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1 Introduction

Molecular beam epitaxy (MBE) is a widely practiced technique for depositing
atoms from a vapor phase onto a surface. The atoms stick to the surface and
then diffuse until they find a favorable site. This technique is very important
in growing thin films (see [8]). Recently, there have been some attempts to link
MBE with surface growth ideas from statistical physics and several experimen-
tal studies exhibiting MBE growth (see [9, 14]).

Under conditions typical of molecular beam epitaxy (MBE), evaporation
and the formation of bulk defects can be neglected. The height H(x, t) of the
surface above the substrate plane then satisfies a continuity equation,

∂tH +∇ · Jsurface{H} = F, (1.1)

where F is the incident mass flux out of the molecular beam. Since we are
interested in large scale features we neglect fluctuations in F (“shot noise”)
and in the surface current (“diffusion noise”). As a general rule, Jsurface, which
is the systematic current, depends on the whole surface configuration. If we
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keep only the most important terms in a gradient expansion, subtracting the
mean height H = Ft, use appropriately rescaled units of height, distance and
time [13], Equation (1.1) attains the followsing form

∂th = −γ∆2h− µ∇ ·
[
f
(
∇u2

)
∇h
]
, (1.2)

where γ and µ are two positive constants. Here, we use the common prac-
tice and disregard contributions to the current that are even in h, such as
∇(∇h)2, though they may well be relevant for the coarsening behavior of the
surface [12,13]. In Equation (1.2), the linear term describes relaxation through
adatom diffusion driven by the surface free energy, the second nonlinear term
models the nonequilibrium current [13, 14]. Assuming in-plane symmetry, it
follows that the nonequilibrium current is (anti)parallel to the local tilt ∇h,
with a magnitude f(∇h2) depending only on the magnitude of the tilt. For the
function f(∇h2), within a Burton-Cabrera-Frank-type theory (see [10,12]), for
small tilts the current is proportional to |∇h|, and in the opposite limit it is pro-
portional to |∇h|−1. This suggests the interpolation formula f(s2) = 1

1+s2 [13].
Using u(x, t) to replace h(x, t), considering the 1D case, we have the following
form

∂u

∂t
+ γuxxxx + µ

(
ux

1 + |ux|2

)
x

= 0, (x, t) ∈ Ω × (0, T ), (1.3)

where Ω = (0, π). On the basis of physical consideration, the equation is
supplemented by the following boundary conditions

ux(x, t) = uxxx(x, t) = 0, x = 0, π (1.4)

and the initial condition

u(x, 0) = u0(x), in Ω. (1.5)

Remark 1. There are four boundary conditions (BCs) for the equation (1.3), e.g.
two BCs at x = 0, π. Noticing that the essential BCs are ux(0, t) = ux(π, t) = 0.
So, we define

H2
E(Ω) =

{
w; w ∈ H2(Ω), wx(0, t) = wx(π, t) = 0

}
and the weak formulation of problem (1.3)–(1.5) in the following.

During the past years, many authors have paid much attention to Equa-
tion (1.3). In [11], in the limit of weak desorption, O. Pierre-Louis et al. derived
Equation (1.3) for a vicinal surface growing in the step flow mode. This limit
turned out to be singular, and nonlinearities of arbitrary order need to be taken
into account. Recently, M. Grasselli, G. Mola and A. Yagi [7] showed that the
2D case of equation (1.3) endowed with no-flux boundary conditions generates
a dissipative dynamical system under very general assumptions on ∂Ω on a
phase-space of L2-type. In [16], based on the iteration technique for regularity
estimates and the classical existence theorem of global attractors, Zhao and
Liu proved that the 2D case of problem (1.3)–(1.5) possesses a global attractor
on some affine space of Hk (0 ≤ k < +∞).
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The finite element method is an essentially discretization method for the
approximate solution of partial differential equations. It has the natural advan-
tage in keeping the physical properties of primitive problems. There are many
papers which have already been published to study the finite element method
for fourth order nonlinear parabolic equation. In [15], using finite element
method, Zhang consider the semi-discrete approximation and Full-discrete ap-
proximation for 1D Cahn–Hilliard equation which is also a fourth-order nonlin-
ear parabolic equation. In Elliott and French’s paper [6], for 2D Cahn–Hilliard
equation, a continuous in-time finite-element Galerkin approximation was con-
sidered. They use the nonconforming Morley element and derive optimal order
error bounds in L2. Barrett, Blowey and Garcke [1] have consider a fully
practical finite element approximation of the fourth order nonlinear degenerate
parabolic equation

ut +∇ ·
(
b(u)∇∆u

)
= 0,

where generically b(u) := |u|p for any given p ∈ (0,+∞). An iterative scheme
for solving the resulting nonlinear discrete system was analysed. In addition
to showing well-posedness of their approximation, they proved convergence in
one space dimension. For more recent results we refer the reader to [2,4,5] and
the references therein.

In this paper, we consider the finite element analysis for problem (1.3)–
(1.5). Noticing that the existence of a solution locally in time is proved by the
standard Picard iteration, global existence results are obtained by proving a
priori estimate for the appropriate norms of u(x, t). Adjusted to our needs, the
results is given in the following theorem.

Theorem 1. Assume that u0 ∈ H2
E(Ω), then there exists a unique global weak

solution u(x, t) such that

u ∈ L∞
(
0, T ;H2

E(Ω)
)
∩ L2

(
0, T ;H4(Ω)

)
, ut ∈ L2

(
0, T ;L2(Ω)

)
.

The outline of this paper is as follows. In the next section, we establish a
semi-discrete approximation and derive its error bound. In Section 3, the full-
discrete approximation for problem (1.3)–(1.5) is studied. In the last section,
some numerical experiments which confirm our results are performed.

Throughout this paper, we denote L2, Lp, L∞, Hk norm in (0, 1) simply
by ‖ · ‖, ‖ · ‖Lp , | · |∞ and ‖ · ‖k. Define the inner product of L2 space as (·,·),
the space

Lp(0, T ;X) =
{
u(t) : ‖u‖Lp(X) =

(∫ T

0

∥∥u(t)
∥∥p
X
dt
) 1
p

<∞
}
, 1 ≤ p ≤ ∞.

On the other hand, the letter C denotes generic constant independent of
the finite element division size not necessarily the same at different occur-
rences.

2 Semi-Discrete Approximation

Let Ih: 0 = x0 < x1 < · · · < xN = π be a finite element division for the interval
I = [0, π], hi = xi − xx−1, h = maxhi. Let S

(k)
h be the piecewise polynomial

Math. Model. Anal., 19(2):155–168, 2014.
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spline space with the degree k ≥ 3, and

S
(k)
h ⊂ H2

E(I) =
{
u ∈ H2(I) : ux(0) = ux(π) = 0

}
.

The weak formulation of problem (1.3)–(1.5) reads:

(ut, v) + γ
(
D2u,D2v

)
− µ

(
ux

1 + |ux|2
, vx

)
= 0, ∀v ∈ H2

E(I),

u(0) = u0(x). (2.1)

Here ut = ∂u
∂t , Du = ∂u

∂x . Based on (2.1), we define the semi-discrete finite

element approximation to problem (1.3)–(1.5): Find uh(t) : (0, T ]→ S
(k)
h such

that (
uh,t, vh

)
+ γ
(
D2uh, D

2vh
)

= µ

(
Duh

1 + |Duh|2
, Dvh

)
, ∀vh ∈ S(k)

h ,(
uh(0)− u(0), vh

)
= 0, ∀vh ∈ S(k)

h . (2.2)

It is easy to see that the conservation of mass for (2.2) holds as for the classical

solution. Setting vh = 1 ∈ S(k)
h in (2.2), we get∫ π

0

uh(t, x) dx =

∫ π

0

uh(0, x) dx, 0 ≤ t ≤ T.

Theorem 2. Let uh(0) ∈ H2
E(I), then there exists a unique approximation

solution uh(t) ∈ S(k)
h for problem (2.2), such that∥∥uh(t)

∥∥
2
≤ C

∥∥uh(0)
∥∥
2
, 0 ≤ t ≤ T (2.3)

and ∫ T

0

∥∥uh,t(t)∥∥2 dt ≤ C∥∥uh(0)
∥∥2
2
. (2.4)

where C is a positive constant depends only on γ, µ and T , independent of h.

Proof. The equation of problem (2.2) is an ordinary differential equation and
according to ODE theory, there exists a unique local solution to the problem
(2.2) in the interval [0, tn). If the estimate (2.3) is obtained, then according to
the extension theorem, we can obtain the existence of unique global solution.

Setting vh = uh in (2.2), we derive that

1

2

d

dt

∥∥uh(t)
∥∥2 + γ

∥∥D2uh
∥∥2 = µ

(
Duh

1 + |Duh|2
, Duh

)
≤ µ‖Duh‖2

= −µ
(
D2uh, uh

)
≤ γ

2

∥∥D2uh
∥∥2 +

µ2

2γ
‖uh‖2.

Therefore
d

dt

∥∥uh(t)
∥∥2 + γ

∥∥D2uh
∥∥2 ≤ µ2

γ
‖uh‖2. (2.5)
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Hence
d

dt

(
e−βt

∥∥uh(t)
∥∥2) ≤ 0, (2.6)

where β = µ2

γ . Integrating (2.6) with respect to the time t, we get∥∥uh(t)
∥∥ ≤ e β2 t∥∥uh(0)

∥∥ ≤ e β2 T∥∥uh(0)
∥∥, 0 ≤ t ≤ T. (2.7)

Setting vh = uh,t in (2.2), we deduce that

‖uh,t‖2 + γ
(
D2uh, D

2uh,t
)

= µ

(
Duh

1 + |Duh|2
, Duh,t

)
. (2.8)

Let

Fh(t) =
γ

2

∥∥D2uh
∥∥2 − µ

2

∫
Ω

ln
(
1 + |Duh|2

)
.

Differencing Fh(t) with respect to t, using (2.8), we get

d

dt
Fh(t) = γ

∫
Ω

D2uhD
2uh,tdx− µ

∫
Ω

DuhDuh,t
1 + |Duh|2

dx = −‖uh,t‖2 ≤ 0.

Therefore Fh(t) ≤ Fh(0), that is

γ

2

∥∥D2uh
∥∥2 +

µ

2

∫
Ω

ln
(
1 +

∣∣Duh(0)
∣∣2) ≤ γ

2

∥∥D2uh(0)
∥∥2 +

µ

2

∫
Ω

ln
(
1 + |Duh|2

)
.

Noticing that

µ

2

∫
Ω

ln
(
1 + |Duh|2

)
dx ≤ µ

2
‖Duh‖2 ≤

γ

4

∥∥D2uh
∥∥2 +

µ2

4γ
‖uh‖2

≤ γ

4

∥∥D2uh
∥∥2 +

µ2

4γ
eβT

∥∥uh(0)
∥∥2. (2.9)

Adding the above two inequalities together gives∥∥D2uh
∥∥2 ≤ 2

∥∥D2uh(0)
∥∥2 +

4

γ2
eβT

∥∥uh(0)
∥∥2, 0 ≤ t ≤ T. (2.10)

We also have

‖Duh‖2 = −
(
uh, D

2uh
)
≤ 1

2
‖uh‖2 +

1

2

∥∥D2uh
∥∥2. (2.11)

It then follows from (2.8) that

‖uh,t‖2 +
γ

2

d

dt

∥∥D2uh
∥∥2 = −µ

(
D2uh

1 + |Duh|2
− 2|Duh|2D2uh

(1 + |Duh|2)2
, ut

)
≤ µ

∥∥D2uh
∥∥‖uh,t‖+

µ

2

∥∥D2uh
∥∥‖uh,t‖

≤ 1

2
‖uh,t‖2 +

9

8

∥∥D2uh
∥∥2

≤ 1

2
‖uh,t‖2 + C

∥∥uh(0)
∥∥2
2
.
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Therefore, we get

‖uh,t‖2 + γ
d

dt

∥∥D2uh
∥∥2 ≤ 2C

∥∥uh(0)
∥∥2
2
.

Hence ∫ T

0

‖uh,t‖2 dt ≤ C
∥∥uh(0)

∥∥2
2
. (2.12)

By (2.7), (2.10), (2.11) and (2.12), we complete the proof of Theorem 2. ut

In order to consider error estimate, we first introduce a finite element ap-
proximation projection for a steady-state problem. Let u ∈ H2

E(I), define the

projection Rh : u→ Rhu ∈ S(k)
h such that

a(u−Rhu, vh) ≡ γ
(
D2(u−Rhu), D2vh

)
+ (u−Rhu,Rhu) = 0, ∀vh ∈ S(k)

h .
(2.13)

It then follows (2.13) that

‖u‖22 ≤ c0a(u, u), ∀u ∈ H2
E(I), (2.14)

where c0 is a positive constant depends only on γ and µ. Hence, a(u, v) is a
symmetrical positive determined bilinear form, and there exist a unique solution

uh ∈ S(k)
h for problem (2.13).

Based on the standard finite element method (see [3]), we have

‖u−Rhu‖+h‖u−Rhu‖1+h2‖u−Rhu‖2 ≤ Chr+1‖u‖r+1, 2 ≤ r ≤ k. (2.15)

Now, we consider the error estimate for the semi-discrete finite element
solution. Let u be the solution of (2.1), uh be the solution of (2.2). Denote
η(t) = u−Rhu and θ(t) = Rhu− uh, then

u− uh = u−Rhu+Rhu− uh = η(t) + θ(t). (2.16)

Note that u, uh and Rhu satisfy (2.1), (2.2) and (2.13). Then, θ(t) satisfies

(θt, vh) + γ
(
D2θ,D2vh

)
= (η − ηt, vh) +

(
Du

1 + |Du|2
− Duh

1 + |Duh|2
, Dvh

)
, ∀vh ∈ S(k)

h . (2.17)

Lemma 1. Let u be the solution of (2.1), uh be the solution of (2.2), u ∈
L∞(0, T ;H2(I)). Then, ∀ε ∈ (0, 1), there exists a constant C = C(u, uh(0), ε)
such that∥∥∥∥ Du

1 + |Du|2
− Duh

1 + |Duh|2

∥∥∥∥2 ≤ C(‖θ‖2 + ‖Dη‖2
)

+ ε
∥∥D2θ

∥∥2.
Proof. First of all, we give some estimates which will be used in this proof. It
follows from Theorem 2, (2.13), (2.14) that

‖u− uh‖1 ≤ ‖u‖1 + C
∥∥uh(0)

∥∥
2
≤ C. (2.18)
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Set g(s) = 1
1+s2 . Then, g′(s) = 1

1+s2 −
2ss′

(1+s2)2 . By Theorems 1 and 2, we

have
∥∥D2u

∥∥ ≤ C,
∥∥D2uh

∥∥ ≤ C. Therefore, there exists a positive constant
% ∈ (0, 1) such that∥∥∥∥ Du

1 + |Du|2
− Duh

1 + |Duh|2

∥∥∥∥2
=
∥∥g(Du)− g(Duh)

∥∥2 =
∥∥g′(%Du+ (1− %Duh)

)
(Du−Duh)

∥∥2
≤
∥∥g′(%Du+ (1− %Duh)

)∥∥2
∞‖Du−Duh‖

2

≤
∥∥∥∥ 1

1 + [%Du+ (1− %Duh)]2
− 2[%Du+ (1− %Duh)](%D2u− %D2uh)

(1 + [%Du+ (1− %Duh)])2

∥∥∥∥2
∞

× ‖Du−Duh‖2

≤ C‖Du−Duh‖2 = C‖Dη +Dθ‖2 ≤ C
(
‖Dη‖2 −

(
θ,D2θ

))
≤ ε
∥∥D2θ

∥∥2 + C
(
‖θ‖2 + ‖Dη‖2

)
. (2.19)

Hence, the proof of Lemma 1 is completed. ut

Theorem 3. Let u be the solution of (2.1), uh be the solution of (2.2), u(0) ∈
Hk+1(I), ut ∈ L2(0, T ;Hk+1(I)), and the initial value satisfies∥∥u(0)− uh(0)

∥∥ ≤ Chk+1
∥∥u(0)

∥∥
k+1

. (2.20)

Then, we have the following error estimate∥∥u(t)− uh(t)
∥∥ ≤ Chk(∥∥u(0)

∥∥2
k+1

+

∫ T

0

∥∥ut(τ)
∥∥2
k+1

dτ
) 1

2

, 0 ≤ t ≤ T.

Proof. By (2.15)–(2.16), we only need to estimate θ(t). Setting vh = θ in
(2.17), using Cauchy’s inequality, we immediately conclude that

1

2

d

dt
‖θ‖2 + γ

∥∥D2θ
∥∥2

≤
(
‖η‖+ ‖ηt‖

)
‖θ‖+

∥∥∥∥ Du

1 + |Du|2
− Duh

1 + |Duh|2

∥∥∥∥ ‖Dθ‖
≤ 1

2

(
‖η‖+ ‖ηt‖

)2
+

1

2
‖θ‖2 +

1

2γ

∥∥∥∥ Du

1 + |Du|2
− Duh

1 + |Duh|2

∥∥∥∥2 +
γ

2
‖Dθ‖2

≤ 1

2

(
‖η‖+ ‖ηt‖

)2
+

1

2
‖θ‖2 +

1

2γ

∥∥∥∥ Du

1 + |Du|2
− Duh

1 + |Duh|2

∥∥∥∥2
+
γ

2

∥∥D2θ
∥∥2 +

γ

8
‖θ‖2.

It then follows from the above inequality that

d

dt
‖θ‖2 + γ

∥∥D2θ
∥∥2 ≤ (‖η‖+ ‖ηt‖

)2
+

(
1 +

γ

4

)
‖θ‖2

+
1

γ

∥∥∥∥ Du

1 + |Du|2
− Duh

1 + |Duh|2

∥∥∥∥2 .
Math. Model. Anal., 19(2):155–168, 2014.
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Using Lemma 1, setting ε = γ2

2 , we have

d

dt
‖θ‖2 +

γ

2

∥∥D2θ
∥∥2 ≤ C(‖η‖21 + ‖ηt‖2

)
+ C‖θ‖2.

By Gronwall’s inequality, we deduce that

‖θ‖2 ≤ C
(∥∥θ(0)

∥∥2 +

∫ t

0

(∥∥η(τ)
∥∥2
1

+
∥∥ηt(τ)

∥∥2) dτ).
Combing (2.20) and (2.15) (Noticing that (Rhu)t = Rhut), using triangle in-
equality, we complete the proof of Theorem 3. ut

3 Full-Discrete Approximation

For any given positive integer M , let ∆t = T/M denote the size of time dis-
cretization. Denote Un = U(x, tn) for tn = n∆t, n = 0, 1, . . . ,M . We introduce
the backward Euler difference formula

ut(tn) =
un − un−1

∆t
+

1

∆t

∫ tn

tn−1

(τ − tn)utt(τ) dτ = δtu
n + εn. (3.1)

Here, if g(t) is a continuous function of t, let gn = g(tn).
Now, we define the full-discrete finite element form to approximate problem

(2.1): Find Un ∈ S(k)
h (n = 1, 2, . . . ,M) such that

(
δtU

n, vh
)

+ γ
(
D2Un, D2vh

)
= µ

(
DUn

1 + |DUn−1|2
, Dvh

)
, ∀vh ∈ S(k)

h ,(
U0 − u(0), vh

)
= 0, ∀vh ∈ S(k)

h . (3.2)

For the above form, if Un−1 is known and ∆t is sufficiently small, by solving
a positive definite system of linear equations which is equal to equation (3.2),
we can obtain Un. Let

un − Un = un −Rhun +Rhu
n − Un = ηn + θn, θn ∈ S(k)

h .

Using (3.2) and (2.13), we derive that(
δtRhu

n, vh
)

+ γ
(
D2Rhu

n, D2vh
)

=
(
ηn − εn − δtηn, vh

)
+ µ

(
Dun

1 + |Dun|2
, Dvh

)
, ∀vh ∈ S(k)

h . (3.3)

Adding (3.2) and (3.3) together, ∀vh ∈ S(k)
h , we have(

δtθ
n, vh

)
+ γ
(
D2θn, D2vh

)
=
(
ηn − εn − δtηn, vh

)
+ µ

(
Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2
, Dvh

)
. (3.4)
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Theorem 4. Let u be the solution of (2.1), Un be the solution of (3.2), u(0) ∈
Hk+1(I), ut ∈ L2(0, T ;Hk+1(I)), utt ∈ L2(0, T ;L2(I)), ∆t/h2 ≤ c, and U0 ∈
S
(k)
h satisfies ∥∥u(0)− U0

∥∥
i
≤ Chk+1−i∥∥u(0)

∥∥
2
,

where i = 0, 1. Then if h is sufficiently small, there exists a constant C = C(u)
which is independent of h, ∆t and n, such that∥∥un − Un∥∥ ≤ C(∆t+ hk), n = 0, 1, . . . ,M. (3.5)

Proof. First of all, we give a posterior hypothesis: There exits a h0, when
0 < h ≤ h0, we have

|Dum −DUm|∞ ≤ C, m = 1, 2, . . . , n− 1. (3.6)

We will prove the correctness of (3.6) in the end of this proof.

Setting vh = θn in (3.4), we derive that(
δtθ

n, θn
)

+ γ
∥∥D2θn

∥∥2
≤
∥∥ηn − εn − δtηn∥∥∥∥θn∥∥+ µ

∥∥∥∥ Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2

∥∥∥∥∥∥Dθn∥∥
≤ 1

2

∥∥ηn − εn − δtηn∥∥2 +
1

2

∥∥θn∥∥2 +
∥∥Dθn∥∥2

+
µ2

4

∥∥∥∥ Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2

∥∥∥∥2
≤ 1

2

∥∥ηn − εn − δtηn∥∥2 +

(
1

2
+

1

2γ

)∥∥θn∥∥2 +
γ

2

∥∥D2θn
∥∥2

+
µ2

4

∥∥∥∥ Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2

∥∥∥∥2.
Hence ∥∥θn∥∥2 +

γ

2
∆t
∥∥D2θn

∥∥2
≤
∥∥θn−1∥∥2 + 2∆t

{
1

2

∥∥ηn − εn − δtηn∥∥2 +

(
1

2
+

1

2γ

)∥∥θn∥∥2
+
µ2

4

∥∥∥∥ Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2

∥∥∥∥2}. (3.7)

Using (2.15), (3.1) and (3.6), we get∥∥ηn∥∥ ≤ Chk+1
∥∥u(tn)

∥∥
k+1

,∥∥εn∥∥ ≤ ∫ tn

tn−1

∥∥utt(τ)
∥∥ dτ ≤ (∆t)

1
2

( ∫ tn

tn−1

∥∥utt(τ)
∥∥2 dτ) 1

2
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and ∥∥δtηn∥∥ =
∥∥∥ 1

∆t

∫ tn

tn−1

ηt(τ) dτ
∥∥∥ ≤ C 1

∆t
hk+1

∫ tn

tn−1

∥∥ut(τ)
∥∥
k+1

dτ

≤ C 1

(∆t)
1
2

hk+1
( ∫ tn

tn−1

∥∥ut(τ)
∥∥2
k+1

dτ
) 1

2

.

In addition, we have∥∥∥∥ Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2

∥∥∥∥
≤
∥∥∥∥ Dun

1 + |Dun|2
− Dun

1 + |Dun−1|2

∥∥∥∥+

∥∥∥∥ Dun

1 + |Dun−1|2
− Dun

1 + |DUn−1|2

∥∥∥∥
+

∥∥∥∥ Dun

1 + |DUn−1|2
− DUn

1 + |DUn−1|2

∥∥∥∥
≤
∥∥∥∥ Dun(Dun +Dun−1)

(1 + |Dun|20(1 + |Dun−1|2)

(
Dun −Dun−1

)∥∥∥∥
+

∥∥∥∥ Dun(Dun−1 +DUn−1)

(1 + |Dun−1|2)(1 + |DUn−1|2)

(
Dun−1 −DUn−1

)∥∥∥∥
+

∥∥∥∥ Dun −DUn1 + |DUn−1|2

∥∥∥∥
≤
∣∣Dun(Dun +Dun−1

∣∣
∞

∥∥Dun −Dun−1∥∥
+
∣∣Dun∣∣∞∣∣Dun−1+DUn−1

∣∣
∞

∥∥Dun−1−DUn−1∥∥+
∥∥Dun−DUn∥∥. (3.8)

By Theorem 1 and Sobolev’s embedding theorem, we have

|Du|∞ ≤ C
∥∥un∥∥

2
≤ C, (3.9)∣∣Dun +Dun−1

∣∣
∞ ≤ C

(∣∣Dun∣∣∞ +
∣∣Dun−1∣∣∞) ≤ C(∥∥un∥∥2 +

∥∥un−1∥∥
2

)
≤ C,

and∣∣Dun−1+DUn−1
∣∣
∞ ≤

∣∣Dun−1−DUn−1∣∣∞ + 2
∣∣Dun−1∣∣∞ ≤ C+2

∣∣Dun−1∣∣∞.
(3.10)

We have used the posterior hypothesis in (3.10). Adding (3.8)–(3.10) together
gives∥∥∥∥ Dun

1 + |Dun|2
− DUn

1 + |DUn−1|2

∥∥∥∥
≤ C

(∥∥Dun −Dun−1∥∥+
∥∥Dun−1 −DUn−1∥∥+

∥∥Dun −DUn∥∥)
≤ C

(∥∥Dun −Dun−1∥∥+
∥∥Dηn−1 +Dθn−1

∥∥+
∥∥Dηn +Dθn

∥∥)
≤ C

( ∫ tn

tn−1

∥∥Dut(τ)
∥∥ dτ +

∥∥Dηn−1∥∥+
∥∥Dηn∥∥+

∥∥Dθn−1∥∥+
∥∥Dθn∥∥)

≤ C
(

(∆t)
1
2

( ∫ tn

tn−1

∥∥Dut(τ)
∥∥2 dτ) 1

2

+ hk +
∥∥Dθn−1∥∥+

∥∥Dθn∥∥).



Finite Element Method for a Nonlinear Equation 165

We also have

2C
∥∥Dθn∥∥2 = −2C

(
θn, D2θn

)
≤ γ

2

∥∥D2θn
∥∥2 +

2C2

γ

∥∥θn∥∥2.
Taking above estimates into (3.7), we derive that∥∥θn∥∥2 − ∥∥θn−1∥∥2 + C∆t

(∥∥Dθn∥∥2 − ∥∥Dθn−1∥∥2)
≤ C∆t

(
2C

γ

∥∥θn∥∥2 + h2k
∥∥u(tn)

∥∥2
k+1

)
+ C

[
h2k + (∆t)2

]( ∫ tn

tn−1

(∥∥ut(τ)
∥∥2
k+1

+ ‖utt‖2
)
dτ
)
.

Taking the sum of n, noticing that ‖Dθ0‖ ≤ Chk‖u(0)‖1, n∆t = tn ≤ T , we
obtain ∥∥θn∥∥2 ≤ ∆t[C∥∥Dθ0∥∥2 +

n∑
i=1

2C2

γ

∥∥θi∥∥2]
+ C

[
(∆t)2 + h2k

]( ∫ tn

0

(∥∥ut(τ)
∥∥2
2k

+ ‖utt‖2
)
dτ
)

≤ ∆t
[
Ch2k

∥∥u(0)
∥∥2
1

+

n∑
i=1

2C2

γ

∥∥θi∥∥2]
+ C

[
(∆t)2 + h2k

]( ∫ tn

0

(∥∥ut(τ)
∥∥2
2k

+ ‖utt‖2
)
dτ
)
.

Let ∆t be sufficiently small, which satisfies 2C2

γ ∆t ≤ 1
2 , we deduce that

∥∥θn∥∥2 ≤ C∆t n−1∑
i=1

∥∥θi∥∥2 + C
[
(∆t)2 + h2k

]
.

Using the discrete Gronwall inequality, (2.13) and triangle inequality, we obtain
(3.5).

Now, in order to complete the proof of Theorem 4, we only need to prove
the posterior hypothesis (3.6). We can use inductive method. when m = 0,
based on the initial approximation assumption and the finite element inverse
inequality, letting h ≤ h0 and h0 be sufficiently small, we obtain (3.6). If we
assume that (3.6) is correct for m = l − 1, based on the above proof, we can
easily obtain that the estimate (3.5) is correct for n = l, where C is a constant
independent of n, ∆t and h (noticing that tn ≤ T ). Using finite element inverse
inequality, interpolation approximation properties and (3.5), we have

|Dul −DU l|∞ ≤ C
∥∥ul − U l∥∥

2
≤ C

(∥∥ul − ulI∥∥2 +
∥∥ulI − U l∥∥2)

≤ C
(∥∥ul − ulI∥∥2 + h−2

∥∥ulI − U l∥∥)
≤ C

[∥∥ul − ulI∥∥2 + h−2
(∥∥ulI − ul∥∥+

∥∥ul − U l∥∥)]
≤ C

(
hk−2 + h−2∆t

)
≤ C,
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Figure 1. The approximation solution of Full-discrete form.

where ui ∈ S(3)
h is the Hermite type interpolation approximation of the func-

tion u. Hence, (3.6) is correct for m = l. Then, using the inductive method, the
rationality of (3.6) is proved. Therefore, we complete the proof of Theorem 4.
ut

4 Numerical Approximation

In this section, using the full-discrete form (3.2), we approximate the solution
of problem (1.3)–(1.5). Let

γ = µ = 1, h =
π

400
, ∆t =

1

100
, T = 1, u0(x) = cosx.

We get the solution which evolves from t = 0 to t = 1 (cf. Figure 1).
In addition, we consider the change of error when the time t = 0.5. Since

there is no exact solution to problem (1.3), we make a comparison between
the solution of (3.2) on coarse mesh and the fine mesh. We choose ∆t = 0.1,
0.05, 0.025, 0.0125, respectively to solve (3.2), set umin

N (x, 0.5) as the solution
for ∆tmin = 0.001 and denote

err(0.5, ∆t) =
(∫ 1

0

[
ukN (x, 0.5)− umin

N (x, 0.5)
]2
dx
) 1

2

, k = 1, 2, 3, 4. (4.1)

Then the error is shown in Table 1.

Table 1. The error for difference ∆t at t = 0.5.

∆t err(0.5,∆t)
err(0.5,∆t)

∆t
err(0.5,∆t)

(∆t)2

0.1 0.0421 0.421 4.21
0.05 0.0195 0.390 7.80
0.025 0.0075 0.225 9.00
0.0125 0.0013 0.052 4.16

In Table 1, the third column err(0.5,∆t)
∆t is monotone decreasing along with

the time step’s waning and the fourth column err(0.5,∆t)
(∆t)2 is not monotone de-
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Table 2. The error for difference h at t = 0.5.

h err(h, 0.5)
err(h,0.5)

h
err(h,0.5)

h2
err(h,0.5)

h3

0.0785 1.2221 × e−6 1.5560 × e−5 1.9812 × e−4 2.5238 × e−3

0.0393 1.1963 × e−7 3.0464 × e−6 7.7576 × e−5 1.9740 × e−3

0.0196 8.9818 × e−9 4.5744 × e−7 2.3297 × e−5 1.1886 × e−3

0.0098 2.0212 × e−9 2.0588 × e−7 2.0971 × e−5 2.1399 × e−3

Table 3. The error for difference h and ∆t at t = 0.5.

h ∆t err(h,∆t, 0.5)
err(h,∆t,0.5)

h3+∆t

0.2614 0.05 3.7381 × e−4 5.5084 × e−3

0.1963 0.025 2.5217 × e−4 7.7438 × e−3

0.1571 0.0167 1.2442 × e−4 6.0465 × e−3

0.1257 0.0125 5.1838 × e−5 3.5785 × e−3

creasing along with the time step’s waning. Then the order of convergence for
time belongs O(∆t) and O(∆t2). It is easy to see that the result of numerical
analysis on time is better than theoretical result. The reason may be the exist
of nonlinear term or the limit of theoretical proof tool.

Now, we consider the error for difference h at t = 0.5. We choose h =
π
40 ,

π
80 ,

π
160 ,

π
320 , respectively to solve (3.2), set umin

N (x, 0.5) as the solution for
h = π

400 , ∆t = 1
100 , denote

err(h, 0.5) =
(∫ 1

0

[
umN (x, 0.5)− umin

N (x, 0.5)
]2
dx
) 1

2

, m = 1, 2, 3, 4. (4.2)

Then the error is shown in Table 2.
In Table 2, it is easy to see that the fourth column err(h,0.5)

h2 is monotone

decreasing along with space step’s waning. The fifth column err(h,0.5)
h3 is not

monotone increase along with space step’s waning, and it tends to a positive
constant when the space subdivision is small enough. Hence, we can find a

positive constant C, such that err(h,0.5)
h3 ≤ C, which means the order of error

estimates is O(h3).
On the other hand, we consider the error for difference h and ∆t at t = 0.5.

We choose (h,∆t) = ( π12 ,
1
20 ), ( π16 ,

1
40 ), ( π20 ,

1
60 ), ( π25 ,

1
80 ), respectively to solve

(3.2), set umin
N (x, 0.5) as the solution for h = π

400 , ∆t = 1
100 , use discrete L2

norm to obtain the error err(h,∆t, 0.5) for t = 0.5, which is showed in Table 3.

It is easy to see that the third column err(h,∆t,0.5)
h3+∆t is tend to a positive

constant. Hence, we can find a positive constant C, such that err(h,∆t,0.5)
h3+∆t ≤ C,

which means the order of error estimates is O(h3 +∆t).
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