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Abstract. The paper addresses the bifurcations for a delay differential model with
parameters which confers a strong Allee effect in Escherichia coli. Stability and local
Hopf bifurcations are analyzed when the delay τ or σ as parameter. It is also found
that there is a non-resonant double Hopf bifurcation occur due to the vanishing of the
real parts of two pairs of characteristic roots. We transform the original system into
a finite dimensional system by the center manifold theory and simplify the system
further by the normal form method. Then, we obtain a complete bifurcation diagram
of the system. Finally, we provide numerical results to illustrate our conclusions.
There are many interesting phenomena, such as attractive quasi-periodic solution
and three-dimensional invariant torus.
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1 Introduction

Allee was initially stimulated by an example only loosely linked to the current
interpretation of the Allee effect: he showed that goldfish grew faster in wa-
ter which had previously contained other goldfish, than in water that had not
(see [1]). Allee saw these phenomena as “automatic cooperation”, believing
that the beneficial effects of numbers of animals present in a population repre-
sented a fundamental biological principle. By 1953, E. P. Odum was referring
to “Allee’s principle” as the concept that “undercrowding (or lack of aggrega-
tion) may be limiting” (see [16]). Reduction in fitness or population growth
at low abundance has received considerable attention in conservation genetics,
under such guises as the “50/500 rule” (see [21]), and is also widely debated in
fisheries science, where it is usually referred to as depensation (see [15]). De-
pensation is principally a population level phenomenon, which may or may not
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arise from changes in individual fitness, and thus need not be directly analogous
to the Allee effect.

Although the Allee effect is reasonably well known, the concept has a range
of meanings, not all of which are acknowledged by contemporary use. Allee did
not provide a definition but he clearly considered “certain aspects of survival
values” rather than total fitness. Until 1999, Stephens P. A. (see [22]) defined
the Allee effect as: a positive relationship between any component of individ-
ual fitness and either numbers or density of conspecifics. After that, the Allee
effect be thought as a phenomenon in biology characterized by a correlation
between population size or density and the mean individual fitness of a popu-
lation or species (see [3,5,18,20]). Differential equation is a very powerful tool
to explore problems, so a lot of differential equations models about Allee effect
appear. Holmes E.E.(see [10]) studied a partial differential equations(PDE) in
ecological which add Allee effect. Čiegis R. and Bugajev A. (see [4]) analysed
a model of bacterial self-organization and gave the specific numerical approx-
imation. Painter K.J. and Hillen T. (see [17]) obtained spatio-temporal chaos
in a chemotaxis model. The stability analysis of such systems is a very im-
portant topic in theoretical and applied mathematics. For a long time, it has
been recognized that delays can have very complicated impact on the system
(see [2, 19, 23, 29]). Yan J. (see [29]) discussed an impulsive delay differential
equation with Allee effect, and obtained a periodic solution and its stability.
Lingchong You, Robert Smith Randy et al. (for details, see [20]) engineered
a gene circuit to confer a strong Allee effect in Escherichia coli and examined
its impact on spread and survival. They used the LuxR/LuxI quorum-sensing
(QS) system from Vibrio fischeri (see [14]) and the CcdA/CcdB toxinCantitoxin
module to control population survival. The detailed operational principle of
they circuit was described in [20], so we will leave it at that. Their circuit can
be modeled by the following delayed differential equations:

dC

dt
= µC(1− C)− γC

β + [A(t− τ)]
,

d[A]

dt
= kAC − kdA[A],

where C and [A] represent the bacterial density and the concentration of AHL
(µM),respectively. µ represents the maximum specific growth rate (h−1), kA
represents the synthesis rate constant of AHL (µMh−1), kdA represents the
degradation rate constant of AHL (h−1), τ represents the time delay of the
activation of gene expression by the LuxRAHL complex (h), t represents sim-
ulation time (h), γ is a lumped term that represents the killing rate of CcdB
(µMh−1), and β is a lumped term that represents the amount of CcdA leading
to half-maximal killing rate of CcdB (µM).

Three cases were considered, with the circuit OFF ,ON and ON+ rescue.
They declared that their protocol may be amenable for the study of Allee
effects in natural systems, including Drosophila melanogaster and One could
dispersed an established population of flies to new medium in a separate culture
and examine reproductive success.

But in the whole paper, they did not discuss the effects of the time delay τ
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on the bacterial density. In our recent works [24,25], we discussed the stability
and the Hopf bifurcation of some models with delay-dependent parameters.
Moreover, it is well known that the delayed logistic differential equation

dx

dt
= rx

(
1− x(t− τ)

k

)
is used to model the evolution of a single species x(t)(see [11, 12, 30]). Along
this line, we established a new model as follows:

dC

dt
= µC(1− C(t− σ)

K
)− γC

β + [A(t− τ)]
,

d[A]

dt
= kAC − kdA[A],

(1.1)

where σ represents the time of bacterial split (h), K represents the maximum
capacity of container for bacterial. In our paper, we investigate the dynamics
near the equilibriums and hope to derive the perfect theoretical results. In fact,
we not only discuss the Hopf bifurcation when τ or σ as a parameter, but also
consider a codimension-2 bifurcation on a two-parameter plane, i.e. double
Hopf bifurcation. For double Hopf bifurcation, we usually can observe lots
of interesting and complicated dynamic behavior. Especially, strong resonant
double Hopf bifurcation can present more complex nonlinear behavior because
it may be a codimension-3 bifurcation.

In order to get a deeper insight into the double Hopf bifurcation analysis,
we may apply and extend the methods and results in [6, 7] to the case of two
bifurcation parameters, and obtain the normal forms for double Hopf bifurca-
tion without strong resonance. For strong resonant case, we will consider in
another paper.

The rest of this paper is organized as follows. In Section 2, we discuss non-
negativeness and boundedness of solutions for the system (1.1). In Section 3,
we consider the stability and the local Hopf bifurcation of the equilibriums
when the time delay σ and τ as parameters respectively. In Section 4, the ex-
istences of double Hopf bifurcation is discussed. The normal form method and
the center manifold theory are used to analyze the double Hopf bifurcation for
system. In Section 5, we give some numerical examples to illustrate our results
at the previous sections. In Section 6, we summarize our results.

2 Nonnegativeness and boundedness of solutions

We denote by X = C([−κ, 0], R2
+) the Banach space of continuous functions

mapping the internal [−κ, 0] into R2
+ equipped with the sup-norm, where κ =

max(σ, τ). By the standard theory of functional differential equations, we know
that for any φ ∈ X there exists a unique solution T (t, φ) = (C(t, φ), [A(t, φ)])
of the system (1.1), where T0 = φ. The initial conditions are given by C(θ) =
φ1(θ), [A(θ)] = φ2(θ), θ ∈ [−κ, 0], where φ = (φ1, φ2) ∈ X with φ1 ≥ 0, φ2 ≥ 0.

Theorem 1. Solution of system (1.1) corresponding to the above initial condi-
tions remains nonnegative and ultimately bounded for all t ≥ 0.
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Proof. Nonnegative: The proof of nonnegative for C(t) is similar to that of
Lemma 2.1 of [28], and thus details are omitted here for the sake of brevity.
For [A(t)], we assume the contrary, and let t̃ > 0 be the first time such that
[A(t̃)] = 0, then by the second equation of system (1.1), we have [A(t̃)]′ =
kAC(t̃) ≥ 0. If C(t̃) = 0, then C(t) = 0, [A(t)] = 0 for all t ≥ t̃. We omit
this trivial case. Hence, [A(t)] < 0 for t ∈ (t̃ − ε, t̃), where ε > 0 is sufficiently
small, which contradicts [A(t)] > 0 for t < t̃. Ultimately bounded: From the
first equation of (1.1), we obtain

dC

dt
≤ µC.

Hence, for t > τ we get that C(t) ≤ C(t− τ)eµτ , i.e.,

C(t)e−µτ ≤ C(t− τ).

On substituting the above into (1.1), we obtain

dC(t)

dt
≤ µC(1− Ce−µτ

K
), t > τ,

which clearly implies that,

lim sup
t→∞

C(t) ≤ eµτK.

For [A(t)], we know that d[A(t)]
dt ≤ kAKeµτ − kdA[A(t)], for t > τ , so

lim sup
t→∞

[A(t)] ≤ kAKe
µτ

kdA
.

We complete the proof. ut

3 Stability of the equilibrium and existence of the Hopf
bifurcation

For the system (1.1), it is obvious that it has a trivial fixed point E0(0, 0) and
two possible fixed points E1(kdAkA A−, A−), E2(kdAkA A+, A+), where A∓ are the
real roots of

µkdAA
2 + (µβkdA − µKkA)A+ γKkA − µβKkA = 0.

The characteristic equation of its corresponding linear system around the E0

is given by

D(λ) = λ2 + (kdA − µ+
γ

β
)λ+ kdA(

γ

β
− µ) = 0.

Obviously, if γ
β > µ, then E0 is stable for all σ ≥ 0, τ ≥ 0. If γ

β < µ,

then E0(0, 0) is unstable for all σ ≥ 0, τ ≥ 0. By the translation u1(t) =

Math. Model. Anal., 20(6):782–801, 2015.
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C(t)− kdA
kA
A∗, u2(t) = [A(t)]−A∗, where A∗ is one of A±, then system (1.1) is

equivalent to
du1
dt

= µ(u1+
kdA
kA

A∗)(1−
u1(t− σ) + kdA

kA
A∗

K
)−

γ(u1 + kdA
kA
A∗)

β + u2(t−τ)+A∗
,

du2
dt

= kA(u1 +
kdA
kA

A∗)− kdA(u2 +A∗).

(3.1)

The linearization of (3.1) at (u1, u2) = (0, 0) is
du1
dt

= −
µkdAkA A

∗

K
u1(t− σ) +

γ kdAkA A
∗

(β +A∗)2
u2(t− τ),

du2
dt

= kAu1 − kdAu2.
(3.2)

Thus, the characteristic equation of (3.2) is

D(λ) = λ2 + kdAλ+ a(λ+ kdA)e−λσ − be−λτ = 0, (3.3)

where a =
µ

kdA
kA

A∗

K , b = γkdAA
∗

(β+A∗)2 . We can obtain the following results about the

fixed point bifurcation.

Theorem 2. If KkA = kdAβ, the system (1.1) undergoes a pitchfork bifurca-
tion at µ = γ

β .

Proof. By the hypothesis KkA = kdAβ, when µ = γ
β , the (3.3) with σ = τ = 0

has a zero root and another negative root. Note that, if µ ≤ γ
β , then there is

only equilibrium E0, it is stable for µ ≤ γ
β and unstable for µ > γ

β . At the same

time, on the side of µ > γ
β , two new stable equilibria are created and given by

E1, E2. Therefore the system (1.1) undergoes a pitchfork bifurcation at µ = γ
β .

ut

Here, we further explored the system for bifurcation analysis. This enabled
us to find the system also undergoes a Hopf bifurcation for some σ or τ . By
the above theorem, the system maybe undergoes a high co-dimensional bifur-
cations, i.e., Hopf-pitchfork bifurcation. For this bifurcation, the system may
exhibit chaos via period-doubling bifurcations as the unfolding parameter val-
ues are far away from the critical point. That is, you can find the existence of
highly irregular and chaotic-like dynamics in the system. We will discuss this
situation in the next paper. In this paper, we only focus on Hopf and Double
Hopf bifurcation.

In the rest of this section, we show the Hopf bifurcation of the system when
the time delay is used as parameter.

3.1 Case σ = 0

We first consider the situation with no delay σ. If iω(ω > 0) is a root of (3.3)
then

−ω2 + iω(a+KdA) + akdA − be−iωτ = 0.
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Separating the real and imaginary parts, we have{
−ω2 + akdA − bcosωτ = 0,

ω(a+KdA) + bsinωτ = 0,
(3.4)

which leads to
ω4 + (a2 + k2dA)ω2 + a2k2dA − b2 = 0. (3.5)

Denote b− akdA = H. It is easily to see that if either H > 0, then (3.5) has a
unique positive root

ω2
0 =

1

2
[−(a2 + k2dA) +

√
(a2 − k2)2 + 4b2].

From (3.4), we find

τj =
1

ω0
[π − arcsin (a+ kdA)ω0 + 2jπ], j = 0, 1, · · · . (3.6)

Denote λ(τ) = α(τ) + iω(τ) the root of (3.3) such that α(τj) = 0, ω(τj) = ω0.
Substituting λ(τ) into (3.3) and taking the derivative with respect to τ , we
have [

dλ

dτ

]−1
=

2λ+ kdA + a

−bλe−λτ
− τ

λ
,

which, together with (3.4), leads to

Re

[
dλ

dτ

]−1
τ=τj

=
2λ+ kdA + a

−bλe−λτ

= Re

[
2iω + kdA + a

−iω(akdA − ω2 + iω(kdA + a))

]
=

(kdA − a)2 + 2ω2

(akdA − ω2)2 + (kdA + a)2ω2
.

So we have

Re

[
dλ

dτ

]−1
τ=τj

> 0. (3.7)

Notice that when τ = 0, the equation (3.3) becomes

λ2 + (a+ kdA)λ+ akdA − b = 0. (3.8)

If b < akdA, then the equation (3.8) has two roots with negative real parts.
Otherwise, if b > akdA, there is at least one root with positive real parts.
Therefore, we can obtain the following lemma.

Lemma 1. When σ = 0. Let τj(j = 0, 1, ...) be defined by (3.6).

1. If H < 0, then the equation (3.3) has no root with positive real parts for all
τ ≥ 0.

Math. Model. Anal., 20(6):782–801, 2015.
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2. If H > 0, then there exits τj, such that the equation (3.3) has a pair of purely
imaginary roots ±iω0 when τ = τj.

From the above lemma and (3.7) and the Hopf bifurcation theorem for func-
tional differential equaitons (Theorem 1.1 in Chapter 10 of Hale and Lunel [8]),
we have the following results on stability and bifurcation to system (1.1).

Theorem 3. For system (3.1), when σ = 0

1. If H < 0, then the equilibrium (0, 0) is asymptotically stable for all τ ≥ 0.

2. If H > 0, then the equilibrium (0, 0) is unstable for all τ ≥ 0, and the system
(3.1) undergoes a Hopf bifurcation at (0, 0) when τ = τj , (j = 0, 1, · · · ).

Remark 1. When τ = 0, the model is the same as [20]. But in [20], there is a lot
of directions about the experimental phenomena, but no theoretical analysis.
In this paper, we analysis the dynamics behavior of the model in detailed, and
give the reasons which cause the experimental phenomena from a mathematical
point.

3.2 Case τ = 0

Next, we consider the another situation, when τ = 0, σ ≥ 0. Thus, the charac-
teristic equation of (3.2) becomes

D(λ) = λ2 + kdAλ+ a(λ+ kdA)e−λσ − b = 0. (3.9)

For convenience, we make the following assumption (H1) : a2−k2dA−2b > 0
and denote ∆ = (2b+k2dA−a2)2−4(b2−a2k2dA). Using the similarly deduction,
one can easily get the following conclusions.

Lemma 2. For equation (3.9):

1. If H < 0, then there exits σj, such that the equation (3.9) has a pair of
purely imaginary roots ±iω0 when σ = σj;

2. If H > 0 and (H1) is not satisfied, or H > 0, ∆ < 0 and (H1) is satisfied,
then the equation (3.9) has at least one root with positive real part for all
σ ≥ 0;

3. If H > 0, ∆ = 0 and (H1) is satisfied, then there exits σ̂j, such that the
equation (3.9) has a pair of purely imaginary roots ±iω̂0 when σ = σ̂j;

4. If H > 0, ∆ > 0 and (H1) is satisfied, then there exits σ±j , such that the

equation (3.9) has a pair of purely imaginary roots ±iω± when σ = σ±j ,
respectively,

where

ω0 =
1√
2

[a2 − 2b− k2dA +
√
∆]

1
2 , σj =

1

ω0
[arccos

kdAb

a(ω2
0 + k2dA)

+ 2jπ];

ω̂0 =
1√
2

(a2 − 2b− k2dA)
1
2 , σ̂j =

1

ω̂0
[arccos

kdAb

a(ω̂2
0 + k2dA)

+ 2jπ];

ω± =
1√
2

[a2 − 2b− k2dA ±
√
∆]

1
2 , σ±j =

1

ω±
[arccos

kdAb

a(ω2
± + k2dA)

+ 2jπ].
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Let λ = α(σ) + iω(σ) is the root of (3.9) such that α(σ) = 0, ω(σ) > 0 for
the above critical values. Substituting λ(σ) into (3.9) and taking the derivative
with respect to σ, we have the following conclusions easily.

Lemma 3. α′(σj) > 0, α′(σ+
j ) > 0, α′(σ−j ) < 0 and α′(σ̂j) = 0.

Proof. By direct calculation, one can easily obtain that

Re

[
dλ

dσ

]−1
σ=σj

=
2b+ 2ω2

0 + k2dA − a2

a2(k2dA + ω2
0)

.

Note that ω0 = 1√
2
[a2−2b−k2dA+

√
∆]

1
2 . Therefore, Re[ dλdσ ]−1σ=σj

=
√
∆

a2(k2dA+ω2
0)
>

0, it follows that α′(σj) > 0. The proof of that three conclusions is similarly.
ut

Hence, there is the following conclusions.

Theorem 4. For system (3.1), when τ = 0:

1. If H < 0, then the system (3.1) undergoes a Hopf bifurcation at the origin
(0, 0) when σ = σj , j = 0, 1, . . .. The zero solution is asymptotically stable
for σ ∈ [0, σ0) and unstable for σ > σ0;

2. If H > 0 and (H1) is not satisfied, or H > 0, ∆ < 0 and (H1) is satisfied,
then the zero solution is unstable for all σ ≥ 0;

3. If H > 0, ∆ = 0 and (H1) is satisfied, then the bifurcation is degenerated;

4. If H > 0, ∆ > 0 and (H1) is satisfied, then the system (3.1) undergoes a
Hopf bifurcation at the origin (0, 0) when σ = σ±j , j = 0, 1, . . ..

Moreover, if σ+
0 > σ−0 , there exists an integer m ≥ 0 such that the zero

solution is unstable when σ ∈ (σ+
j−1, σ

−
j ) for j = 0, 1, . . . ,m and σ > σ+

m,

and asymptotically stable when σ ∈ (σ−j , σ
+
j ) for j = 0, 1, . . . ,m, where

σ+
−1 = 0.

Remark 2. Notice that, when τ = 0, our model become a logistic model. In
comparison with a classical logistic model, there is another negative term in the
right of first equation. In the next section, we will discuss a codim-2 bifurcation,
double Hopf bifurcation, which does not appearance in classical logistic model
in general.

Remark 3. By the widely used method which is based on the normal form
theory and the center manifold theorem introduced by Hassard et al. [9].The
direction, stability, and the period of the bifurcating periodic solutions can be
obtain. On the other hand, from [13, 26, 27], we known that the properties of
Hopf bifurcation of discrete schemes are the same as that of the corresponding
delay differential equations, such as Runge-Kutta or strictly stable linear mul-
tistep method. In the last section, we will use some numerical simulations to
illustrate the analytical results we obtained in previous sections and to show the
properties of Hopf bifurcation, such as the direction of bifurcation and stability
of periodic solutions.

Math. Model. Anal., 20(6):782–801, 2015.
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4 The existence and normal form of the double Hopf bi-
furcation

In this section, for system (3.1), the existence of the double Hopf bifurcation
from origin (0, 0) is obtained and the normal form will be also described. In
the above section, we find that the system (3.1) undergoes a Hopf bifurcation
at the origin (0, 0) when σ = σ±j , j = 0, 1, . . .. Thus, a possible double Hopf

bifurcation occurs when some σ0 = σ+
j = σ−l , where j, l = 0, 1, . . .. The equality

σ = σ+
j = σ−l implies that the linearized system on the trivial equilibrium has

two pairs of purely imaginary eigenvalues ±iω−σ0 and ±iω+σ0 . In this paper,
we assume ω− : ω+ 6= n1 : n2 ∈ Z+. That is, we only consider the non-resonant
double Hopf bifurcation.

We consider the value a and time delay σ as bifurcation parameters of
system (3.1). Suppose system (3.1) undergoes a double Hopf bifurcation from
the trivial equilibrium at the critical point: a = a0, σ = σ0. From Theorem 4,
If H > 0, ∆ > 0 and (H1) is satisfied. Then the equation (3.9) has two roots
with positive and negative real parts when σ = 0, respectively. Therefore, we
have reason to believe the existence of such possible situation: its roots except
±iω−σ0 and ±iω+σ0 have negative real parts at the first intersection point by
the transverse condition. Thus, the center manifold can be used to describe
the dynamics of the whole system in this case.

Rescaling the time by t 7→ t
σ to normalize the delay, and set a = a0 + α1

and σ = σ0 + α2.
The system (3.1) may be transformed into a functional differential equation

(FDE) in C = C([−1, 0], R2), where the phase space C = C([−1, 0], R2) as the
banach space of continuous functions from [−1, 0] to R2 with the supremum
norm (see [8]) as

dU

dt
= Lµ(Ut) + F (µ,Ut),

where U(t) = (u1(t), u2(t))T ∈ R2, Ut ∈ C is defined by

Ut = U(t+ θ), −1 ≤ θ ≤ 0, Lµ : C → R2, F : R× C → R2, α = (α1, α2)T .

When α = (0, 0)T , then we have L0(φ) and F (0, φ) respectively by

L0(φ) = B0φ(0) +B1φ(−1).

We set

B0 = σ0

(
0 b

kA
kA −kdA

)
, B1 = σ0

(
−a0 0

0 0

)
and

F (0, φ) = σ0

(
−υ1φ1(0)φ1(−1) + υ2φ

2
2(0)− υ3φ32(0) + h.o.t.

0

)
,

where υ1 = µ
K , υ2 = γkdAA

∗

kA(β+A∗)3 , υ3 = γkdAA
∗

kA(β+A∗)4 . Then when α = (0, 0)T , the

linearization equation at the trivial equilibrium of (3.1) is

dU

dt
= L0(Ut),
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and the bilinear form on C∗ × C is

(ψ(s), φ(θ)) = ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(θ)φ(ξ)dξ,

where

η(θ) =

 B0, θ = 0,
−B1, θ=− 1,
0, θ∈(−1, 0),

φ(θ)=(φ1(θ), φ2(θ)) ∈ C, ψ(s)=(ψ1(s), ψ2(s))T∈ C∗.

Then, the phase space C is decomposed by ±iω−σ0,±iω+σ0 as C = P
⊕
Q,

where P is the center subspace spanned by the basis vectors associated with
the imaginary characteristic roots and Q is the complement subspace of P .

We now consider the enlarged phase space BC of functions from [−1, 0] to
R2 , which are continuous on [−1, 0) with a possible jump discontinuity at zero.
This space can be identified as C×R2. Elements of it can be written in the form
φ + X0η, where φ ∈ C, η ∈ R2 and X0(θ) = 0 for θ ∈ [−1, 0) and X0(0) = I.
Define a continuous projection π : BC → P as π(φ+X0η) = Φ[(Ψ, Φ)+Ψ(0)η].
Then, the the bases of P and P ∗ can be computed directly that

Φ(θ) =

(
eiω−σ0θ e−iω−σ0θ eiω+σ0θ eiω+σ0θ

A1 A2 A3 A4

)
,

Ψ(s) =


D1kA(kdA−iω−)

b e−iω−σ0s D1e
−iω−σ0s

D1kA(kdA+iω−)
b eiω−σ0s D1e

iω−σ0s

D2kA(kdA−iω+)
b e−iω+σ0s D2e

−iω+σ0s

D2kA(kdA+iω+)
b eiω+σ0s D2e

iω+σ0s

 ,

where

A1 =
a0kAe

−iω−σ0 + iω−kA
b

eiω−σ0θ, A2 =
akAe

iω−σ0 − iω−kA
b

e−iω−σ0θ,

A3 =
akAe

iω+σ0 + iω+kA
b

eiω+σ0θ, A4 =
a0kAe

iω+σ0 − iω+kA
b

e−iω+σ0θ,

D1 =
b

kA(kdA + iω−aσ0 − akdAσ0 + a0e−iω−σ0)
,

D2 =
b

kA(kdA + iω+a0σ0 − akdAσ0 + a0e−iω+σ0)
.

Thus from the define of the bilinear inner product, we have (Ψ(0), Φ(0)) = I.
Note that the parameter α = (α1, α2), when it has a small perturbations at
zero, the system (3.1) can be written as

˙U(t) = LαUt + F (Ut, α), (4.1)

where

Lα(Ut) = (σ0 + α2)

(
0 b

kA
kA −kdA

)(
u1t(0)
u2t(0)

)
+ (σ0 + α2)(a0 + α1)

(
−1 0
0 0

)(
u1t(−1)
u2t(−1)

)

Math. Model. Anal., 20(6):782–801, 2015.
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and

F (Ut, α) = (σ0 + α2)

(
−υ1u1(0)u1(−1) + υ2u

2
2(0)− υ3u32(0) + h.o.t.

0

)
.

By the continuous projection π, we can decompose the enlarged phase space by
±iω−,±iω+ as BC = P ⊕Kerπ. Let Ut = Φz(t) + v(t), then (4.1) is therefore
decomposed as the system

˙z(t) = Bz + Ψ(0)F̃ (Φz + v, α), (4.2)

v̇ = AQ1v + (I − π)X0F̃ (Φz + v, α), (4.3)

where B = diag{iω−σ0,−iω−σ0, iω+σ0,−iω+σ0} , AQ1 is the restriction of A
as an operator from Q1 := Q

⋂
C1 to the Banach space Kerπ with A : C1 →

BC,AU = U̇ +X0[L0U − U̇(0)] and F̃ (U,α) = [Lα − L0]U + F (U,α), v ∈ Q1.
Neglecting higher order terms with respect to parameters α, the above can be
written as 

ż1 = iσ0ω−z1 +

2∑
j=1

ψ1j(F
j
2 + F j3 ) + h.o.t.,

ż2 = −iσ0ω−z2 +

2∑
j=1

ψ2j(F
j
2 + F j3 ) + h.o.t.,

ż3 = iσ0ω+z3 +

2∑
j=1

ψ3j(F
j
2 + F j3 ) + h.o.t.,

ż4 = iσ0ω+z4 +

2∑
j=1

ψ4j(F
j
2 + F j3 ) + h.o.t.,

v̇ = AQ1v + (I − π)X0F̃ (Φz + v, α),

where

F 1
2 =

α2

kA
[(a0kAe

−iω−σ0 + iω−)z1 + (a0kAe
iω−σ0 − iω−)z2

+ (a0kAe
−iω+σ0 + iω+)z3 + (a0kAe

iω+σ0 − iω+)z4 + bv2(0)]

− (a0α2 + σ0α1)[z1e
−iω−σ0 + z2e

iω−σ0 + z3e
−iω+σ0 + z4e

iω+σ0 + v1(−1)],

F 2
2 = α2kA[z1 + z2 + z3 + z4 + v2(0)]− α2kdA

b
[(a0kAe

−iω−σ0 + iω−)z1

+ (a0kAe
iω−σ0 − iω−)z2 + (a0kAe

−iω+σ0 + iω+)z3

+ (a0kAe
iω+σ0 − iω+)z4 + bv2(0)],

F 1
3 = (σ0 + α2)[−υ1(z1 + z2 + z3 + z4 + v1(0))(z1e

−iω−σ0 + z2e
iω−σ0

+ z3e
−iω+σ0 + z4e

iω+σ0 + v1(−1)) + υ2(z1 + z2 + z3 + z4 + v1(0))2

− υ3(z1 + z2 + z3 + z4 + v1(0))3 +O(||u||4)],

F 2
3 = 0.
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Next, let M1
2 denote the operator defined in V 6

2 (C4 × Kerπ), with M1
2 :

V 6
2 (C4) 7→ V 6

2 (C4) where V 6
2 (C4 represents the linear space of the second or-

der homogeneous polynomials in six variables (z1, z2, z3, z4, α1, α2) with coeffi-
cients in C4. Then, it is easy to verify that one may choose the decomposition
V 6
2 (C4) = Im(M1

2 )
⊕
Im(M1

2 )c with complementary space Im(M1
2 )c spanned

by the elements zjαiej , i = 1, 2, j = 1, 2, 3, 4, where ej(j = 1, 2, 3, 4) are unit
vectors.

Then the normal form of equation (4.1) on the center manifold of the origin
near α = 0 up to quadratic order terms is given by

ż = Bz +
1

2
g12(z, 0, α), (4.4)

where g12(z, 0, α) is determined by g12(z, 0, α) = Proj(Im(M1
2 ))

c×f12 (z, 0, α) with

f12 (z, 0, α) is the function giving the quadratic terms in (z, α) for v = 0 defined
by the first equation of (4.2). Thus, Neglecting the conjugate situation, we
only consider z1 and z3, the normal form (4.4) becomes that{

ż1 = iσ0ω−z1 + b1z1,

ż3 = iσ0ω+z3 + b3z3
,

where

b1 =
D1

b
(kAα2b− e−iσ0ω−kdAa0kAα2 + α2ω−

2

− e−iσ0ω−σ0α1kAkdA + ie−iσ0ω−σ0α1kAω−),

b3 =
D2

b
(kAα2b− e−iσ0ω+kdAa0kAα2 + α2ω+

2

− e−iσ0ω+σ0α1kAkdA + ie−iσ0ω+σ0α1kAω+).

Next, we need calculate higher order terms of the normal form. Similarly,
let M1

3 denote the operator defined in V 4
3 (C4 ×Kerπ) with

M1
3 : V 4

3 7→ V 4
3 , (M

1
3 )p(z, α) = Dzp(z, α)Bz −Bp(z, α),

where V 4
3 denotes the linear space of the third order homogeneous polynomials

in four variables (z1, z2, z3, z4). When there is no strong resonance, it is easy to
check that one may choose the decomposition V 4

3 = (ImM1
3 )
⊕

(ImM1
3 )c with

complementary space (ImM1
3 )c spanned by the elements

z21z2e1, z1z3z4e1, z1z
2
2e2, z2z3z4e2, z1z2z3e3, z

2
3z4e3, z1z2z4e4, z3z

2
4e4.

Then we can derive the normal form up to the third order

ż = Bz +
1

2
g12(z, 0, α) +

1

6
g13(z, 0, α), (4.5)

where

g13(z, 0, 0) = (I − P 1
I,3)f13 (z, 0, 0),
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and f13 (z, 0, 0) is the function giving the cubic terms in (z, α) for v = 0, α = 0
defined by the first equation of (4.2). Then, equation (4.5) can be written as{

ż1 = iσ0ω−z1 + b1z1 + b112z1|z1|2 + b134z1|z3|2,
ż3 = iσ0ω+z3 + b3z3 + b334z3|z3|2 + b123z3|z1|2,

(4.6)

where

b112 = −3D1kAσ0v3(kdA − iω−)

b
, b134 = −6D1kAσ0v3(kdA − iω−)

b
,

b334 = −3D2kAσ0v3(kdA − iω+)

b
, b123 = −6D2kAσ0v3(kdA − iω+)

b
.

In polar coordinates z1 = r1e
iθ1 , z3 = r2e

iθ2 , the amplitude equation resulted
from equation (4.6) is{

ṙ1 = Re(b1)r1 +Re(b112)r31 +Re(b134)r1r
2
2,

ṙ2 = Re(b3)r2 +Re(b334)r32 +Re(b123)r2r
2
1.

5 Numerical Simulations

In this section, we use some numerical simulations to illustrate the analytical
results we obtained in previous sections.

We first consider system (1.1) with µ = 0.4,K = 0.3, γ = 0.3, kdA =
0.09, β = 0.6, and kA = 0.5, σ = 0. Under these parameter values, system
undergoes a Hopf bifurcation when τ

.
= 8.93635. By Theorem 3, the equilib-

rium E∗ is unstable for all τ ≥ 0.

0 200 400 600 800 1000
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t

C(t)

[A](t)

Figure 1. Simulation solution of (1.1):the equilibrium E0 is asymptotically stable, when
τ = 4.5 < τ0.

As shown in Figure 1, when τ < τ0, the equilibrium E∗ is unstable and
the other equilibrium E0 is asymptotically stable. That is, when the killing
module and rescue module are both on, for small specific growth rate µ < γ

β ,
the the bacterial will become extinct at last. We choose we choose τ = 9.5 > τ0,
Figure 2 shows that there a periodic solution with small amplitude exists. A
strong Allee effect is observed, the specific growth rate is negative if the initial
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C is below the Allee threshold (see Figure 1). When the initial C is above the
Allee threshold, although the time of rescue delay is large, the density of E.
Coli. has oscillation near the threshold.
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(b)

Figure 2. Simulation solution of (1.1): a periodic solution is bifurcated, when
τ = 9.5 > τ0.

Next, we change the values of γ to 0.05, i.e., the killing rate of the circuit
is reduced. Hence, it follows that H < 0 and µ > γ

β . Now, we know that E0

becomes a saddle from sink and E∗ is a sink. Figure 3 shows that the stability
of E∗.
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1
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C(t)C(t)C(t)C(t)
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Figure 3. Simulation solution of (1.1):the equilibrium E∗ is asymptotically stable, when
τ = 5.

At last, we can give some analyses and examples to observe the behavior
near the double Hopf bifurcation of system (4.1). For convenience, we as-
sume that a is a independent parameter. Choosing µ = 0.4,K = 0.3, γ =
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0.3, kdA = 0.01, β = 0.6, kA = 0.5, τ = 0, then b = 0.0008147257349. We
can obtain σ0 = 24.8210724, a0 = 0.0714267. The unfolding parameters are
Re(b1) = 1.4246752743α1 + 0.3245334987α2 and Re(b3) = 2.2157433961α1 −
0.1126549270α2. we also obtain that Re(b112) = 6.4350970712, Re(b134) =
12.87019414, Re(b123) = −7.300691906, Re(b334) = −3.6503459527. Thus, the
pdifficultq case happens under the parameters above. Let ρ1 = Re(b112)r21, ρ2 =
−Re(b334)r22, t̃ = 2t, then we have the following planar system in terms of ρ1
and ρ2: 

ρ̇1 = ρ1(Re(b1) + ρ1 −
Re(b134)

Re(b334)
ρ2),

ρ̇2 = ρ2(Re(b3)− ρ2 +
Re(b123)

Re(b112)
ρ1).

(5.1)

Note that N0 = (0, 0) is always an equilibrium of (5.1). The other two
semi-trivial equilibria given in terms of perturbation parameters are N1 =
(−Re(b1), 0) and N2 = (0, Re(b3)). There also exist a nontrivial equilibrium

N3 = (Re(b1)+3.52574641
3 , Re(b3)+1.13451154

−3 ). Since there does not exist unstable
manifold containing the equilibrium, according to the center manifold theory,
the solutions on the center manifold determine the asymptotic behavior of the
solutions of the system (4.1). Therefore, if equation (5.1) has stable(unstable)
semi-trivial equilibria, then (4.1) has stable(unstable) periodic solutions in the
neighborhood of the trivial equilibrium. Since equation (5.1) has a nontrivial
equilibrium N3, then (4.1) has a quasi-periodic solution in the neighborhood of
(0, 0). So, we shall call the periodic solution or the quasi-periodic solution the
source (respectively, saddle, sink) periodic solution of (4.1) if the semi-trivial
equilibrium or the nontrivial equilibrium of (5.1) is a source (respectively, sad-
dle, sink), respectively. The corresponding bifurcation diagram and phase por-
traits are shown in the parameter plane (α1, α2) by Figure 4, where the critical
bifurcation lines L1 : α2 = −4.389917466α1, L2 : α2 = 19.66841092α1, L3 :
α2 = 127.1253084α1, L4 : α2 = −14.99637164α1, L5 : α2 = −71.46428697α1.
We explain the bifurcations in the anticlockwise direction, starting from re-
gion 1©. First, in region 1©, there is only one trivial equilibrium which is a
saddle. When the parameters are varied across the line L1 from region 1© to
2©, N0 becomes a sink, and anther semi-trivial equilibria N1(saddle) appears.
That is, for the system (4.1), an periodic solution(saddle) appears due to Hopf
bifurcation. In the region 3©, a more sink N2 exists, i.e., another periodic solu-
tion(sink) appears, and N0 becomes a saddle. When the parameters are varied
from region 3© to region 4©, N2 becomes a saddle, a new focus N3 appears
which corresponding a quasi-periodic solution of the system (4.1). When the
parameters are varied from region 4© to region 5©, a limit cycle is present in
the system (5.1). At this time, for system (4.1), a torus may be appears. When
the parameters are further changed from region 5© to region 6©, the limit cycle
disappears, N3 collides with N1 and then also disappears, and N1 becomes a
source. From region 6© to region 7©, N1 disappears, and the N0 becomes a
source. When the parameters to region 1©, N2 disappears at last. Moreover, a
heteroclinic cycle may be formed between N1 and N2, which is the main reason
of the disappears of limit cycle.
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(a)

(b)

Figure 4. The bifurcation diagram and phase portraits for (5.1) near (α1, α2) = (0, 0).

To demonstrate the analytic results obtained in above, here we present some
interest numerical simulation results. We choose there groups of perturbation
parameter values: (α1, α2) = (−0.001.0.021), (0.001,−0.075), (0.001,−0.050),
belonging to the regions 3©, 4© and 5©, corresponding to a stable periodic solu-
tion as depicted in Figure 5, a stable quasi-periodic solution, see Figure 6, and
a torus displayed in the three dimensional u1 − u2 − u

′

1 space, see Figure 7.
It is clear that the numerical simulations agree very well with the analytical
predictions.

6 Conclusions

In this paper, we have discussed the dynamical behaviors of a delay differential
model which confers a strong Allee effect in Escherichia coli. Firstly, we have
shown that the Hopf bifurcation exists as the time delay τ or σ crosses some
critical values.

Secondly, we have considered the double Hopf bifurcation in system (4.1)

Math. Model. Anal., 20(6):782–801, 2015.
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Figure 5. Simulated solution of system (4.1) for (α1, α2) = (−0.001.− 0.075): showing a
stable periodic solution.
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Figure 6. Simulated solution of system (4.1) for (α1, α2) = (−0.001.0.021): showing a
stable quasi-periodic solution.
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Figure 7. Simulation solution of (4.1) for (α1, α2) = (0.001.− 0.050): showing a torus in

u1 − u2 − u
′
1 space.

with delay σ. We have obtained the vector field reduced to the center manifold,
and derived the normal forms and their unfolding with perturbation param-
eters. Furthermore, we have given the bifurcation diagram as the unfolding
parameter values are near the critical point.

We improved the model in [20], and the research presented is a new step
about our system in studied from the view point of high co-dimensional bifurca-
tions. The study will help understanding the interpreting biological phenomena
in theory.
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