr − 1)u0(s) > 0, s ∈ [0, 1].

This implies that fp(s, v(s)− u0(s)) ≤ φ(r), for s ∈ [0, 1], 0 ≤ v(s) ≤ r. Thus,
by (2.6) and (C),

‖Tv‖ = max
t∈[0,1]

∫ 1

0

G(t, s)fp
(
s, v(s)− u0(s)

)
ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s) ds φ(r) = Lφ(r)

=
1

α2
φ(r) ≤ r.

That is, ‖Tv‖ ≤ ‖v‖ for all v ∈ C ∩ ∂Ω1.
Let v ∈ C ∩ ∂Ω2. Since R > r, we have v(s) − u0(s) ≥ (µR − 1)u0(s) ≥ 0,

s ∈ [0, 1]. Then, for all s ∈ [α, 1− α], we have, recalling (2.12),

R ≥ v(s) ≥ q(s)‖v‖ ≥ ρR.

Hence fp(s, v(s)− u0(s)) ≥ ψ(R), for s ∈ [γ, 1− γ], γR ≤ v(s) ≤ R. Then, by
(2.7) and (C),

‖Tv‖ = max
t∈[0,1]

∫ 1

0

G(t, s)fp
(
s, v(s)− u0(s)

)
ds

≥ max
t∈[0,1]

∫ 1−γ

γ

G(t, s)fp
(
s, v(s)− u0(s)

)
ds

≥ max
t∈[0,1]

∫ 1−γ

γ

G(t, s) dsψ(R) = Cψ(R)

=
1

α2 sinhα
(sinhα− 2 sinhαγ coshα/2)ψ(R) ≥ R.

That is, ‖Tv‖ ≥ ‖v‖ for all v ∈ C ∩ ∂Ω2.
By Theorem 1, there exists a fixed point v0 ∈ C of (2.11), which, equiva-

lently, is a positive solution of the positone problem (2.10), (1.2). Moreover,
u(t) = v0(t)− u0(t) ≥ (µr − 1)u0(t) > 0 in [0, 1]. By Lemma 2, u is a positive
solution of the sign-changing problem (1.1), (1.2). ut

The next result can be shown along similar lines.

Theorem 3. Assume that (A) and (B) hold. Suppose that there exist r,R > 0
such that 1

µ < r < R, where µ > 0 satisfies (2.8), (2.9), and

(D) φ(R) ≤ α2R and ψ(r) ≥ α2 sinhα

sinhα− 2 sinhαγ coshα/2
r.

Then the boundary value problem (1.1), (1.2) has at least one positive solution.

Math. Model. Anal., 20(5):578–584, 2015.



584 J. Henderson and N. Kosmatov

References

[1] D. Bai and J. Yu. Semipositone problems of second order ordinary differential
equations, 10 October 2009. Available from Internet: http://www.paper.edu.

cn/. Sciencepaper Online

[2] J.R. Graef and L. Kong. Positive solutions for third order semipositone boundary
value problems. Appl. Math. Lett., 22:1154–1160, 2009.
http://dx.doi.org/10.1016/j.aml.2008.11.008.

[3] D. Guo and V. Lakshmikantham. Nonlinear Problems in Abstract Cones. Aca-
demic Press, Orlando, 1988.

[4] S. Li, F. Liao and H. Zhu. Multiplicity of positive solutions to second-order sin-
gular differential equations with a parameter. Bound. Value Probl., 2014(115):1–
12, 2014. http://dx.doi.org/10.1186/1687-2770-2014-115.

[5] H. Lu. Multiple positive solutions for singular semipositone periodic boundary
value problems with derivative dependence. J. Appl. Math., 2012:1–12, 2012.
http://dx.doi.org/10.1155/2012/295209. Article ID 295209

[6] R. Ma. Multiple positive solutions for a semipositone fourth-order boundary
value problem. Hiroshima J. Math., 33(1):217–227, 2003.

[7] A.R. Miciano and R. Shivaji. Multiple positive solutions for a class of semi-
positone Neumann two point boundary value problems. J. Math. Anal. Appl.,
178(1):102–115, 1993. http://dx.doi.org/10.1006/jmaa.1993.1294.

[8] M.N. Nkashama and J. Santanilla. Existence of positive solutions for some non-
linear boundary value problems. J. Differential Equations, 84:148–164, 1990.
http://dx.doi.org/10.1016/0022-0396(90)90131-8.

[9] H. Sua, L. Liu and Y. Wu. Positive solutions for a nonlinear second-order
semipositone boundary value system. Nonlinear Anal., 71:3240–3248, 2009.
http://dx.doi.org/10.1016/j.na.2009.01.201.

[10] J.P. Sun and J. Wei. Existence of positive solutions of positive solution for
semipositone second-order three-point boundary-value problems. Electron. J.
Differential Equations, 2008(41):1–7, 2008.

[11] Q. Yao. Positive solutions of a weak semipositone third-order three-point bound-
ary value problem. J. Math. Res. Exposition, 30(1):173–180, 2010.

[12] L. Zhang, B. Sun and C. Xing. Existence of solutions to a third-order three-point
boundary value problem. Ann. Differential Equations, 28(3):368–372, 2012.

[13] X. Zhang and L. Liu. Positive solutions of superlinear semipositone singular
Dirichlet boundary value problems. J. Math. Anal. Appl., 316:525–537, 2006.
http://dx.doi.org/10.1016/j.jmaa.2005.04.081.

http://www.paper.edu.cn/
http://www.paper.edu.cn/
http://dx.doi.org/10.1016/j.aml.2008.11.008
http://dx.doi.org/10.1186/1687-2770-2014-115
http://dx.doi.org/10.1155/2012/295209
http://dx.doi.org/10.1006/jmaa.1993.1294
http://dx.doi.org/10.1016/0022-0396(90)90131-8
http://dx.doi.org/10.1016/j.na.2009.01.201
http://dx.doi.org/10.1016/j.jmaa.2005.04.081

	Introduction
	Properties of Green's Function
	Positive Solutions
	References

