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Abstract. An iterative method is discussed with respect to its effectiveness and
capability of solving singular nonlinear Lane-Emden type equations using reproducing
kernel Hilbert space method combined with the Picard iteration. Some new error
estimates for application of the method are established. We prove the convergence
of the combined method. The numerical examples demonstrates a good agreement
between numerical results and analytical predictions.
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1 Introduction

Generalized Lane-Emden equations arise in the modeling of several phenomena
in physics and astrophysics such as the theory of stellar structure, the thermal
behavior of a spherical cloud of gas, isothermal gas sphere, theory of thermionic
currents, pattern formation, population evolution [2, 3, 6, 16, 17] and have at-
tracted much attention in recent years. Lane-Emden equation is a singular
nonlinear differential equation which describes the temperature variation of a
spherical gas cloud under the mutual attraction of its molecules and subject to
the laws of classical thermodynamics. This equation is one of the basic equa-
tions in the theory of stellar structure and has been the focus of many studies.
In recent years, the approximate solutions to the Lane-Emden equation were
given by homotopy perturbation method [15, 23], the Legendre wavelets [24],
perturbation method [10], the Adomian decomposition method [21], the Bessel
collocation method [25], the Pade series method [19], the rational Legendre
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pseudospectral method [14], the Taylor series method [11], the nonperturbative
approximate method [18], and the Hermite functions collocation method [13].
The numerical solving of the Lane-Emden problem, is challenging because of
the nonlinearity and singular behavior at the origin. Most of the methods,
which used to solve nonlinear differential equations, transform the equation
into a system of nonlinear equations. It is cumbersome to solve these systems,
or the solution may be unreliable. In order to overcome the nonlinearity of
problem we use the Picard iteration. The convergence and an error estimate
for implementation of Picard iteration are established. After linearization the
reproducing kernel Hilbert space method generates a rapid convergent series
solution with easily computable components. We also obtained the truncation
error estimate of the series solution. In fact this work presents reproducing
kernel Hilbert space method combined with the Picard iteration method for
solving singular nonlinear Lane-Emden type equations and the effectiveness
and performance of the method is studied. Picard-Reproducing kernel Hilbert
space method, combines advantages of these two methods and therefore can
be used to solve efficiently singular nonlinear Lane-Emden type equations. We
prove the convergence of the combined method. The kernel based methods for
approximating solutions of differential equations, are a recent and fast growing
research area that spans many different fields in applied mathematics, science
and engineering. The reproducing kernels have successfully been applied to
several nonlinear problems such as, nonlinear system of boundary value prob-
lems, singular nonlinear initial and boundary value problems, singular nonlin-
ear two-point periodic boundary value problem, nonlinear systems of partial
differential equations and multiple solutions of nonlinear boundary value prob-
lems [1, 7, 8, 9, 12, 20, 22]. In this article, we discuss the numerical method for
the generalized Lane-Emden equation{

y′′ + α
x y
′ + f(x, y) = g(x), 0 < x ≤ 1, α ≥ 0,

y(0) = A, y′(0) = 0,
(1.1)

where A is a constant and f is real valued continuous function and g ∈ C[0, 1].
Several numerical examples are given to show applicability and accuracy of the
proposed numerical method.

2 Picard iteration

Definition 1. For u ∈ L∞[0, 1] let

(Du)(x) :=

∫ x

0

t−α
∫ t

0

sαu(s)dsdt, ∀x > 0.

Applying the operator D to the first equation (1.1), we have

y(x) = A+ D(g(x)− f(x, y(x))) =: (T y)(x), (2.1)

where A = y(0).

Math. Model. Anal., 20(6):754–767, 2015.
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Proposition 1. Let g ∈ L∞[0, 1] and f(x, y(x)) ∈ L∞(D) , where D = [0, 1]×
[0, ymax] and ymax = max0≤x≤1 |y(x)|. Every solution y of the fixed point prob-
lem (2.1) has the following properties

1. lim
x↓0

y(x) = A.

2. y ∈ C1[0, 1], y′(x) = −
∫ x

0

( s
x

)α(
f(s, y(s))− g(s)

)
ds, ∀x > 0.

Especially limx↓0 y
′(x) = 0 and if f(x, y(x))− g(x) > 0 a.e. for x ∈ [0, 1] then

y′(x) < 0 and 0 ≤ y(x) ≤ A for all x ∈ [0, 1].

Proof. 1. Let δ > 0, c0 = supx∈[0,δ] |f(x, y(x)) − g(x)|. By assumption 0 ≤
c0 <∞. Then for all 0 < x ≤ δ

|y(x)| = |A+ D(g(x)−f(x, y(x)))| = |A+

∫ x

0

t−α
∫ t

0

sα
(
g(s)−f(s, y(s)

)
dsdt|

≤ A+

∫ x

0

t−α
∫ t

0

sα|g(s)−f(s, y(s)|dsdt≤A+c0

∫ x

0

t−α
∫ t

0

sαdsdt=A+
c0x

2

2(α+1)
.

Thus limx↓0 y(x) = A.
2. For all x > 0, let z = s

x then

y′(x) = −
∫ x

0

(
s

x
)α(f(s, y(s))− g(s))ds = −x

∫ 1

0

zα(f(zx, y(zx))− g(zx))dz.

Suppose δ and c0 are similar to part 1. Then for all 0 < x ≤ δ,

|y′(x)| ≤ c0x
∫ 1

0

zαdz = c0
x

α+ 1
,

thus limx↓0 y
′(x) = 0. ut

Theorem 1. Suppose that f(x, y) satisfies a Lipschitz condition with respect
to its second argument

|f(x, u)− f(x, v)| ≤ k|u− v|, k <∞,

for all x ∈ [0, 1] and u, v ∈ L∞[0, 1]. Then the fixed point problem (2.1) has
the unique fixed point y∗ = T y∗. Moreover, the iteration method ym+1 = T ym
converges to y∗ and

‖y∗ − ym‖∞ ≤
cosh(

√
k)L0

2(α+ 1)
× km

(2m)!
,

where L0 = max0≤x≤1 |g(x)− f(x,A)|.

Proof. From (2.1) for any x ∈ (0, 1] we have

|T u− T v| = |D(f(x, u))−D(f(x, v))|

≤
∫ x

0

t−α
∫ t

0

sα|f(s, u)− f(s, v)|dsdt ≤ kx2

2(α+ 1)
‖u− v‖∞. (2.2)
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In the next step of proof, we need to establish the inequality

|T nu− T nv| ≤ knx2n

(2n)!
‖u− v‖∞. (2.3)

First note that (Dxj) = xj+2

(j+2)(α+j+1) . By induction:

1. n = 1: From (2.2) the inequality (2.3) is true.
2. Step n→ n+ 1: Assume that (2.3) is valid for an n, then from Proposi-

tion 1 and (2.2) we have

|T n+1u− T n+1v| ≤ |T (T nu)− T (T nv)| = |D(f(x, T nu))−D(f(x, T nv))|

= |D(f(x, T nu)− f(x, T nv))| ≤ kD|(T nu)− (T nv)| ≤ kD(
knx2n

(2n)!
‖u− v‖∞)

=
kn+1x2n+2

(2n+ 2)(α+ 2n+ 1)(2n)!
‖u− v‖∞ ≤

kn+1x2(n+1)

(2(n+ 1))!
‖u− v‖∞,

i.e. inequality (2.3) is valid for n + 1. Since k is a constant and 0 < x ≤ 1,
from inequality (2.3) we deduce that there exist m ∈ N such that T m is a
contraction on L∞[0, 1]. Consequently, the Banach fixed point theorem implies
that operator T m has a unique fixed point y∗ ∈ L∞[0, 1] and limn→∞ T mny0 =
y∗ for any y0 ∈ L∞[0, 1]. Let y∗ be the unique fixed point of T m, then

T my∗ = y∗ ⇒ T m(T y∗) = T m+1y∗ = T (T my∗) = T y∗,

then by uniqueness of the fixed point of T m we deduce that T y∗ = y∗. So y∗

is also the fixed point of T . Let ȳ be another fixed point of T , then

T mȳ = T m−1(T ȳ) = T m−1ȳ = ... = T ȳ = ȳ,

then uniqueness of the fixed point of T m implies uniqueness of fixed point of
T . Moreover for a fixed y0 ∈ L∞[0, 1] let yk = T ky0, (k = 0, 1, ..,m − 1), we
see that limn′→∞ T mn

′+ky0 = y∗, (k = 0, 1, ..,m − 1) and since for any n ∈ N
there exist a unique n′ ∈ N and k = 0, 1, ..,m− 1 such that n = mn′ + k then
we have limn→∞ T ny0 = y∗. In addition,

|T m+ny0 − T my0| ≤ Σn−1
i=0 |T

m+i+1y0 − T m+iy0|

≤ Σn−1
i=0

km+ix2(m+i)

(2(m+ i))!
‖y1 − y0‖∞ ≤ (Σ∞i=0

ki

(2i)!
)
km

(2m)!
‖y1 − y0‖∞.

Let y0(x) = A then we have

|y1(x)− y0(x)| = |T y0 − y0| = |D(g(x)− f(x,A))| ≤ L0

2(α+ 1)
.

Since limn→∞ T m+ny0 = y∗ and Σ∞i=0
ki

(2i)! = cosh(
√
k) the proof of theorem is

complete. ut

Each iteration of ym+1 = T ym gives us the solution of a linear problem{
y′′m+1 + α

x y
′
m+1 + f(x, ym) = g(x), 0 < x ≤ 1, α ≥ 0,

ym+1(0) = A, y′m+1(0) = 0.
(2.4)

Math. Model. Anal., 20(6):754–767, 2015.
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3 Solution procedure and error estimate

Instead of nonlinear problem (1.1) we applied the reproducing kernel Hilbert
space method to linear one (2.4) iteratively. Put Ly ≡ y′′+ α

x y
′, after homoge-

nization(such a homogenization can be found in [4]), the problem (2.4) can be
convert into the following form{

Lum+1 = F (x, um), 0 < x ≤ 1, α ≥ 0,

um+1(0) = 0, u′m+1(0) = 0,
(3.1)

where F (x, y) = g(x) − f(x, y + A) and ym+1 = um+1 + A. In order to solve
problem (3.1), reproducing kernel space W 3

2 [0, 1] is defined in the following, for
more details and proofs we refer to [4].

Definition 2. The inner product space W 3
2 [0, 1] is defined as W 3

2 [0, 1] = {u(x)|
u, u′, u′′ are absolutely continuous real valued functions, u, u′, u′′ ,u(3) ∈
L2[0, 1], u(0) = 0, u′(0) = 0}. The inner product in W 3

2 [0, 1] is given by

(u(.), v(.))W 3
2

=

2∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0

u(3)(x)v(3)(x)dx,

and the norm ‖u‖W 3
2

is denoted by ‖u‖W 3
2

=
√

(u, u)W 3
2

,where u, v ∈W 3
2 [0, 1].

In [4], the authors proved that W 3
2 [0, 1] is a reproducing kernel space. The

reproducing kernel Rx(.) ∈W 3
2 [0, 1] can be denoted by

Rx(t) =

{
x2t2

4 + x2t3

12 −
xt4

24 + t5

120 , t ≤ x,
x5

120 −
x4t
24 + (3x2+x3)t2

12 , t > x.

For the method of obtaining reproducing kernel Rx(t), refer to [4, 7, 8, 9]. For
any fixed xi ∈ [0, 1], Let ψi(x) = LtRx(t)|t=xi

. The subscript t by the operator
L indicates that the operator L applies to the function of t.

Theorem 2. Let {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the complete
system of W 3

2 [0, 1].

Proof. Clearly ψi(x) ∈ W 3
2 [0, 1]. For each fixed function u ∈ W 3

2 [0, 1], let we
have (u(.), ψi(.))W 3

2
= 0, (i = 1, 2, ...), which means that

(u(x), ψi(x))W 3
2

= (u(x), LtRx(t)|t=xi
)W 3

2

= Lt(u(x), Rx(t))W 3
2
|t=xi = (Lu)(xi) = 0.

Note that {xi}∞i=1 is dense on [0, 1], hence, (Lu)(x) = 0. It follows that u ≡ 0,
from the existence of L−1 in W 3

2 [0, 1]. ut

The orthonormal system {ψi(x)}∞i=1 of W 3
2 [0, 1] can be derived from Gram-

Schmidt orthogonalization process of {ψi(x)}∞i=1,

ψi(x) =

i∑
k=1

βikψk(x), βii > 0, i = 1, 2, .... .
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Theorem 3. If {xi}∞i=1 is dense on [0, 1] and the solution of (3.1) is unique,
then the solution of (3.1) satisfies the form

um+1(x, s) =

∞∑
i=1

i∑
k=1

βikF (xk, um(xk))ψi(x).

Proof. um+1 in (3.1) can be expanded to Fourier series in terms of orthogonal
basis ψi ∈W 3

2 [0, 1]. Note that (f(x), ϕi(x)) = f(xi) for each f ∈W 1
2 [0, 1].

um+1(x) =

∞∑
i=1

(um+1(x), ψi(x))ψi(x)

=

∞∑
i=1

i∑
k=1

βik(um+1(x), L∗ϕk(x))ψi(x) =

∞∑
i=1

i∑
k=1

βik(Lum+1(x), ϕk(x))ψi(x)

=

∞∑
i=1

i∑
k=1

βik(F (x, um), ϕk(x))ψi(x) =

∞∑
i=1

i∑
k=1

βikF (xk, um(xk))ψi(x).

ut

Now, the approximate solution ym+1,N can be obtained by taking N terms in
the series representation of ym+1 = um+1 +A and

ym+1,N (x) = A+ um+1,N (x) = A+

N∑
i=1

i∑
k=1

βikF (xk, um(xk))ψi(x).

The L∞-estimate of the truncation errors is stated as follows.

Theorem 4. For any u ∈W 3
2 [0, 1] we have

max
0≤x≤1

|uN (x)− u(x)| ≤ CN ‖u‖, (3.2)

and the constant CN → 0 as N →∞.

Proof. Let RN,x(t)=
∑N
i=1 ψi(x)ψi(t) then from the orthogonality of functions

{ψi}i=1,...,N it is easy to see that uN (x) = (u(.), RN,x(.)). By the Cauchy-
Schwartz inequality and for any x ∈ [0, 1],

|uN (x)− u(x)| = |
∞∑

i=N+1

(u, ψi)ψi(x)|

= |(u(y),

∞∑
i=N+1

ψi(y)ψi(x))| ≤ ‖u‖‖
∞∑

i=N+1

ψi(y)ψi(x)‖

= ‖u‖ |
∞∑

i=N+1

ψ
2

i (x)| = ‖u‖ |Rx(x)−RN,x(x)|.

Math. Model. Anal., 20(6):754–767, 2015.
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Let CN (x) = |Rx(x) − RN,x(x)| and CN = max0≤x≤1 CN (x), then for any x ∈
[0, 1] we have

CN+1(x) = |Rx(x)−RN+1,x(x)| = ‖
∞∑

i=N+2

ψi(y)ψi(x)‖

= |
∞∑

i=N+2

ψ
2

i (x)| ≤ |
∞∑

i=N+1

ψ
2

i (x)| = CN (x),

then we have

CN+1 = max
0≤x≤1

CN+1(x) ≤ max
0≤x≤1

CN (x) = CN .

So {CN}∞N=1 is a decreasing positive sequence in R and obviously converges to
zero. ut

The equation (3.2) describes the worst-case error behavior of the truncation,
and the error is given as a percentage of u ∈W 3

2 [0, 1], which is the only unknown
quantity in the error bound. Notice that value of the constant CN is calculable.

Theorem 5. Suppose the conditions of Theorem 1 hold. If y is the true solution
of (1.1), then we have

max
0≤x≤1

|y − yN,m| ≤
cosh(

√
k)L0

2(α+ 1)
× km

(2m)!
+ k0CN , (3.3)

where k0 = max0≤x≤1
√
Rx(x) and CN → 0 as N → 0.

Proof. Let um =
∑∞
i=1 ciψi(x), then we have

‖ym − yN,m‖ = ‖um − uN,m‖ =
( ∞∑
i=N+1

c2i

)1/2
= CN .

It is easy to see that CN+1 ≤ CN i.e CN is monotonically decreasing with the
increasing of N and CN → 0 as N → 0. By the Cauchy-Schwartz inequality
and for any x ∈ [0, 1],

|ym(x)− yN,m(x)| = |um(x)− uN,m(x)| = (Rx(.), um(.)− uN,m(.))

≤ ‖Rx(.)‖‖um(.)− uN,m‖ =
√
Rx(x)CN .

From the Theorem 1 we have

|y(x)− yN,m(x)| ≤ |y(x)− ym(x)|+ |ym(x)− yN,m(x)|

≤ cosh(
√
k)L0

2(α+ 1)
× km

(2m)!
+ k0CN .

ut

The error estimate (3.3) contains two parts, the first part is related to iterative
scheme (2.4) and vanish as m → ∞ and the second part is truncation error
and vanishes as N →∞.
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4 Application of the Method

In this section by considering some numerical examples, we show the capability
and versatility of our new method. In order to show the accuracy of approxi-
mate solutions in the absence of exact solutions, we shall consider the integral
of the squared residual error over the domain,

E =

∫ 1

0

(Res(x))2dx,

where Res(x) denotes the residual error at the point x ∈ [0, 1].

Example 1. For f(x, y) = yn, g(x) = 0 and α = 2 the problem (1.1) is the
standard Lane-Emden equation.{

y′′ + 2
xy
′ + yn = 0, 0 < x ≤ 1,

y(0) = 1, y′(0) = 0.

Exact solutions exist only for n = 0, 1 and 5, that are given respectively by

y(x) = 1− x2

6
, y(x) =

sin(x)

x
, y(x) =

(
1 +

x2

3

)−1/2
.

N=100

N=25
N=50

N=10

0.0 0.2 0.4 0.6 0.8 1.0

-12

-10

-8

-6

x

L
o
g
1
0
È
y
H
x
L
-
y
N
,
m
H
x
L
È

Figure 1. Absolute errors (in logarithmic scale) of approximations, for Example 1 with
n = 0, m=10 iterations and N = 10, 25, 50, 100.

Figures 1, 2 and 3 illustrate the absolute errors (in logarithmic scale) of approxi-
mations for n = 0, 1, 5 withm = 10 iterations andN = 10, 25, 50, 100. The inte-
grals of the squared residual errors are reported in Table 1 for n = 0, 1, 2, 3, 4, 5
with m = 10 iterations and various N .

Example 2. Consider the following Lane-Emden equation{
y′′ + 1

xy
′ + eh(y) = 0, 0 < x ≤ 1,

y(0) = 1, y′(0) = 0.

Math. Model. Anal., 20(6):754–767, 2015.
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N=100

N=50
N=25 N=10

0.0 0.2 0.4 0.6 0.8 1.0
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È
y
H
x
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y
N
,
m
H
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È

Figure 2. Absolute errors (in logarithmic scale) of approximations, for Example 1 with
n = 1, m=10 iterations and N = 10, 25, 50, 100.

N=100
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N=25

N=10

0.0 0.2 0.4 0.6 0.8 1.0
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-10

-8

-6
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x

L
o
g
1
0
È
y
H
x
L
-
y
N
,
m
H
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È

Figure 3. Absolute errors (in logarithmic scale) of approximations, for Example 1 with
n = 5, m=10 iterations and N = 10, 25, 50, 100.

Table 1. Integrals of the squared residual errors for Example 1 with m=10 iterations and
various N = 10, 25 and 50.

n N=10 N=25 N=50

0 4.02746× 10−5 1.93114× 10−6 1.17886× 10−7

1 4.02755× 10−5 1.93182× 10−6 1.17944× 10−7

2 4.03258× 10−5 1.93249× 10−6 1.17991× 10−7

3 4.04028× 10−5 1.93266× 10−6 1.17998× 10−7

4 4.0521× 10−5 1.93272× 10−6 1.17989× 10−7

5 4.06908× 10−5 1.933× 10−6 1.17983× 10−7

Figure 4 is the graph of Log10|CN (x)| = Log10|Rx(x)−RN,x(x)| for Exam-
ple 2 with N = 10, 25, 50, 100. The Integrals of the squared residual errors are
reported in Table 2 for various h(y). Figure 5, shows several of the approximate
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N=100

N=10
N=25

N=50

0.0 0.2 0.4 0.6 0.8 1.0

-30

-25

-20

-15
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-5

x

L
o
g
1
0
È
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x
H
x
L
-
R
N
,x
Hx
LÈ

Figure 4. Graph of Log10|Rx(x)−RN,x(x)| for Example 2 with N = 10, 25, 50, 100.

Figure 5. Graph of approximate solutions of the Example 2 for various h(y) with m=10
iterations and N = 50.

Table 2. Integrals of the squared residual errors for Example 2 with m=10 iterations,
N = 10, 25, 50 and various nonlinearity .

h(y) N=10 N=25 N=50

y 5.20584× 10−4 2.51154× 10−5 1.63545× 10−6

−y2 9.13069× 10−6 4.56534× 10−7 2.98878× 10−8

y2 5.6771× 10−4 2.55454× 10−5 1.64482× 10−6

sin(πy) 7.74872× 10−5 3.60194× 10−6 2.33742× 10−7

cos(πy) 9.18103× 10−6 4.56752× 10−7 2.98794× 10−8

cos2(πy) 4.6141× 10−4 2.52981× 10−5 1.68488× 10−6

solutions on the interval [0,1].

Math. Model. Anal., 20(6):754–767, 2015.
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Example 3. Consider the following Lane-Emden equation{
y′′ + 1

xy
′ + xy = x5 − x4 + 44x2 − 30x, x ≥ 0,

y(0) = 0, y′(0) = 0.

The exact solution is given by y(x) = x4 − x3 .

N=100

N=10

N=25

N=50

0.0 0.2 0.4 0.6 0.8 1.0

-16

-14

-12

-10

-8

-6

-4

x

L
o
g
1
0
È
y
H
x
L
-
y
N
,
m
H
x
L
È

Figure 6. Absolute errors (in logarithmic scale) of approximations, for Example 3 with
m=10 iterations and N = 10, 25, 50, 100.

Figure 6 shows the absolute errors (in logarithmic scale) of approximations
with m = 10 iterations and N = 10, 25, 50, 100.

Example 4. The isothermal gas sphere equation is modeled by Lane-Emden
equation of the second kind [5],{

y′′ + 2
xy
′ + ey = 0, 0 < x ≤ 1,

y(0) = 0, y′(0) = 0,

Table 3. Integrals of the squared residual errors for Lane-Emden equation of the second
kind with m=10 iterations and various values for N .

N=10 N=25 N=50

4.0277× 10−5 1.93147× 10−6 1.1792× 10−7

The integrals of the squared residual errors for Lane-Emden equation of
the second kind are reported in Table 3 with m = 10 iterations and various
values of N . Figure 7 demonstrates approximate solution of the Lane-Emden
equation of the second kind with m=10 iterations and N = 50.

The results presented in this section show that as the number of terms
N increases the error in the approximations continues to decrease and this
confirms our prediction for convergence and error estimates in the previous
section.
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Figure 7. Graph of approximate solution of the Example 4 with m=10 iterations and
N = 50.

5 Conclusions

In this paper, the reproducing kernel Hilbert space method combined with the
Picard’s iteration, is employed successfully to obtain the analytical approxi-
mate solutions for generalized nonlinear singular Lane Emden type equations.
The implementation of the proposed iterative method is simple and the con-
vergence of this method is proved. The Picard iteration is used to deal with
the nonlinearity and it’s error estimation is established. After linearization, the
reproducing kernel Hilbert space method generates a rapid convergent series
solution with easily computable components. We also obtained the truncation
error estimate of the series solution. To demonstrate the computation effi-
ciency, mentioned method is implemented for several examples and the results
show the validity, accuracy and applicability of the method.
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