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Abstract. Some recent analytical papers have explored limiting behaviors of Landau-
de Gennes models for liquid crystals in certain extreme ranges of the model param-
eters: limits of “vanishing elasticity” (in the language of some of these papers) and
“low-temperature limits.” We use simple scaling analysis to show that these limits
are properly interpreted as limits in which geometric length scales (such as the size of
the domain containing the liquid crystal material) become large compared to intrin-
sic length scales (such as correlation lengths or coherence lengths, which determine
defect core sizes). This represents the natural passage from a mesoscopic model to
a macroscopic model and is analogous to a “London limit” in the Ginzburg-Landau
theory of superconductivity or a “large-body limit” in the Landau-Lifshitz theory of
ferromagnetism. Known relevant length scales in these parameter regimes (nematic
correlation length, biaxial coherence length) can be seen to emerge via balances in
equilibrium Euler-Lagrange equations associated with well-scaled Landau-de Gennes
free-energy functionals.

Keywords: liquid crystals, Landau-deGennes model, Oseen-Frank model, large-body limit,
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1 Introduction

The Landau-de Gennes and Oseen-Frank models are the two most widely used
continuum models to characterize equilibrium orientational properties of ma-
terials in the nematic liquid crystal phase. The Landau-de Gennes model is
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a mesoscopic phenomenological model expressed in terms of an integral func-
tional of a tensor field Q, the “tensor order parameter.” In its simplest form
(the “equal elastic constant model”), the functional can be written

F [Q] =

∫
Ω

[L
2
|∇Q|2 + fb(Q)

]
dV. (1.1a)

Here F gives the free energy of a material occupying the region Ω, and fb
represents the free energy per unit volume of a homogeneous bulk material,
which in most cases is given in the form

fb(Q) =
A

2
tr(Q2)− B

3
tr(Q3) +

C

4
tr(Q2)2. (1.1b)

The parameters L, A, B, and C are material dependent, with L, B, and C
positive and A (which can be positive, negative, or zero) usually taken to have
a simple linear dependence on temperature:

A = a0(T − TSC). (1.2)

Here a0 is a positive constant, T denotes temperature, and TSC represents
the “super-cooling temperature” (sometimes denoted T ∗), which is discussed
below. Stationary points of F give equilibrium orientational states, with the
global minimum determining the structural phase of the system for a given set
of boundary conditions and parameter values.

The Q tensor is formally defined as the traceless part of the second-moment
tensor of the orientational probability distribution function (which, if known,
would contain complete information about the orientational state at a point):
Q = 〈l ⊗ l〉 − 1

3I . Here the unit vector l denotes the direction of the distin-
guished axis of the anisometric molecular architecture (usually the long axis of
elongated, rod-like molecules), and I is the identity tensor. As such, Q is real,
symmetric, traceless, and generically would have three distinct real eigenvalues
and associated orthogonal eigenvectors, representing a “biaxial” state of order.
The eigenvectors of Q provide information about the directions of orientational
ordering at a point, while the eigenvalues give information about the degrees
of order–note that the value of fb depends only on the eigenvalues of Q. An
isotropic (totally disordered) state corresponds to Q = 0 (the zero tensor).

For given B,C > 0, the shape of the surface of fb as a function of the
two independent eigenvalues of Q changes as temperature changes. For T >
TSH > TSC, where TSH denotes the “super-heating temperature,” Q = 0 is the
global minimizer of fb, and no ordered phase exists–fb has no other stationary
points. For T < TSC, the isotropic phase ceases to be locally stable, and the
only minimizer of fb is a Q tensor with a dominant eigenvalue and a degenerate
pair of equal eigenvalues. Since tr(Q) = 0, such a Q can be written

Q = S
(
n⊗ n− I/3

)
. (1.3)

Here S is referred to as the “scalar order parameter,” and n is the distinguished
eigenvector. This is known as a “uniaxial” state of order. The terms “uniaxial”
and “biaxial” come from the optical properties of materials in these states,
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Figure 1. (Left) Contour plot of f̃b(s̃, p̃), a dimensionless form of the bulk free-energy
density fb in (1.1b) with Q parameterized as in (1.4), using coordinates s̃ =

√
6 s, p̃ =

√
2 p.

The order tensor Q is biaxial except along the lines p̃ = 0, p̃ = ±
√
3 s̃ (where it is uniaxial).

(Right) Section of the f̃b surface cut along the s̃ axis. Critical points: global minima (solid
circles), local maximum (open circle), saddles (crosses).

which are the same as those of a uniaxial crystal or a biaxial crystal. For T
in the narrow range between TSC and TSH, both the isotropic and the uniaxial
phases are locally stable, and there is a first-order phase transition at the
“nematic-isotropic transition temperature” TNI, below which the ordered phase
becomes the global minimizer.

A visualization can be helpful to understand fb as a function of Q. The
symmetric traceless tensor Q is diagonal in its eigenframe (e1, e2, e3, say),
and a simple parameterization of its eigenvalues is given by

Q = 2s e1 ⊗ e1 + (−s+ p) e2 ⊗ e2 + (−s− p) e3 ⊗ e3. (1.4)

In this representation, the isotropic state corresponds to s = p = 0, while
uniaxial states of the form (1.3) are associated with the cases p = 0 (n = e1,
S = 3s), p = −3s (n = e2, S = −6s), and p = 3s (n = e3, S = −6s). Thus, in
the s-p plane, Q is biaxial everywhere except along three straight lines through
the origin. Figure 1 contains a contour plot of f̃b(s̃, p̃), a certain dimensionless
version of fb expressed as a function of the normalized coordinates s̃ =

√
6 s

and p̃ =
√

2 p. In terms of these, Q = s̃E1 + p̃E2 (with symmetric traceless
tensors E1 and E2 satisfying Ei · Ej = δij), trQ2 = s̃2 + p̃2, and the uniaxial
lines are given by p̃ = 0 and p̃ = ±

√
3 s̃. The contour plot corresponds to a

temperature T < TSC. The three solid circles give equivalent global minima;
the open circle at the origin is a local maximum point; and the three crosses
are saddles. The right half of Figure 1 contains a section of the surface cut
along p̃ = 0–the same curve would be obtained along p̃ = ±

√
3 s̃.

Simple relationships among A, B, and C are associated with the tempera-
tures TSC, TNI, and TSH:

TSC < TNI < TSH ↔ ASC = 0 < ANI =
B2

27C
< ASH =

B2

24C
. (1.5)

Every material that admits a nematic liquid crystal phase would reside in such
a state for some finite range of temperatures below TNI; Landau-de Gennes



Scalings and Limits of Landau-deGennes Models for Liquid Crystals 417

models (which are formally derived via truncated expansions) contain no pa-
rameters that indicate the extent of this range, below which actual materials
either crystallize or transition to a glass phase or to another liquid crystal
phase.

The distortional elasticity term associated with the constant L in (1.1a)
penalizes spatial variations of the Q tensor, while the bulk ordering potential
fb strives to put the eigenvalues of Q into certain wells. More complete versions
of this model can contain additional terms incorporating more elastic constants,
more bulk constants, terms associated with couplings to electric or magnetic
fields, terms associated with chirality, flexoelectric effects, ferroelectric effects,
surface anchoring potentials, and more. See [18] for an introduction to the
model and for further references. The form (1.1) is the simplest form of the
model and is sufficient for the purposes at hand. Landau-de Gennes models
occupy a similar position in the theory of liquid crystals to that of Ginzburg-
Landau models for the theory of superconductivity and Landau-Lifshitz models
for ferromagnetism.

The Oseen-Frank model is a macroscopic phenomenological model for liquid
crystal orientational properties. It is expressed in terms of an integral functional
of a unit-length vector field n (the “director field”). In its simplest (“equal
elastic constant”) form, the functional can be written

F [n] =
K

2

∫
Ω

|∇n|2 dV. (1.6)

Here F gives the distortional elastic energy of the material occupying Ω, and n
represents the average orientation of the distinguished axes of the molecules in
a fluid element at a point (and can be identified with the eigenvector associated
with the distinguished eigenvalue of a uniaxial Q tensor, as in (1.3)). The elastic
constant K is a material-dependent and temperature-dependent parameter.
Equilibrium orientational states are given by stationary points of F constrained
by boundary conditions and the pointwise unit-length constraint on n, with the
structural phase of the system (for a given K and boundary conditions) again
given by the global minimizer. As is the case with the Landau-de Gennes free
energy F , more realistic models for F involve many more terms, parameters,
couplings, and effects. Standard references include [27,28]. Oseen-Frank models
have been widely and successfully used for many years to model liquid crystal
systems at the scales of typical devices and experiments.

These two models differ in several ways. The Landau-de Gennes model
allows for both spatially varying degrees of order and biaxiality, and it is ex-
pressed in terms of a tensor field. The Oseen-Frank model, on the other hand,
assumes a uniform degree of orientational order, as well as a uniaxial state of
order, and is expressed in terms of a vector field. Another difference between
the models is that common liquid crystal “defects” (such as “point defects” and
“disclination lines”) are singularities of the director field in the Oseen-Frank
model, whereas in the Landau-de Gennes model, these have a small but finite
“core size” and the associated tensor field Q remains smooth throughout a
neighborhood of such a defect. In Oseen-Frank free-energy functionals, such as
(1.6), point defects have finite free energy, while the free energy of a disclina-
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tion line is infinite. In the Landau-de Gennes model, however, the free energies
of both are finite. In general, defects are caused by the conflicting demands of
distortional elasticity, boundary conditions, external electric or magnetic fields,
and the like. Landau-de Gennes models are typically employed in problems in
which geometric length scales are not too large compared to intrinsic length
scales (such as defect core sizes), while Oseen-Frank models are used when the
geometric length scale is much larger than the core size (and the fine-detail
structure of the core is not important).

In recent years, Landau-de Gennes models have received considerable at-
tention from the mathematical analysis community. In particular, papers have
appeared that rigorously explore (among other issues) limiting behaviors of
this model for certain extreme ranges of the elastic constants [2,12,16]. Analy-
ses of somewhat related limits (emphasizing behavior at low temperatures) are
found in [4, 13]. Our main purpose here is to explain how these limits should
be interpreted.

In [16] (the earliest of these papers), the model is taken in the form (1.1)
above, and the authors motivate their work as follows: “we study the limit of
vanishing elastic constant L → 0 . . . the limit L → 0 is a physically relevant
limit since the elastic constant L is typically very small, of the order 10−11J/m.”
In [2], a slightly more general form of the model is used:

Fε[Q] =

∫
Ω

[
fe(∇Q) + ε−2fb(Q)

]
dV, (1.7a)

where

fe(∇Q) =
L1

2
Qij,kQij,k +

L2

2
Qij,jQik,k +

L3

2
Qij,kQik,j . (1.7b)

Here Qij are the components of Q with respect to a fixed Cartesian frame;
Qij,k denotes ∂Qij/∂xk; and summation over repeated indices is implied. The
dimensionless parameter ε is artificially introduced in order to be able to drive
the elastic constants L1, L2, and L3 to zero simultaneously. The L1 term above
corresponds to the L term in (1.1a). The authors motivate their work “Our
goal in this paper is to investigate minimizers [of (1.7)] and to analyze their
behavior in the vanishing elastic energy limit, ε→ 0.”

In these two papers, the models are analyzed in fully dimensional form.
In [12], a dimensionless model is studied, and it is expressed in terms of the
second-moment tensor u = 〈l⊗ l〉 (instead of Q). The model there is written

Eε[u] =

∫
Ω

[1

2
|∇u|2 +

1

ε2
W (u)

]
dV, W (u) =

1

2
tr
(
(u− u2)2

)
. (1.8)

The bulk ordering potential W here is constructed by design to have a mini-
mizer (in the class tr(u) = 1) at a perfectly ordered uniaxial state u = n⊗ n,
with |n| = 1 but with the direction of n arbitrary, and ε is referred to as a
“dimensionless elastic constant.” With the help of the relation u = Q + 1

3I,
the model can be identified with a certain constrained form of (1.1). Again,
the limit ε→ 0 is explored.
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All three of these papers explore similar limits, related to “vanishing elastic-
ity,” and are influenced by similar analyses of Ginzburg-Landau models found
in [3] and elsewhere. All three obtain (away from a singular set) limiting uni-
axial minimizers of the form (1.3), with constant S determined so as to provide
a minimum of fb, and with the director field n corresponding to the mini-
mizer of an appropriate Oseen-Frank model. We show that these limits are
properly interpreted not as limits of vanishing elasticity but as limits in which
intrinsic length scales (associated with defect core sizes and such) become van-
ishingly small compared to geometric length scales (associated with the size of
the problem domain Ω).

The limits analyzed in [4, 13] pertain to the behavior of Landau-de Gennes
models at low temperatures, where the changing landscape of the bulk free-
energy fb penalizes biaxial order less and at the same time shrinks defect core
sizes. This “low temperature” limit as well corresponds to a “zero core size”
limit (with additional features), and the close relationship between these two
limits is demonstrated below. Different length scales are known to be associated
with defect core sizes in these two different regimes, and it is also shown below
how these can be identified via balances in appropriate scalings of the Euler-
Lagrange equations associated with (1.1).

2 Scaling analysis

Values of the material parameters in (1.1) are usually found quoted in SI units.
For a somewhat typical material, they are roughly in the following ranges:

L ≈ 10−11J/m, A,B,C ≈ 105 J/m
3
. (2.1)

See for example [22, Table 1, p. 168]. We observe that the numerical value of L is
16 orders of magnitude smaller than the values of A, B, and C when expressed
in these units. If, however, lengths are expressed in units of nanometers (instead
of meters), these values become

L ≈ 10−20J/nm, A,B,C ≈ 10−22J/nm
3
.

Now the value of L is two orders of magnitude larger than A, B, and C. The
point is that the elastic constants and the bulk constants have different physical
dimensions (energy per unit length versus energy per unit volume) and can’t
be compared. To determine what is “big” versus what is “small,” one must
non-dimensionalize. An additional point to be made is that as L → 0, with
the model left in dimensional form (as in [2, 16]), one quickly gets beyond the
measured values of L for real liquid crystal materials.

2.1 Large-body limit

There are numerous ways to non-dimensionalize (1.1), and these depend in
general on the particular problem at hand. In essence, in order to form an
appropriate dimensionless coupling coefficient between the elastic terms and
the bulk terms in the free-energy density, one requires a characteristic elastic
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constant, a characteristic bulk constant, and a characteristic length scale from
the geometry of the problem domain. For the purpose of understanding the
“vanishing elasticity” limit, a simple rescaling can be done as follows. Let R
denote a characteristic geometric length scale. For example, this could be the
radius or diameter of a liquid crystal droplet or capillary, or the cell gap of a
liquid crystal thin film. Rescale lengths by R,

xi = xi/R, R = diam(Ω), (2.2)

so that ∇ = 1
R∇, dV = R3dV , diam(Ω) = 1. Let ANI denote the value of the

A parameter at T = TNI, as in (1.5), and take this as our characteristic bulk
parameter–other natural candidates for this would be ASH or B2/C, or simply
B or C. The tensor order parameter Q is dimensionless by definition, however
it is convenient to rescale it as well, as this allows one to eliminate another
parameter from the model. Thus we take

Q = αQ, α :=
1√
27

B

C
.

Other multiples of B/C would work equally well. After simplifying, we obtain

F [Q] =

∫
Ω

[1

2
ξ 2
NI

∣∣∇Q∣∣2 +
θ

2
tr
(
Q2
)
−
√

3 tr
(
Q3
)

+
1

4
tr
(
Q2
)
2
]
dV , (2.3a)

where

F =
F

α2ANIR3
, ξNI =

ξNI

R
, ξNI :=

√
L

ANI
, θ :=

A

ANI
=

T − TSC
TNI − TSC

. (2.3b)

The parameter ξNI can be interpreted as the “nematic correlation length”
at the nematic-isotropic transition temperature T = TNI and θ as a reduced
temperature, with the corresponding values

T = TSC, TNI, TSH ↔ θ = 0, 1, 9/8.

Here and in (2.3), we have used the relations for ANI and ASH in (1.5). In a
typical liquid-crystal system (for example a thin film of cell gap R containing
a low-molecular-weight liquid crystal material), we could have

ξNI ≈ 10 nm, R ≈ 10µm ⇒ ξNI ≈ 10−3.

The approximate value for ξNI above can be seen to follow roughly from (2.1):

ξ2NI =
L

ANI
≈ 10−11J/m

105 J/m
3 = 10−16m2.

Such small values of the dimensionless coupling coefficient (ξ2NI ≈ 10−6) would
place a large weight on the terms from the bulk ordering potential, strongly
encouraging uniaxial order at the bulk-minimizing value of the scalar order
parameter.
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The reduced temperature θ corresponds to the temperature above or below
TSC measured in units of (TNI − TSC), which is approximately the width of
the coexistence temperature region (where both the isotropic and the ordered
phases are locally stable). For a fairly pure sample of a low-molecular-weight
liquid crystal, the coexistence region would typically be one or two degrees
Celsius wide, and so one can think of θ as roughly the temperature above/below
TSC in degrees Celsius. The critical temperatures of liquid crystal materials
vary quite a lot. The values of TNI for three commonly studied liquid crystals
are given in [27, Table D.3, p. 330] as TNI = 35.4◦C (5CB), 45.1◦C (MBBA),
135.5◦C (PAA). Reports for other experiments on MBBA give TSC = 45◦C
and TNI = 46◦C–see [17, Table I, p. 6695] (note however that the values for a0,
B, and C in this table are in error, transcribed incorrectly from [22, Table 1,
p. 168]). Thus at room temperature (taken as 21◦C), we would have θ = −24 for
MBBA–while PAA is not even in a liquid crystal phase at room temperature.

The nematic correlation length has a statistical-physics interpretation, how-
ever in our continuum model, it simply emerges as a singular-perturbation
parameter in the Euler-Lagrange equations associated with (1.1):

−L∆Q +
∂fb
∂Q

= 0.

Here · denotes the symmetric traceless part

∂fb
∂Q

= AQ−B
[
Q2 − 1

3
tr
(
Q2
)
I
]

+ C tr
(
Q2
)
Q,

which is associated with the constraints on Q. At T = TNI, we have

−ξ2NI∆Q +
1

ANI

∂fb
∂Q

= 0.

When Q is close to a stationary point of fb (such as Q = 0 or the bottom of a

well), then the term (1/ANI) ∂fb/∂Q will be close to zero; otherwise, it will be
O(1). The necessary balance between the terms in the equation above indicates
how ξNI determines the “core size” of a defect (via a scaling of Xi = xi/ξNI for
the “inner solution”).

We have defined ξNI by linearization around the isotropic state Q = 0,
which is always a critical point of fb and the solution one would see at the
center of an isotropic core. Note however that isotropic defect cores are only
stable at the high end of the nematic temperature range (see [10,24]). The core
structure of a defect is generally more complicated than isotropic disordering,
and this is discussed more in what follows. In some settings, it is more natural
to define the correlation length by linearizing around the nontrivial uniaxial Q
tensor that gives the global minimum of fb for T < TNI (see for example [23]).
Correlation lengths and core sizes depend on temperature, and this should be
taken into account in non-dimensionalizations if one intends to explore behavior
deep in the nematic phase–we do this below. In some situations, a more natural
intrinsic length scale is given by a “biaxial coherence length” (see [14, 21])–we
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consider this as well in what follows. The scaling we have adopted above has
been chosen for simplicity. It is by no means original. Similar scalings are
employed by all practitioners who work with Landau-de Gennes models. In
addition to references already cited, see for example [6, 8, 11,17,26,30].

In our rescaled free energy (2.3), all quantities are dimensionless; the size of
Ω is O(1); and at the high end of the nematic temperature range, F , Q, and θ
are O(1) as well. We can see under what circumstances the coupling coefficient
between the elastic and bulk terms is small:

0 < ξNI � 1 ⇔ 0 < ξNI � R,

that is, when the nematic correlation length (isotropic core size) is small com-
pared to a length scale associated with the problem geometry (size of Ω). The
dimensionless spatial gradient∇Q will be O(1) away from defects and O(1/ξNI)
in the vicinity of defects. The limit ξNI → 0 corresponds to the core size of
defects becoming vanishingly small compared to the size of the problem geom-
etry, with finite-size defects becoming point or line singularities in the limit.
This can be thought of as a “zero-core-size limit” or a “large-body limit.”

For the more general functional (1.7) (without the artificially introduced ε),
a similar rescaling would give

F [Q] =

∫
Ω

[1

2
ξ2NI

(
Qij,kQij,k + L2Qij,jQik,k + L3Qij,kQik,j

)
+
θ

2
tr
(
Q2
)
−
√

3 tr
(
Q3
)

+
1

4
tr
(
Q2
)
2
]
dV , (2.4a)

where

ξNI =
ξNI

R
, ξNI :=

√
L1

ANI
, L2 :=

L2

L1
, L3 :=

L3

L1
. (2.4b)

Here L2 and L3 are dimensionless and O(1). The definition of the dimensionless
parameter ε in (1.8) is not given in [12]. One can assume that it has been
constructed in a way that is analogous to what has been done here for ξNI in
(2.3) and above.

2.2 Low-temperature limit

In the “low temperature” regime, deep in the nematic phase, several effects are
manifested by the Landau-de Gennes models and their free-energy-minimizing
solutions. These include the degree of orientational order increasing, the po-
tential wells in fb becoming deeper with the barriers between the wells smaller,
and correlation lengths and defect core sizes becoming smaller as well. These
various features must be taken into account in a good scaling of the free-energy
functional for this range. The combination of these features serves to penalize
biaxiality less, encouraging localized biaxiality more as a way for equilibrium
tensor fields to avoid the large free energy costs of isotropic cores in defects, and
this is the motivation for papers such as [4,13] to analyze this limit rigorously.

Recall that the only temperature dependence of the parameters in (1.1) is
through the A parameter, assumed to have the form A = a0(T − TSC), a0 a
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positive constant, given in (1.2). Thus A becomes more and more negative,
deeper and deeper into the nematic phase. The behavior of the scalar order
parameter S and bulk potential fb in this range can be determined as follows.
Under the uniaxial assumption (1.3), one obtains

Q = S
(
n⊗ n− 1

3
I
)
⇒ fb(Q) =

A

3
S2 − 2B

27
S3 +

C

9
S4 =: f(S),

for which the nontrivial critical points are given by

S± =
B ±

√
B2 − 24AC

4C
≈ ±

√
−3A

2C
,

A

C
� −1, (2.5a)

with associated values f(S±) ≈ −A2/(4C), A/C � −1. The dimensionless
ratio A/C is proportional to the reduced temperature θ used previously:

A

C
=
ANI

C

A

ANI
=
ANI

C
θ, θ =

A

ANI
as in (2.3b).

Here the ratio ANI/C is dimensionless and O(1), and we see that

|S±| = O
(√
−θ
)
, − 1

C
f(S±) = O

(
θ2
)
, as θ → −∞.

We will rescale our single-elastic-constant Landau-de Gennes model (1.1) for the
low-temperature regime using this information and staying as close as possible
to the parameter definitions and notations used in the preceding subsection.

We scale lengths as before in (2.2), using some length scale R appropriate
to the geometry of the problem domain: xi = xi/R, Ω = Ω/R. We scale Q
and F by their low-temperature asymptotic values, given in (2.5):

Q =

√
−A
C

Q̃, F =
A2

C
R3F̃ . (2.6)

Introducing these scalings into (1.1) and simplifying, we obtain

F̃ [Q̃] =

∫
Ω

[1

2
ε2ξ2NI

∣∣∇Q̃∣∣2 − 1

2
tr
(
Q̃2
)
−
√

3 ε tr
(
Q̃3
)

+
1

4
tr
(
Q̃2
)
2
]
dV , (2.7a)

where

ε :=
1√
−θ

, θ =
A

ANI
=

T − TSC
TNI − TSC

, ξNI =
ξNI

R
, ξNI =

√
L

ANI
. (2.7b)

Here the definitions of θ, ξNI, and ξNI are exactly as before, and we have
adopted the small parameter ε as a control parameter:

θ � −1 ↔ 0 < ε� 1.

We have deliberately written the temperature-dependent nematic correlation
length, ξn, in terms of ε and the nematic correlation length at T = TNI (ξNI,
defined in (2.3b)):

ξn :=

√
L

−A
=

√
ANI

−A

√
L

ANI
=

1√
−θ

ξNI = ε ξNI. (2.8)
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The relevance of ξn can already be gleaned from the coupling between the terms
ξ2NI|∇Q|2 and θ tr(Q)2 in (2.3a). We can see above how the correlation length
scales with temperature, shrinking like 1/

√
−θ as θ becomes more and more

negative. In (2.7a), we have again used the relation ANI = B2/27C from (1.5)
to simplify the coefficient of the tr(Q3) term.

The relationship between the “large body” scaling, in (2.3) and (2.4), and
the “low temperature” scaling in (2.7) is given by

Q =
√
−θ Q̃, F = θ2F̃ , (2.9)

which can be verified directly from the definitions of Q, F , Q̃, F̃ , and θ, with
the help of ANI = B2/27C from (1.5). One can, in fact, derive (2.7) directly
from (2.3) by introducing the relations (2.9) into (2.3) and simplifying. We note
that (2.3) and (2.4) are not good scalings for exploring the low-temperature
limit (θ → −∞), because they do not take into account the behavior of |Q| in
that range:

tr
(
Q2
)

= O(|θ|), tr
(
Q3
)

= O
(
|θ|3/2

)
, tr

(
Q2
)
2 = O

(
|θ|2
)
, as θ → −∞.

In our free-energy functional rescaled for the low-temperature regime, (2.7),
all quantities are again dimensionless; the size of Ω is again O(1); and for

θ ≤ −1 (0 < ε ≤ 1), F̃ and Q̃ are O(1) as well. The non-dimensionalized
model shares many features with the functional (2.3), which is scaled for the
large-body regime. Both are left with the same two dimensionless parameters,
ξNI (the ratio of the nematic correlation length at T = TNI to the geometric
length scale R) and the reduced temperature θ (which enters (2.7) through
ε = 1/

√
−θ ). In (2.3), θ can be positive, negative, or zero, which allows

for using that scaling up to and including the co-existence temperature range
(0 ≤ θ ≤ 9/8), as in [30]; while in (2.7), θ < 0 is assumed–the two scaled models
are identical, in fact, when θ = −1 (for any ξNI). The models share the feature
of a dimensionless coupling coefficient between the elastic and the bulk terms
(ξ2NI in (2.3), ε2ξ2NI in (2.7)), and these coupling coefficients are expected to
be quite small in the respective regimes of interest. Both the large-body limit
explored in [2,12,16] (ξNI → 0) and the low-temperature limit in [4,13] (ε→ 0)
correspond to circumstances in which the (temperature dependent) core size
of defects becomes vanishingly small compared to the size of the domain–a
“zero-relative-core-size limit.”

The presence of the factor ε in the coefficient of the tr(Q̃3) term in (2.7),

f̃b,ε(Q̃) = −1

2
tr
(
Q̃2
)
−
√

3 ε tr
(
Q̃3
)

+
1

4
tr
(
Q̃2
)
2 (2.10)

drives that term to zero in the low-temperature limit and leaves the rescaled
bulk ordering potential in the form

f̃b,0(Q̃) = −1

2
tr
(
Q̃2
)

+
1

4
tr
(
Q̃2
)
2.

Thus f̃b,0 is expressed only in terms of even powers, tr
(
Q̃2
)

and tr
(
Q̃2
)
2, and

more closely resembles the types of Landau expansions found in the Ginzburg-
Landau theory of superconductivity. The potential f̃b,0 has a local maximum
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value of f̃b,0 = 0 at the isotropic state Q̃ = 0 and absolute minima given by

min f̃b,0 = −1

4
, when tr

(
Q̃2
)

= 1.

The distinguishing feature here is that the set of bulk-minimizing tensor order
parameters (Q̃ satisfying tr(Q̃2) = 1) includes a continuum of biaxial states
(in addition to uniaxial states of the form (1.3)). Thus the usual penalty from
fb for biaxiality vanishes in this limit. This behavior has been known for
some time (see [15]). It is the basis of the so-called “Lyuksyutov constraint”
(tr(Q2) = const), which has been used on occasion to obtain approximations
from Landau-de Gennes models deep in the nematic phase–see for example
[14,15,21]. The justification of the Lyuksyutov constraint is well illustrated by
(2.10), and this behavior also underlies the analyses in [4, 13].

The main thrust of [4] is to prove that at sufficiently low temperatures,
tensor fields that minimize the Landau-de Gennes free energy (1.1a) do not have
isotropic cores (even if boundary conditions dictate that a defect of some kind
must be present). Such tensor fields avoid the large free-energy cost of such
cores by going through localized biaxial transitions instead. The paper [13]
provides some generalizations of [4] and focuses some consideration on the
“vanishing elasticity limit” aspect. Both papers use some rescaling but leave
the free-energy functionals in partly dimensional form: the main integrals ((10)
in [4], (14) in [13]) have the physical dimensions of a volume and the coupling
coefficients are lengths squared. One can establish some connections with the
low-temperature scaling we have adopted here in (2.7). Both [4] and [13] scale
Q by the temperature-dependent scalar order parameter

√
2/3S+, whereas

here we have scaled Q by the asymptotic value of this,√
2

3
S+ ≈

√
−A
C

, for
A

C
� −1,

from (2.5a) and (2.6). The reduced temperatures, denoted by t in both papers
(but defined slightly differently in each), are related to θ in (2.3b) here via

t = − 1

27
θ in [4], t = −θ in [13],

and the coupling coefficients are related to ξNI in (2.3b) here by

L̃ =
1

9
ξ2NI in [4], L =

1

2
ξ2NI in [13].

In both papers, the rescaled integral functionals are parameterized by the large
parameter t, rather than the small parameter ε we have used here. If one were
to scale the integral (10) in [4] or (14) in [13] by 1/t and non-dimensionalize
the lengths, then one would arrive at something close to (2.7) here. The scaling
that we have adopted here also enables us to make contact with some aspects
of biaxiality in the low-temperature regime, which we discuss next.
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2.3 Biaxiality in the low-temperature regime

The biaxial nature of defects in typical temperature ranges (as modeled in the
Landau-de Gennes framework) was demonstrated in [25], based upon earlier
predictions. The size of such “biaxial cores” is known to be determined by the
(temperature-dependent) “biaxial coherence length,” defined in [14,21] as ξb :=√
L/(BS+). In the low-temperature regime, this can be related to parameters

we have used elsewhere in this note (using formulas in (1.5) and (2.7b)):

S+ ≈
√
−3A

2C
,
A

C
� −1 ⇒ ξb =

√
L

BS+
≈ 1

3
21/4ε1/2ξNI, 0 < ε� 1.

Observe the difference in the temperature dependence of ξb versus that of the
nematic correlation length ξn:

ξb =
1

3
21/4ε1/2ξNI

(
1 +O(ε)

)
, as ε→ 0 + vs ξn = ε ξNI, from (2.8).

At high temperatures, however, these lengths are essentially equivalent:

ANI =
B2

27C
, SNI =

B

3C
⇒ ξn =

√
L

ANI
= 3

√
L

BSNI
= 3ξb, at T = TNI.

We will see below that the biaxial coherence length can be identified from
a balance in the equilibrium Euler-Lagrange equations for Q for the “inner
solution” in a biaxial defect core.

There is a subtle mechanism by which biaxiality can enable defects that
cost less free energy than isotropic cores. This has been explored in several
papers, including [6, 10, 14, 17, 20, 21, 25, 26]. It can be described loosely as
follows. Recall that the values of the bulk free-energy density fb depend only
on the eigenvalues of Q. If one studies the surface of fb as a function of the two
independent eigenvalues of Q (parameterized as in (1.4), with eigenframe e1,
e2, e3), then one finds three wells, at positively ordered uniaxial states of the
form (1.3) with S = S+ > 0 (S+ as given in (2.5a)), each well corresponding
to a different director n = e1, e2, e3 (the solid circles in Figure 1). These
three global minima are separated from each other by saddle points, which
also correspond to uniaxial states but which are negatively ordered, with S =
S− < 0 (again from (2.5a), the crosses in Figure 1). An excursion by the
eigenvalues of Q from one well to another thus enables a reorientation of n
without rotating the eigenframe of Q. This mechanism is sometimes referred
to as “eigenvalue exchange,” and it is the mechanism at work in a “hybrid
cell” at extremely narrow cell gap [20]. A hybrid cell is a thin film of liquid
crystal sandwiched between substrates that are treated to coerce alignment of
the director parallel to one substrate and perpendicular to the other. At a
sufficiently small thickness of a hybrid cell, eigenvalue exchange has a lower
free energy than the competing ±π/2 rotation of the director. In geometries
that encourage a point defect or a disclination line (or such), instead of an
isotropic defect core, there typically would form a small structure (such as
a ring or torus) across which such an eigenvalue-exchange transition would
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occur [6, 10, 14, 17, 21, 26]. With the exception of the wells and the saddle
points, all other points along the path of such an eigenvalue excursion would
be biaxial.

A significant component of the cost of such a “biaxial escape” is climbing the
potential barrier to cross the “mountain pass” between two wells. In the low-
temperature regime, however, the magnitude of this potential barrier becomes
smaller, which can be seen as follows. In the low-temperature scaling (2.10)

(with Q̃ as defined in (2.6)), the critical scalar order parameters (rescaled

analogues of (2.5a) for f̃b,ε(Q̃)) are given by

S̃± =
3
√

3 ε±
√

27ε2 + 24

4
= ±

√
3

2
+

3
√

3

4
ε+O

(
ε2
)
.

Denoting Q̃± = S̃±
(
n⊗ n− I/3

)
, we obtain

f̃b,ε
(
Q̃±
)

= −1

4
∓ 1√

2
ε+O

(
ε2
)

and tr
(
Q̃2

±
)

= 1± 3√
2
ε+O

(
ε2
)
.

With the eigenvalues of Q̃ taking the path of least resistance along such an
excursion between wells, we would then have

f̃b,ε
(
Q̃+

)
≤ f̃b,ε

(
Q̃
)
≤ f̃b,ε

(
Q̃−
)
, f̃b,ε

(
Q̃−
)
− f̃b,ε

(
Q̃+

)
=
√

2 ε+O
(
ε2
)

(2.11a)

and

tr
(
Q̃2

−
)
≤ tr

(
Q̃2
)
≤ tr

(
Q̃2

+

)
⇒

∣∣tr(Q̃2
)
− 1
∣∣ ≤ 3√

2
ε+O

(
ε2
)
. (2.11b)

The O(ε) potential barrier seen in (2.11a) is much more favorable than the

cost of isotropic melting: f̃b,ε(0) − f̃b,ε(Q̃+) = 1/4 + O(ε). A smooth O(ε)

change in f̃b,ε (consistent with (2.11a)) over the course of an O(1) change in

Q̃ implies ∂f̃b,ε/∂Q̃ = O(ε) along such a path, and this can be seen from the
Euler-Lagrange equations in this scaling:

−ε2ξ2NI∆Q̃ +
[
tr
(
Q̃2
)
− 1
]
Q̃− 3

√
3 ε
[
Q̃2 − 1

2
tr
(
Q̃2
)
I
]

= 0.

The middle and last terms above are both seen to be O(ε) (with the help
of (2.11b)), and the necessary balance that must exist in the “interior layer”
between these terms and the leading term above gives a length scale in the
biaxial core of ε1/2ξNI (which is the low-temperature asymptotic value of ξb).
This dependence on reduced temperature (ε1/2 = (−θ)−1/4) is consistent with
results in [4,13], where some of these same quantities of interest are considered
in a more rigorous way. While biaxial cores are somewhat larger than isotropic
cores and shrink more slowly than isotropic cores as temperature is reduced,
they still become vanishingly small in either the large-body limit or the low-
temperature limit, as do the biaxial rings and tori and such.
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3 Conclusions

The Landau-de Gennes model is a mesoscopic model that contains intrinsic
length scales of molecular order associated with features such as core sizes of
point defects and disclination lines. The Oseen-Frank model, on the other
hand, is a macroscopic model and contains no such intrinsic length scales: the
defects of equilibrium director fields in Oseen-Frank models are point or line
singularities. The scaling analysis in Section 2 shows that the limits explored
in [2,4,12,13,16] concern the passage from a mesoscopic model to a macroscopic
model as the geometric length scales become large compared to the intrinsic
length scales. In such limits, core sizes (isotropic or biaxial) become zero.
The situation is analogous to a “London limit” for Ginzburg-Landau models
of superconductivity, the simplest example of which is

Eε[u] =
1

2

∫
Ω

|∇u|2 dA+
1

4ε2

∫
Ω

(
|u|2 − 1

)
2 dA, Ω ⊂ R2, (3.1)

as studied in [3]. Here u is a complex-valued order parameter field (with |u|2
giving a normalized local density of superconducting electron pairs), and ε
comes from a ratio of length scales. In the limit ε → 0, one approaches the
“London approximation,” in which |u| = 1 throughout Ω. The limits we have
examined here are also related to the “large body” limit of the Landau-Lifshitz
free energy in micromagnetics, which can be written

FLL[m] =

∫
Ω

[1

2
Cex|∇m|2 + ϕ(m)− µ0MsHe ·m

]
dV +

1

2
µ0

∫
R3

|Hs|2 dV.

Here m denotes the normalized magnetization field (M = Msm, |m| = 1, Ms

the saturation magnetization constant), Cex is the exchange constant, ϕ is the
anisotropy energy density, µ0 is the vacuum magnetic permeability, He is the
external applied magnetic field, and Hs is the magnetic stray field generated
by M . The function ϕ serves to encourage the alignment of m with certain
preferred directions. A simple example is ϕ = K(m ·m0)2/2, which encourages
m ⊥ m0 (for constant K > 0). See [7]. The physical dimensions of Cex are
energy per unit length, while those of K are energy per unit volume. Thus
an intrinsic length scale arises from

√
Cex/K, much in the same way that ξNI

and ξn arise in (2.3b), (2.4b), and (2.8). The common feature here is intrinsic
length scales arising from couplings between gradient terms and bulk terms.

The analyses in the papers [2,4,13,16] remain valid after a re-interpretation
is done of the problem parameters (into appropriate dimensionless forms)–the
functionals in (1.1a) versus (2.3a) and (1.7a) versus (2.4a) involve the same
terms in a formal sense, just differently scaled. One should take heed, however,
of the pitfalls of analyzing such a physical model in fully (or partially) dimen-
sional form. The numerical values of quantities of different physical dimensions
can change their relative sizes when the system of units is changed. It is also
the case that familiar Sobolev-type norms, such as

‖Q‖21 =

∫
Ω

[
|∇Q|2 + |Q|2

]
dV,
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(which are used in most of the papers in this area), can’t even be used in this
form unless lengths have been non-dimensionalized; otherwise the first term in
the integrand above would have dimensions of the reciprocal of length squared,
while the second term would be dimensionless (and the two terms couldn’t be
combined). We acknowledge that [5] is guilty of this error as well. A remedy
for this would be to use weighted Sobolev norms, such as

‖Q‖21 =

∫
Ω

[
w1|∇Q|2 + w2|Q|2

]
dV

with w1 and w2 chosen with dimensions to render the combination meaningful.
An additional difficulty of attempting to analyze such limits in dimensional
form is that as L → 0 in (1.1a), one quickly gets beyond the measured values
of L for real liquid crystal materials.

While the analyses in [2,4, 12,13,16] follow earlier work by others on mod-
els with some similar features (such as Ginzburg-Landau), technical challenges
accompany the analysis of Landau-de Gennes models by virtue of the tenso-
rial nature of the state variable and the multiple terms and parameters and
the complexity of the functionals. An effort to address some of the issues we
have taken up here was made in a brief appendix in [19]. We note that both
of these limits (“large body” and “low temperature”) are idealizations from
a physical point of view. When the size of the domain containing the liquid
crystal becomes too large (compared to intrinsic length scales), thermal fluc-
tuations would wash out any orientational order that other factors might try
to induce. Also, at sufficiently low temperatures, all liquid crystal materials
would eventually crystallize or transition to a glass or to a non-nematic liquid
crystal phase (and both the Landau-de Gennes and Oseen-Frank models would
no longer be valid). The study of such limits, however, can give useful insights.

One of the interesting aspects of the analyses done in the papers [2, 4, 12,
13,16] is that they provide, to some extent, a justification for using the Oseen-
Frank model to compute equilibrium director fields in the case when line discli-
nations are present: even though the Oseen-Frank free energy of such solutions
is infinite, the equilibrium director fields (found from the Euler-Lagrange equa-
tions) are the limiting director fields associated with solutions of a Landau-
de Gennes model, which solutions have finite free energy for all positive values
of the coupling coefficients, though diverging in the limit as the coupling coeffi-
cients approach zero. However, the divergence of the Oseen-Frank free-energy
functional F evaluated on any director field containing a disclination line pre-
vents it from being used to assess local or global stability of such solutions.

In all but the simplest of settings, one must resort to numerical methods
to approximate solutions of Landau-de Gennes or Oseen-Frank models, and
this sometimes introduces aspects that are closely related to issues we have
highlighted here. An example of this is the use of “penalty methods” for Oseen-
Frank models (or for the related Ericksen-Leslie hydrodynamic equations)–
see [1, 29]. This popular approach avoids imposing the constraint |n| = 1
pointwise (and the necessary introduction of an associated Lagrange-multiplier
field) by instead adding a term to the free-energy functional that penalizes
departures from |n| = 1. If the model (1.6) were to be left in dimensional
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form, then the penalized version of it could be written

Fξ[n] =
K

2

∫
Ω

[
|∇n|2 + ξ−2

(
|n|2 − 1

)
2
]
dV.

The purely numerical “penalty parameter” ξ must have the physical dimen-
sions of a length, and the macroscopic model now has the complexion of a
mesoscopic model. The smaller ξ is (compared to the size of the domain, say),
the greater the extent to which the constraint is imposed. Equilibria of Fξ that
possess defects would have finite “cores” of size O(ξ) (in which the length of n
would depart significantly from one). The non-dimensionalized version of the
penalized functional above (lengths scaled by R, energy by KR) is

Fξ[n] =
1

2

∫
Ω

[∣∣∇n∣∣2 + ξ−2
(
|n|2 − 1

)
2
]
dV ,

which in two space dimensions is equivalent to the Ginzburg-Landau functional
(3.1). All of the Ginzburg-Landau analytical machinery would then apply and
give analogous strong convergence results (away from singular sets) for min-
imizers of Fξ, as the dimensionless penalty parameter ξ → 0. Less appears
to be known in the setting of dynamics (liquid crystal director dynamics or
full Ericksen-Leslie hydrodynamics). Numerical discretization of such prob-
lems would introduce another length scale into the discretized model, the mesh
size or grid size (typically denoted by h), and one would need to take into
consideration different regimes of dimensionless ratios of h, ξ, and R.

Landau-de Gennes and Oseen-Frank models contain a large number of phys-
ical parameters, and parameter-dependent effects (changes of state of solutions,
bifurcations, structural phase transitions, behaviors in extreme ranges of pa-
rameters) are of significant importance in general. Dimensional analysis, scal-
ing, and balances (as used in boundary/interior-layer theory) provide a useful
means to understand and interpret some of these behaviors. They have enabled
us here to determine the proper interpretation of “vanishing-elasticity limits”
and to see one way that length scales for isotropic cores and biaxial cores can
be deduced. These simple tools provide a useful complement to approaches
coming from the realm of mathematical analysis.
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