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Abstract. This paper is devoted to the analysis of a relaxation-type numerical
scheme for a nonlinear Schrödinger equation arising in plasma physics. The scheme is
shown to be preservative in the sense that it preserves mass and energy. We prove the
well-posedness of the semidiscretized system and prove convergence to the solution
of the time-continuous model.
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1 Introduction

The design of numerical schemes for nonlinear Schrödinger equations and the
convergence analysis have been a very active field since decades. Such an
interest is justified by the various applications of the Schrödinger equation
in several fields. The basic schemes are of Crank–Nicholson, Runge–Kutta,
symplectic and splitting types [1, 2, 7, 8, 10, 11, 12, 13, 14] and most of those
schemes have the main drawback of being nonconservative. In general they do
not conserve the total energy while most of the continuous models do, except
in some special situations when dissipation or gain of the energy occurs. Also,
these models suffer from oscillations in the semi-classical regime if the time and
space steps are not very small and we refer to [9] for further references and a
rich review article on the topic.
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The aim of this paper is the formulation and the analysis of a relaxation
scheme for the following nonlinear Schrödinger equation arising in plasma
physics,

Sc:

{
i∂tu = −∆u− div

(
|∇φ|2∇φ

)
, t ≥ 0, x ∈ R3,

∆φ = u, u(t = 0, x) = u0(x).

The operator ∆ = ∇2 denotes the laplacian, ∂t the partial derivative with
respect to time and div denotes the divergence operator.

In the framework of long wave oscillations, the low frequency motions in
a nonlinear plasma can be considered quasi-neutral. The linearized hydrody-
namical equations for an electron gas and Maxwell’s equations offer then a
possible mathematical description (neglecting the interaction of high frequency
oscillations) for the evolution of the electric field E(

∂2
t + ω2

e

)
E + c2∇∧ (∇∧ E)− 3v2

Te∇ divE + ω2
e

δn
n0

E = 0,

where ∂2
t denotes the second partial derivative with respect to time and ∇ ∧ ·

denotes the rotational operator. Also, ωe, n0 and vTe denote the pulsation of the
plasma, the density of electrons and the thermal electron velocity respectively.
Now, we assume that the frequency of the oscillations is close to that of the
plasma and let E = eiωpt Ẽ with ∂tẼ << ωp Ẽ. Furthermore, if we neglect the
second time derivative term and assume that the electron distribution follows
the Boltzmann’s law δn

n0
= |Ẽ|2

16πn0(Te+Ti)
where Te and Ti denote the electron

and ion temperatures respectively, the PDE above becomes

2iωp∂tẼ + c2∇∧ (∇∧ Ẽ)− 3v2
Te∇ div Ẽ +

ω2
p

16πn0(Te + Ti)
|Ẽ|2 Ẽ = 0.

In the potential case, we have Ẽ = ∇φ, therefore, if we apply the div operator
on both sides of the PDE above and use a scaling argument, we obtain the
system Sc and we refer the reader to [3] for more details concerning the formal
derivation of this family of models.

The system Sc has been formally derived and analyzed in [5]. In particular
it is shown that it enjoys the following conservation laws

N (t) =

∫
R3

∣∣∇φ(t, x)
∣∣2 dx = N (t = 0),

E(t) =
1

2

∫
R3

∣∣∆φ(t, x)
∣∣2 dx− 1

4

∫
R3

∣∣∇φ(t, x)
∣∣4 dx = E(t = 0). (1.1)

Let Hk(R3) denote the usual Sobolev space of order k = 1, 2, ... and let us
introduce the space

Hk =
{
f ∈ L6

(
R3
)
∩ C

(
R3
)

: ∇f ∈ Hk
(
R3
)}
,

endowed with the norm ‖f‖Hk = ‖∇f‖Hk . For the mathematical analysis of
the system Sc, we study the following system

S ′c:

{
i∂t∇φ = −∆∇φ+∇

(
−∆−1

)
div
(
|∇φ|2∇φ

)
,

∆φ = u, φ(t = 0, x) = φ0(x).
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Let us summarize the properties of the operator ∇(−∆−1) div. For that pur-
pose, we introduce the following space

V :=
{
f ∈

(
D′
(
R3
))3

such that ∃φ ∈ D′
(
R3
)

with ∇φ = f
}
.

In Ref. [5], it is proved that there exists an operator B continuous on Lp(R3)
for all 1 < p <∞ such that its restriction to functions in D(R3) coincides with
the operator ∇(−∆−1) div. In particular, for all f ∈ Lp(R3) (1 < p <∞), one
has divB f = div f , B f ∈ V and ‖B f‖Lp ≤ c ‖f‖Lp , where c is a universal
constant. It is also proved that there exists an operator C such that if f ∈
D(R3), then C coincides with ∇(−∆)−1 and maps continuously Lp(R3) into

L
3p

3−p for all 1 < p < 3. Moreover, if div f ∈ Lp(R3) and f ∈ L
3p

3−p then
C(div f) = B f for all 1 < p < 3. Therefore, the property∇(−∆)−1 div f = Bf
holds true on D(R3) and by density for regular enough functions. With this
definition in mind, it is rather easy to show that the systems Sc and S ′c are
equivalent as soon as φ ∈ C([0, T ],H1) (cf. [5]). Next, one introduces the
functional

T : ∇φ 7→ eit∆∇φ0 − i
∫ t

0

ei(t−s)∆∇
(
−∆−1

)
div
(∣∣∇φ(s)

∣∣2∇φ(s)
)
ds,

where eit∆ denotes the group generated by the free Schrödinger equation i∂tu =
−∆u. It is rather standard to prove that φ ∈ L∞([0, T ],H1) satisfies T (∇φ) =
∇φ if and only if φ satisfies S ′c (equivalently Sc) (cf. [5]). Next, we introduce
the following functional spaces

X :=
{
∇f ∈ L∞

(
[0, T ], L2

(
R3
)
∩ V

)
∩ L 8

3

(
[0, T ], L4

(
R3
)
∩ V

)}
,

Y :=
{
∇f ∈ X, ∇2f ∈ L∞

(
[0, T ], L2

(
R3
))
∩ L 8

3

(
[0, T ], L4

(
R3
))}
⊂ X.

In Ref. [5], using Strichartz estimates, the author shows that for large enough
radius R, the mapping T maps the ball of a well chosen radius R in Y into
itself and is a contraction in the X norm for small enough time T > 0. Thus
there exists a unique solution ∇φ ∈ C([0, T ], H1) to the equation

i∂t∇φ = −∆∇φ+∇
(
−∆−1

)
div
(
|∇φ|2∇φ

)
.

Since X ⊂ V, it holds that ∇φ is the gradient of φ ∈ D′. Eventually, thanks
to the fact that {f ∈ H1(R3)3, ∃φ ∈ D′, ∇φ = f} = {∇φ, φ ∈ H1}, we can
choose φ ∈ H1. The global-in-time existence is obtained using the conservation
laws with a smallness assumption on the initial data.

In summary, we have the following

Theorem 1. [5] Let φ0 ∈ H1, then there exists a positive time T (φ0) > 0 such
that the system{

i∂t∇φ = −∆∇φ+∇
(
−∆−1

)
div
(
|∇φ|2∇φ

)
,

φ(t = 0, x) = φ0(x)
(1.2)

admits a unique maximal solution φ ∈ C0([0, T (φ0)[,H1). In particular, φ is the
unique solution to Sc. Moreover, if ‖φ0‖H1 is small enough, then T (φ0) = +∞.

Math. Model. Anal., 19(2):257–274, 2014.
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It is rather easy to extend Theorem 1 as follows

Corollary 1. Let φ0 ∈ Hm, m ≥ 1, then the unique solution φ according to
Theorem 1 is in fact in C0([0, T (φ0)[,Hm). Moreover, the following regularity
holds

φ ∈ C0
([

0, T (φ0)
[
,Hm

)
∩ C1

([
0, T (φ0)

[
,Hm−2

)
∩ C2

([
0, T (φ0)

[
,Hm−4

)
.

Proof. The first claim of the Theorem is easy and we refer to [5]. Let us sketch
the proof of the regularity part. We have obviously following the first part that
∇φ ∈ C0([0, T (φ0)[, Hm). Therefore

∂t∇φ = i∆∇φ− i∇
(
−∆−1

)
div
(
|∇φ|2∇φ

)
∈ C0

([
0, T (φ0)

[
, Hm−2

)
.

The loss of regularity is due to the Laplacian. Now, we set ψ = ∂t∇φ and
observe that the formal derivative with respect to time of (1.2) implies that

∂tψ = i∆ψ − i∇
(
−∆−1

)
div
(
2<(ψ∇φ̄) ∇φ+ |∇φ|2ψ

)
.

Hence it holds easily that ∂tψ = ∂
(2)
t ∇φ ∈ C0([0, T (φ0)[, Hm−4), which finishes

the proof. ut

Now, we turn to the discretization in time of our problem. As pointed
above, the systems Sc and S ′c being equivalent, we shall focus on the former
one. The discretization in space can be achieved with finite differences or finite
elements methods. We consider N points for the time discretization so that for
the computation time it holds that Tδt < T where T is the existence time of
the solution of the continuous system. The time step δt is given by δt = Tδt

N .
We shall denote by fn the approximation of the continuous function f at time
tn = nδt. Eventually, we define fδt(t, x) =

∑N−1
n=0 f

n(x)I[tn,tn+1)(t) where
I[tn,tn+1) is the characteristic function on the half open interval [tn, tn+1). Now,
in order to construct a conservative scheme, we follow the relaxation method
of Besse developed in [4] for the case of a Schrödinger equation with an even
integer power nonlinearity. For that purpose, we introduce an extra variable ξ
to the system S ′c as follows

i∂t∇φ = −∆∇φ+∇
(
−∆−1

)
div (ξ∇φ) ,

ξ = |∇φ|2,
φ(t = 0, x) = φ0(x),

(1.3)

where we have omitted u = ∆φ, as this quantity can be computed in a post-
processing step. Next, we consider its discretized version at times tn = n δt
and tn+ 1

2
= (n+ 1

2 ) δt that reads as follows

Sd:



i
∇φn+1 −∇φn

δt
= −∆∇φ

n+1 +∇φn

2

+∇
(
−∆−1

)
div

(
ξn+ 1

2
∇φn+1 +∇φn

2

)
,

ξn+ 1
2 + ξn−

1
2

2
=
∣∣∇φn∣∣2,

φ(t = 0, x) = φ0(x), ξ−
1
2 = |∇φ0|2.
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First we show the existence of a solution to the semi-discrete scheme, i.e.

Theorem 2. Let φ0 ∈ Hm with m > 3
2 , then there exists a unique maximal

solution (φδt, ξδt) of Sd in L∞([0, Tδt];Hm ×Hm) such that

sup
t∈[0,Tδt]

(
‖φδt‖Hm + ‖ξδt‖Hm

)
≤ C

(
T, ‖φ0‖Hm

)
.

Furthermore we prove the convergence to the continuous solution according
to Theorem 1 and Corollary 1.

Theorem 3. Let φ0 ∈ Hm+4 and φ be the maximal solution of Sc according to
Theorem 1 and Corollary 1, then it holds that lim infδt→0 Tδt ≥ T and ∀τ < T ,
the solution (φδt, ξδt) to Sd converges to (φ, |∇φ|2) as δt → 0 in L∞([0, τ ];
Hm ×Hm).

The outline of the paper is as follows. In Section 2 we prove that the scheme
Sd conserves discretized versions of the quantities defined in (1.1). In Section 3
we prove Theorem 2, i.e. the existence of a unique maximal solution to the
scheme Sd. In Section 4 we prove the convergence of these discretized solutions
to the solution of S ′c according to Theorem 1 which we have formulated in
Theorem 3.

2 Conservation Laws

In this section, we show that our scheme conserves the physical quantities mass
and energy. These properties guarantee some stability of numerical simulations.
Indeed, we claim that the discrete system Sd enjoys the following property.

Lemma 1. Assume that Sd admits a solution (φn, ξn+ 1
2 )n in `∞([0, N ];

H2 ×H2). Then ∫
R3

∣∣∇φN ∣∣2 dx =

∫
R3

|∇φ0|2 dx, (2.1)∫
R3

(∣∣∆φN ∣∣2−1

2
ξN+ 1

2 ξN−
1
2

)
dx =

∫
R3

(
|∆φ0|2−

1

2
ξ

1
2 ξ−

1
2

)
dx. (2.2)

Proof. The proof is based on formal calculation that can be made rigorous
using standard regularization arguments. On the one hand, we multiply the

first line of Sd by ∇φ̄n+1
+∇φ̄n and integrate over R3. Using an integration

by parts, one obtains

i

δt

∫
R3

∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2 dx

=

∫
R3

1

2

(∣∣∆(φn+1 + φn
)∣∣2 − 2

δt
=
(
∇φn∇φ̄n+1))

dx

− 1

2

∫
R3

∆
(
−∆−1

)
div
(
ξn+ 1

2 ∇
(
φn+1 + φn

))(
φ̄n+1 + φ̄n

)
dx.

Math. Model. Anal., 19(2):257–274, 2014.
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Taking the imaginary part, we get

1

δt

∫
R3

∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2 dx = −1

2
=
∫
R3

ξn+ 1
2

∣∣∇(φn+1 + φn
)∣∣2 dx.

Now, from the second equation of the system Sd we conclude that ξn+ 1
2 can

be computed as a real valued linear combination of |∇φk|, k = 0 . . . n. There-

fore, we have that − 1
2

∫
R3 ξ

n+ 1
2 |∇(φn+1 + φn)|2 dx is real valued and we get∫

R3 |∇φn+1|2 − |∇φn|2 dx = 0. Eventually, a summation with respect to n
proves (2.1).

On the other hand, in order to prove (2.2) we proceed in two steps. The

first step consists in multiplying the second equation of Sd by ξn+ 1
2 − ξn− 1

2 ,
thus getting (

ξn+ 1
2

)2 − (ξn− 1
2

)2
= 2
∣∣∇φn∣∣2(ξn+ 1

2 − ξn− 1
2

)
.

Therefore, a summation over n gives

(
ξN−

1
2

)2 − (ξ− 1
2

)2
= −2

N−1∑
n=0

(∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2)ξn+ 1

2

− 2
∣∣∇φ0

∣∣2ξ− 1
2 + 2

∣∣∇φN ∣∣2ξN− 1
2 . (2.3)

The second step consists in multiplying the first line of Sd by ∇φ̄n+1 − ∇φ̄n

and integrating over R3. Therefore, after an integration by parts, one obtains

i

δt

∫
R3

∣∣∇ (φn+1 − φn
)∣∣2 dx =

1

2

∫
R3

(∣∣∆φn+1
∣∣2 − ∣∣∆φn∣∣2) dx

− 1

2

∫
R3

ξn+ 1
2

(∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2) dx

+ i=
∫
R3

∆φn∆φ̄n+1 dx+ i=
∫
R3

ξn+ 1
2∇φn∇φ̄n+1

dx.

Taking the real part of the above equality, we get

1

2

∫
R3

(∣∣∆φn+1
∣∣2 − ∣∣∆φn∣∣2) dx−1

2

∫
R3

ξn+ 1
2

(∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2) dx = 0.

Therefore, summing over n leads to∫
R3

(∣∣∆φN ∣∣2 − |∆φ0|2
)
dx =

N−1∑
n=0

∫
R3

ξn+ 1
2

(∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2) dx.

Hence with (2.3), we obtain∫
R3

[∣∣∆φN ∣∣2−∣∣∇φN ∣∣2ξN− 1
2 +

1

2

(
ξN−

1
2

)2]
dx

=

∫
R3

[∣∣∆φ0
∣∣2 − |∇φ0|2ξ−

1
2 +

1

2

(
ξ−

1
2

)2]
dx.
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Eventually, multiplying the second equation of the system Sd by ξn−
1
2 and

integrating one gets

1

2

∫
R3

ξn+ 1
2 ξn−

1
2 dx =

∫
R3

(∣∣∇φn∣∣2ξn− 1
2 − 1

2

(
ξn−

1
2

)2)
dx.

This shows (2.2) and finishes the proof. ut

3 Local Existence

In this section we shall prove the existence and uniqueness of local-in-time
solutions to the system Sd. Our argument is based on a classical Fixed Point
Theorem application. First of all we need the following obvious fact, which is
a generalization of Lemma 4 in [5], which we already cited in the introduction.

Lemma 2. The operator ∇(−∆−1) div is continuous on every Hm for all
m ≥ 1.

Proof. If f ∈ D(R3), we define the operator B = (−∆)−1 div f by

(−∆)−1 div f = c

∫
(div f)(y)

|x− y|
dy,

where c is a universal constant. Now, for all 1 ≤ i ≤ 3 we have d
dxi
∇(−∆)−1×

div f = ∇(−∆)−1 div fxi . Thanks to the Calderón-Zygmund theorem, since
∇(−∆)−1 div is homogeneous of order zero in Fourier variable, there is Ci > 0
such that ‖ d

dxi
(Bf)‖L2 = ‖Bfxi‖L2 ≤ Ci‖fxi‖L2 . By iterating this argumen-

tation we obtain that for given m ∈ N, there is C > 0 such that

‖Bf‖Hm ≤ C‖f‖Hm

for all f ∈ D(R3). We can now extend B to Hm by continuity. ut

As pointed out in [4], trying to express ξn+ 1
2 in terms of |∇φn|2 and substi-

tuting it in the first equation of the system leads to a loss of uniformity with
respect to time. The reason is that the second equality in Sd implies ξN+ 1

2 =

|∇φ0|2+2
∑N/2
k=1 δt

|∇φ2k|2−|∇φ2k−1|2
δt for even N and a similar expression for odd

N , which is a discretization of ξ(T, x) = |∇φ0(x)|2+2
∫ T

0
∂t|∇φ|2 dt. Therefore,

we have to discard this idea. Also, if one considers Sd as a system describing
the evolution of two variables φ and ξ, then intuitively one applies a contraction
argument to the associated Duhamel formula as a functional on Hm spaces.
However, in order to achieve this, one has to obtain a discrete evolution equa-

tion for ξ. A simple calculation gives ξn+1
2−ξn−

3
2

2δt = |∇φn|2−|∇φn−1|2
δt and the

first equation in Sd implies that

1

δt

(∣∣∇φn+1
∣∣2 − ∣∣∇φn∣∣2) = −1

2
=
(
∆
(
∇φn+1 +∇φn

)
∇
(
φn+1 + φn

))
+ · · · .

Math. Model. Anal., 19(2):257–274, 2014.
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Clearly, a loss of regularity occurs because of the Laplace operator appearing
on the right hand side of the equation.

The retained strategy consists in introducing an extra variable into the
system. Indeed, we let ψ = ∂t∇φ and the system (1.3) is now recasted as
follows

S̃c:


i∂t∇φ = −∆∇φ+∇

(
−∆−1

)
div(Φ),

∂tξ = Ξ,

i∂tψ = −∆ψ +∇
(
−∆−1

)
div(Ψ),

where

Φ := ξ∇φ, Ξ := 2<
(
ψ∇φ̄

)
and Ψ := 2<(ψ∇φ̄) ∇φ+ ξψ.

Now, we consider the forward discretization for ψ, ψn+ 1
2 = ∇φn+1−∇φn

δt . Start-

ing with Sd we obtain after some calculation the discretized version of S̃c,

S̃d:



i
∇φn+2 −∇φn+1

δt
= −∆∇φ

n+2 +∇φn+1

2
+∇

(
−∆−1

)
div
(
Φn+ 3

2

)
,

ξn+ 3
2 − ξn− 1

2

2δt
= Ξn+ 1

2 ,

i
ψn+ 3

2 −ψn−
1
2

2δt
= −∆ψ

n+ 3
2 + 2ψn+ 1

2 +ψn−
1
2

4

+∇
(
−∆−1

)
div
(
Ψn+ 1

2

)
,

where

Φn+ 3
2 = ξn+ 3

2
∇φn+2 +∇φn+1

2
,

Ξn+ 1
2 = 2<

(
ψn+ 1

2
∇φ̄n+1

+∇φ̄n

2

)
,

Ψn+ 1
2 = 2<

(
ψn+ 1

2
∇φ̄n+1

+∇φ̄n

2

)
∇φn+2 +∇φn+1 +∇φn +∇φn−1

4

+
ξn+ 3

2 + ξn−
1
2

2

ψn+ 3
2 + 2ψn+ 1

2 +ψn−
1
2

4
. (3.1)

From now on, we shall use the notation U(t) = exp(it∆) for the free
Schrödinger propagator. It is well known that U(t) defines a unitary oper-
ator on the Sobolev spaces Hm. Let the operators A, B and X such that

A =
(
1− i

2δt∆
)−1

, B = A
(
1 + i

2δt∆
)

and X k = (1 + B)−1(Bk − (−1)k).
Also, it is well known that A and AX k are bounded operators on the Sobolev
spaces Hm with bounds less than one, thereby in Hm. Eventually, let Uδt(t) =∑N−1
n=0 B

nI[nδt,(n+1)δt[. Moreover A −−−→
δt→0

1 and Uδt(t) −−−→
δt→0

U(t) for the

strong topology of operators. We summarize these facts in the following pre-
liminary Lemma and refer to any textbook of numerical analysis for a proof

Lemma 3.

1. A is a bounded operator on Hm for all m ≥ 1 and ‖A‖ ≤ 1.
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2. B is a unitary operator on Hm for all m ≥ 1.

3. AX k is a bounded operator on Hm for all m ≥ 1 and ‖AX k‖ ≤ 1.

4. limδt→0 Uδt(t) = U(t) for the strong topology of operators.

5. limδt→0B = 1.

Eventually, we define the following set of initial data

ξ−
1
2 = ξ

1
2 =

∣∣∇φ0
∣∣2, ψ−

1
2 =

1

δt

(
∇φ0 −∇φ−1

)
,

ψ
1
2 =

1

δt

(
∇φ1 −∇φ0

)
, ∇φ0 = ∇φ0

and φ−1 such that
B∇φ−1 = (B + 1)∇φ0 −∇φ1 . (3.2)

This definition is motivated by the fact that as a consequence it holds that

Xn+2ψ
1
2 + Xn+1Bψ−

1
2 = Bn+2ψ−

1
2 . (3.3)

As this expression appears in the Duhamel formulation of S̃d this property
will contribute to guaranteeing that the integral formulation of the solution
operator to S̃d is bounded in a suitable Hm space.

In order to prove the existence and uniqueness of solutions to this system
we shall proceed in several steps. First of all, we prove that the systems Sd
and S̃d are equivalent. For that purpose, assume that (∇φn+1, ξn+ 1

2 ,ψn+ 1
2 ) is

a solution to S̃d. We have only to prove that ψn+ 1
2 = δt−1(∇φn+1−∇φn) and

ξn+ 1
2 + ξn−

1
2 = 2 |∇φn|2 since by construction (∇φn+1, ξn+ 1

2 ) is a solution at
t = (n+ 1

2 ) δt of the first equation in the system S̃d. On the one hand, we write
this latter equation at index n− 3 obtaining

i
∇φn−1 −∇φn−2

δt
= −∆∇φ

n−1 +∇φn−2

2
+ ∇

(
−∆−1

)
div
(
Φn−

3
2

)
.

On the other hand we subtract the equation above from the first equation in
the system S̃d and get, after multiplication by (2δt)−1,

i
∇φn+1−∇φn

δt
− ∇φ

n−1−∇φn−2

δt

2δt
+∆

( ∇φn+1−∇φn
δt

+ 2∇φ
n−∇φn−1

δt
+ ∇φn−1−∇φn−2

δt

4

)
= ∇

(
−∆−1)div

(
ξn+ 1

2 − ξn−
3
2

2δt

∇φn+1 +∇φn +∇φn−1 +∇φn−2

4

)
+∇

(
−∆−1)div

(
ξn+ 1

2 + ξn−
3
2

2

∇φn+1−∇φn
δt

+ 2∇φ
n−∇φn−1

δt
+ ∇φn−1−∇φn−2

δt

4

)
= ∇

(
−∆−1)div

(
<
(
ψn−

1
2
(
∇φ̄n +∇φ̄n−1))∇φn+1 +∇φn +∇φn−1 +∇φn−2

4

)
+∇

(
−∆−1)div

(
ξn+ 1

2 + ξn−
3
2

2

∇φn+1−∇φn
δt

+ 2∇φ
n−∇φn−1

δt
+ ∇φn−1−∇φn−2

δt

4

)
.
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Eventually, setting vn+ 1
2 = ψn+ 1

2 − ∇φ
n+1−∇φn
δt and subtracting the last

discrete equation from the second equation of the system S̃d evaluated at index
n− 1 we get

i
vn+ 1

2 − vn− 3
2

2δt
= −∆

(
vn+ 1

2 + 2vn−
1
2 + vn−

3
2

4

)
+∇

(
−∆−1

)
div

(
ξn+ 1

2 + ξn−
1
2

2

vn+ 1
2 + 2vn−

1
2 + vn−

3
2

4

)
.

With initial data v
1
2 = v−

1
2 = 0, this PDE has a trivial solution v = 0. By

uniqueness of solutions to this equation we obtain ψn+ 1
2 = ∇φn+1−∇φn

δt which
is the first equality we want to show. We get the second equality observing

that now we have ξk+
1
2−ξk−

3
2

2δt = |∇φk|2−|∇φk−1|2
δt . Summing up with respect to

k leads to the desired equality and implies the equivalence of Sd and S̃d.
Now, we turn to the proof of existence and uniqueness of a solution of the

system S̃d. It is based on the following discrete Duhamel formula for a solution
of S̃d, which we obtain following the argumentation in [4].

S̃ ′d:



∇φn+2 = Bn+2∇φ0 − i δt
n+1∑
k=0

ABn+1−k∇
(
−∆−1

)
div
(
Φk+ 1

2

)
,

ξn+ 3
2 =

{∣∣∇φ0
∣∣2 + 2δt

∑r
k=0Ξ

2k− 1
2 if n = 2r + 1,∣∣∇φ0

∣∣2 + 2δt
∑r
k=0Ξ

2k+ 1
2 if n = 2r,

ψn+ 3
2 =

(
Xn+2ψ

1
2 + Xn+1Bψ−

1
2
)

− 2iδt

n∑
k=0

AXn+1−k∇
(
−∆−1

)
div
(
Ψk+ 1

2

)
.

We will use a fixed point argument to prove the existence of a unique solution
to S̃ ′d, and therefore to S̃d. To this end we introduce the following notation:

(∇φ)N =
(
∇φ2, . . . ,∇φN+1

)
,

(ξ)N =
(
ξ

3
2 , . . . , ξN+ 1

2

)
,

(ψ)N =
(
ψ

3
2 , . . . ,ψN+ 1

2
)
,

(∇φ̃)N =
(
∇φ̃

2
, . . . ,∇φ̃

N+1)
,

(ξ̃)N =
(
ξ̃

3
2 , . . . , ξ̃N+ 1

2

)
,

(ψ̃)N =
(
ψ̃

3
2 , . . . , ψ̃

N+ 1
2
)
.

We shall prove that the mapping Λ defined as

Λ: HN × HN × HN −→ HN × HN × HN ,(
(∇φ̃)N , (ξ̃)N , (ψ̃)N

)
7−→

(
(∇φ)N , (ξ)N , (ψ)N

)
has a unique fixed point in the space H3

N := `∞(0, N ;Hm)3. We obtain the

fixed point iteration Λ adapting the Duhamel formula S̃ ′d as
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Λ:



∇φn+2 = Bn+2∇φ0 − iδt
n+1∑
k=0

ABn+1−k∇
(
−∆−1)div

[
ξ̃k+ 1

2
∇φ̃k+1

+∇φ̃k

2

]
,

ξn+ 3
2 =


|∇φ0|2 + 4δt

∑r
k=0 <

[
ψ̃

2k− 1
2 ∇ ¯̃

φ
2k

+∇ ¯̃
φ
2k−1

2

]
if n = 2r + 1,

|∇φ0|2 + 4δt
∑r
k=0 <

[
ψ̃

2k+ 1
2 ∇ ¯̃

φ
2k+1

+∇ ¯̃
φ
2
k

2

]
if n = 2r,

ψn+ 3
2 =

(
Xn+2ψ

1
2 + Xn+1Bψ−

1
2
)

− 2iδt
n∑
k=0

AXn+1−k∇
(
−∆−1)div

[
ξ̃k+ 3

2 +ξ̃k−
1
2

2

ψ̃
k+ 3

2 +2ψ̃
k+ 1

2 + ψ̃
k− 1

2

4

]

− 4iδt

n∑
k=0

AXn+1−k∇
(
−∆−1)div

[
<
(
ψ̃
k+ 1

2 ∇
¯̃
φ
k+1

+∇ ¯̃
φ
k

2

)

× ∇φ̃
k+2

+∇φ̃k+1
+∇φ̃k +∇φ̃k−1

4

]
.

The set of initial data we use is the one of S̃d,

ξ̃−
1
2 = ξ−

1
2 , ξ̃

1
2 = ξ

1
2 , ψ̃

− 1
2 = ψ−

1
2 ,

ψ̃
1
2 = ψ

1
2 , ∇φ̃0 = ∇φ0, ∇φ̃1 = ∇φ1.

Now, let us pick R = 2[‖∇φ0‖Hm +‖∇φ0‖2Hm +‖ψ−
1
2 ‖Hm ] and assume that

(∇φ̃)N , (ψ̃)N and (ξ̃)N are in the closed ball of radius R in HN . Then, using
(3.3), the Lemmas 2 and 3 and the fact that Hm(R3) is an algebra as soon as
m > 3

2 , we obtain that there are constants c1, c2, c3 > 0 independent of n and
δt such that∥∥∇φn+2

∥∥
Hm
≤ ‖∇φ0‖Hm + c1 Tδt

∥∥(ξ̃)N
∥∥
HN

∥∥(∇φ̃)N
∥∥
HN
,∥∥ξn+ 3

2

∥∥
Hm
≤ ‖∇φ0‖2Hm + c3 Tδt

∥∥(ψ̃)N
∥∥
HN

∥∥(∇φ̃)N
∥∥
HN
, (3.4)∥∥ψn+ 3

2

∥∥
Hm
≤
∥∥ψ− 1

2

∥∥
Hm

+ c2 Tδt
∥∥(ψ̃)N

∥∥
HN

(∥∥(∇φ̃)N
∥∥2

HN
+
∥∥(ξ̃)N

∥∥
HN

)
.

We conclude that there exists a function κ = κ(R), which is monotone in R
such that ∥∥(∇φ)N

∥∥
HN

+
∥∥(ψ)N

∥∥
HN

+
∥∥(ξ)N

∥∥
HN
≤ R

2
+ κ(R)Tδt,

so that if we pick Tδt small enough, then Λ maps the ball of radius R in (HN )3

into itself.
The same argument with extra algebraic manipulation (triangular inequal-

ity) shows that there exists a possibly even smaller Tδt such that Λ is a
strict contraction which implies the existence and uniqueness of a solution
((∇φ)N , (ψ)N , (ξ)N ) to S̃d subject to the initial data listed above.

At this level, we know that (∇φ)N ∈ `∞(0, N ;Hm). Since all the functions
we used to construct the solution (∇φ)N are elements of V (cf. [5]) it holds
that (∇φ)N ∈ `∞(0, N ;V). Therefore, all elements of the sequence (∇φ)N are
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gradients of functions in D′. The sequence of those functions is denoted by
(φ)N . Thus the Gagliardo–Nirenberg–Sobolev inequality implies that (φ)N ∈
L6(R3). As the initial datum ξ0 is continuous, the continuity of the elements
of (φ)N follows, eventually we see that (φ)N is in fact in `∞(0, N,Hm). Thus
the proof of Theorem 2 is complete.

4 Convergence

Theorem 2 provides us with the local-in-time well-posedness of the discrete
system Sd associated to the continuous system S ′c. The last point to make clear
in order to finish the proof of the Theorem 3 is the convergence of the discrete
unique solution to the unique continuous solution. The proof is achieved in
a standard way, that is by comparing the discrete Duhamel formula to the
continuous one. Let us first start with the Duhamel formula associated to the
continuous system S̃c,

∇φ(t, x) = U(t)∇φ0 − i
∫ t

0

U(t− s)∇
(
−∆−1

)
div
(
Φ(s, x)

)
ds,

ξ(t, x) = |∇φ0|2 +

∫ t

0

Ξ(s, x) ds,

ψ(t, x) = U(t)ψ(t = 0)− i

∫ t

0

U(t− s)∇
(
−∆−1

)
div
(
Ψ(s, x)

)
ds.

(4.1)

Comparing this formulation with S̃ ′d we see that it is rather straightforward to

prove the convergence of ∇φn+2 to ∇φ and ξn+ 3
2 to ξ.

Let us now turn to the proof of the convergence of ψn+ 3
2 to ψ. First of

all, we observe that due to (3.3) the contribution of the initial data part to the
convergence is not problematic. Unfortunately, the operator AXn+1−k in S̃ ′d
is not consistent with the free propagator U(t). Indeed, the bounded operator
AXn+1−k (cf. Lemma 3) generates two different semigroups depending on the
parity of the exponent n + 1 − k. In order to get more insight one uses that
X k =

∑k
l=1(−1)l−1Bk−l and obtains after some calculation

n∑
k=0

AXn+1−k∇
(
−∆−1

)
div
(
Ψk+ 1

2

)

=



r∑
l=0

2δtAB2l+1∇
(
−∆−1

)
div

(
Ψ

1
2 +

r−l−1∑
q=0

δt
Ψ2q+ 5

2 − Ψ2q+ 3
2

δt

)

+

r∑
l=0

2δtAB2l∇
(
−∆−1

)
div

(
r−l∑
q=0

δt
Ψ2q+ 3

2 − Ψ2q+ 1
2

δt

)
n = 2r + 1,

r−1∑
l=0

2δtAB2l+1∇
(
−∆−1

)
div

(
r−l−1∑
q=0

δt
Ψ2q+ 3

2 − Ψ2q+ 1
2

δt

)

+

r∑
l=0

2δtAB2l∇
(
−∆−1

)
div

(
Ψ

1
2 +

r−l−1∑
q=0

δt
Ψ2q+ 5

2−Ψ2q+ 3
2

δt

)
n = 2r,
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which allows to define Ψ̂k+ 1
2 such that

ψn+ 3
2 = Bn+2ψ−

1
2 − iδt

n∑
k=0

ABn+1−k∇
(
−∆−1

)
div
(
Ψ̂k+ 1

2

)
. (4.2)

This suggests that the continuous Duhamel formula in (4.1) for ψ(t, x) should
be interpreted as

ψ(t, x) = U(t)ψ(t = 0)− i

∫ t

0

U(t− s)∇
(
−∆−1

)
div

(∫ s

0

∂tΨ(s̃, x) ds̃

)
ds.

Therefore we see immediately that now the time derivatives of θ(t, x) :=
∂tψ(t, x) and ζ(t, x) := ∂tξ(t, x) are involved. We extend the continuous system
S̃c by these extra quantities and their associated evolution equations,

S̃ext
c :

{
∂tζ = Z,
i∂tθ = −∆θ + ∇

(
−∆−1

)
div (Θ) ,

where

Z := 2
(
<
(
(θ∇φ̄)

)
+ |ψ|2

)
,

Θ := 2
(
<(θ∇φ̄)∇φ+ |ψ|2∇φ+ <(ψ∇φ̄)ψ + ζψ + ξ θ

)
.

On the discrete level, let θn+1 := ψn+3
2−ψn+1

2

δt and ζn+1 := ξn+3
2−ξn+1

2

δt and
after some calculations we obtain the following discrete version of the above
continuous system

S̃ext
d :


ζn+1 − ζn−1

2δt
= Zn,

i
θn+1 − θn−1

2δt
= −∆θ

n+1 + θn−1

2
+ ∇

(
−∆−1

)
div (Θn) ,

where

Θn = 2

[(
<
(
θn
∇φ̄n+1

+ 2∇φ̄n +∇φ̄n−1

4

)
+

∣∣∣∣ψn+ 1
2 +ψn−

1
2

2

∣∣∣∣2)
× ∇φ

n+2 + 2∇φn+1 + 2∇φn + 2∇φn−1 +∇φn−2

8

]
+ 2

[
<
(
ψn+ 1

2 ∇φ̄
n+1+∇φ̄n

2 +ψn−
1
2 ∇φ̄

n+∇φ̄n−1

2

2

)
× ψ

n+ 3
2 +ψn+ 1

2 +ψn−
1
2 +ψn−

3
2

4

]
+
ζn+1 + ζn−1

2

ψn+ 3
2 + 3ψn+ 1

2 + 3ψn−
1
2 +ψn−

3
2

8

+
ξn+ 3

2 + ξn+ 1
2 + ξn−

1
2 + ξn−

3
2

4

θn+1 + 2θn + θn−1

4
,

Zn = 2<
(
θn
∇φ̄n+1

+ 2∇φ̄n +∇φ̄n−1

4

)
+

∣∣∣∣ψn+ 1
2 +ψn−

1
2

2

∣∣∣∣2. (4.3)
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First of all, we have to prove the well-posedness of this discrete system. We
introduce Ã = (1− iδt∆)−1 and B̃ = Ã(1 + iδt∆). These operators obviously
enjoy an equivalent version of Lemma 3. As usual, we start by writing the
discrete Duhamel Formula.

S̃ ′ext
d :


ζn =

{
ζ−1+2δt

∑r
k=0 Z

2k if n = 2r+1,

ζ0 + 2δt
∑r
k=0 Z

2k−1 if n = 2r,

θn =

{
B̃rθ1−2iδt

∑r−1
k=0 ÃB̃

r−k−1∇ (−∆−1) div
(
Θ2k+2

)
if n = 2r+1,

B̃rθ0 − 2iδt
∑r−1
k=0 ÃB̃

r−k−1∇ (−∆−1) div
(
Θ2k+1

)
if n = 2r.

The proof of local-in-time existence and uniqueness of solutions to this
discrete Duhamel system {S̃ ′d, S̃ ′ext

d } is analogous to the one of the system S̃ ′d.
For that purpose, we introduce the following notation

(ζ)N =
(
ζ1, . . . , ζN+1

)
,

(θ)N =
(
θ1, . . . ,θN+1

)
,

(ζ̃)N =
(
ζ̃1, . . . , ζ̃N+1

)
,

(θ̃)N =
(
θ̃

1
, . . . , θ̃

N+1)
and extend the mapping Λ,

Λext : HN × HN × HN × HN × HN −→ HN × HN × HN × HN × HN ,(
(∇φ̃)N , (ξ̃)N , (ψ̃)N , (ζ̃)N , (θ̃)N

)
7−→

(
(∇φ)N , (ξ)N , (ψ)N , (ζ)N , (θ)N

)
.

The space is given by HN := `∞(0, N ;Hm) and the mapping Λext is explicitly
defined as follows

Λext



(
(∇φ)N , (ξ)N , (ψ)N

)
= Λ

(
(∇φ̃)N , (ξ̃)N , (ψ̃)N

)
,

ζn =

{
ζ−1 + 2δt

∑r
k=0 Z̃

2k if n = 2r + 1,

ζ0 + 2δt
∑r
k=0 Z̃

2k−1 if n = 2r.

θn =

{
B̃rθ1 − 2iδt

∑r−1
k=0 ÃB̃

r−k−1∇
(
−∆−1

)
div
(
Θ̃2k+2

)
if n = 2r + 1,

B̃rθ0 − 2iδt
∑r−1
k=0 ÃB̃

r−k−1∇
(
−∆−1

)
div
(
Θ̃2k+1

)
if n = 2r.

The nonlinear terms Θ̃ and Z̃ are given by (4.3), they are evaluated at
(∇φ̃)N , (ψ̃)N , (ξ̃)N , (ζ̃)N and (θ̃)N . Next, let us pick

R2 := 2
[
‖∇φ0‖Hm + ‖∇φ0‖2Hm +

∥∥ψ− 1
2

∥∥
Hm

+ max
(∥∥θ0

∥∥
Hm

,
∥∥θ1

∥∥
Hm

)
+ max

(∥∥ζ0
∥∥
Hm

,
∥∥ζ−1

∥∥
Hm

)]
.

We recall that Hm is an algebra if m > 3
2 . Therefore, for all m > 3

2 + 4 (in
order to ensure the regularity of ψ and θ) there are constants c4, c5 > 0 such
that∥∥θn∥∥

Hm
≤ max

(∥∥θ0
∥∥
Hm

,
∥∥θ1

∥∥
Hm

)
+ c4 Tδt

(∥∥(θ̃)N
∥∥
HN

∥∥(∇φ̃)N
∥∥2

HN

+
∥∥(ψ̃)N

∥∥2

HN

∥∥(∇φ̃)N
∥∥
HN

+
∥∥(ζ̃)N

∥∥
HN

∥∥(ψ̃)N
∥∥
HN

+
∥∥(ξ̃)N

∥∥
HN

∥∥(θ̃)N
∥∥
HN

)
,∥∥ζn∥∥

Hm
≤ max

(∥∥ζ0
∥∥
Hm

,
∥∥ζ−1

∥∥
Hm

)
+ c5 Tδt

(∥∥(θ̃)N
∥∥
HN

∥∥(∇φ̃)N
∥∥
HN

+
∥∥(ψ̃)N

∥∥2

HN

)
.
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Therefore, using also the inequalities (3.4) there is a function κ2 = κ2(R2),
which is monotone in R2 such that∥∥(∇φ)N

∥∥
HN

+
∥∥(ψ)N

∥∥
HN

+
∥∥(θ)N

∥∥
HN

+
∥∥(ξ)N

∥∥
HN

+
∥∥(ζ)N

∥∥
HN
≤ R2

2
+ κ2(R2)Tδt

so that if we pick Tδt small enough, then Λext maps the ball of radius R2 in
(HN )5 into itself. Again, it is easy to show that there exists a Tδt (even smaller
if necessary) such that Λext is a strict contraction which leads to the existence
and uniqueness of the solution ((∇φ)N , (ξ)N , (ψ)N , (ζ)N , (θ)N ) ∈ H5

N to the
system above.

Next, we finish the proof of convergence and we shall focus on the case of
n even for simplicity, our estimates apply exactly for the other case and the
argument goes mutatis mutandis. To this end and in order to be able to pass
the the limit we need a C2 regularity for the continuous solution ∇φ. Following
Corollary 1, we let then m > 3

2 + 4 so that ∇φ ∈ C2([0, T (φ0)[,Hm). Next, for
all t ∈ [tn, tn+1], let

∇φδt(t, x) = ∇φn(x),

ξδt(t, x) = ξn+ 1
2 (x),

ψδt(t, x) = ψn+ 1
2 (x),

ζδt(t, x) = ζn(x),

θδt(t, x) = θn(x),

Φδt(t, x) = Φn+ 1
2 (x),

Ξδt(t, x) = Ξn+ 1
2 (x),

Ψ̂δt(t, x) = Ψ̂n+ 1
2 (x),

Zδt(t, x) = Φn(x),

Θδt(t, x) = Θn(x)

and introduce the following short notations for the continuous and approximat-
ing versions of the initial datum, the solution and the right hand side in the
respective Duhamel formula

Q0 :=
(
∇φ0, |∇φ0|2, ∂t∇φ(t = 0), ∂tξ(t = 0), ∂2

t∇φ(t = 0)
)
,

Qδt,0 := (∇φ0, |∇φ0|2,ψ
− 1

2 , ζ0,θ0),

Q :=
(
∇φ, ξ, ∂t∇φ, ∂tξ, ∂2

t∇φ
)
,

Qδt := (∇φδt, ξδt,ψδt, ζδt,θδt),
F :=

(
∇
(
−∆−1

)
divΦ,−iΞ,∇

(
−∆−1

)
divΨ,−iZ,∇

(
−∆−1

)
divΘ

)
,

Fδt:=
(
∇
(
−∆−1

)
divΦδt ,−iΞδt ,∇

(
−∆−1

)
div Ψ̂δt ,−iZδt ,∇

(
−∆−1

)
divΘδt

)
.

We also aggregate the propagators for the various continuous and discrete quan-
tities using the symbols

G = (A, I,A, I, Ã), U =
(
eit∆, I, eit∆, I, eit∆

)
, Uδt =

(
ABn, 1, ABr, 1, ÃW̃n

)
,

where n = 2r and tn ≤ t < tn+1. The solutions Q and Qδt are then character-
ized by the following Duhamel formula

Q = U(t)Q0 − i

∫ t

0

U(t− s)F(s) ds,

Qδt = Uδt(t)Qδt,0 − i
∫ t

0

GUδt(t− s)Fδt(s) ds.
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We intend to estimate the difference Q(t)−Qδt(t) in L∞([0, Nδt], (Hm)5). First
of all, we have clearly the following

‖Q−Qδt‖L∞([0,Nδt],Hm) ≤ ‖UQ0 − UδtQδt,0‖L∞([0,Nδt];(Hm)5)

+

∥∥∥∥∫ t

0

[
U(t− τ)F(Q)(τ)− GUδt(t− τ)Fδt(τ)

]
dτ

∥∥∥∥
L∞([0,Nδt];(Hm)5)

. (4.4)

Indeed, with the triangular inequality, one writes

‖UQ0 − UδtQδt,0‖L∞([0,Nδt];(Hm)5) ≤
∥∥[U − Uδt]Q0

∥∥
L∞([0,Nδt];(Hm)5)

+
∥∥Uδt [Q0 −Qδt,0]

∥∥
L∞([0,Nδt];(Hm)5)

→ 0 as δt→ 0,

where the convergence of the first difference in norm is due to convergence of
operators according to Lemma 3. The convergence of the second expression is a
consequence of the definition of the scheme S̃d which implies that ∇φ1 → ∇φ0

as δt→ 0 and therefore

ψ
1
2 =
∇φ1 −∇φ0

δt
= −∆∇φ

1 +∇φ0

2
+ ∇

(
−∆−1

)
div
(
Φ

1
2

)
→ −∆∇φ|t=0 + ∇

(
−∆−1

)
div(Φ)|t=0 = −i∂t∇φ|t=0

as δt → 0, where we used ∇φ ∈ C2((0, T ), Hm(R3)). This proves the con-
vergence of the first term in the right-hand side of (4.4). The second term is
treated as follows. For simplicity we fix t = tn+1 and estimate∥∥∥∥∫ tn+1

0

[
U(tn+1 − τ)F(τ)− GUδt(tn+1 − τ)Qδt(Fδt)(τ)

]
dτ

∥∥∥∥
(Hm)5

≤
n∑
l=0

∥∥∥∥∫ tl+1

tl

[
GUδt(tn+1 − tl)Fδt(tl)− U(tn+1 − τ)F(τ)

]
dτ

∥∥∥∥
(Hm)5

≤
n∑
l=0

∥∥∥∥∫ tl+1

tl

[
GUδt(tn+1 − tl)− U(tn+1 − tl)

]
Fδt(tl) dτ

∥∥∥∥
(Hm)5

+

n∑
l=0

∥∥∥∥∫ tl+1

tl

U(tn+1 − tl)
[
Fδt(tl)−F(τ)

]
dτ

∥∥∥∥
(Hm)5

+

n∑
l=0

∥∥∥∥∫ tl+1

tl

[
U(tn+1 − tl)− U(tn+1 − τ)

]
F(τ) dτ

∥∥∥∥
(Hm)5

.

Observe that tl is completely independent of τ and depends only on l and δt.
Again since G −→ 1 and Uδt −−−→

δt→0
U for the strong topology of operators in

(Hm)5, we have

sup
0≤n≤N

n∑
l=0

∥∥∥∥∫ tl+1

tl

[
GUδt(tn+1 − tl)− U(tn+1 − tl)

]
Fδt(tl) dτ

∥∥∥∥
(Hm)5

−−−→
δt→0

0 ,

sup
0≤n≤N

n∑
l=0

∥∥∥∥∫ tl+1

tl

[
U(tn+1 − tl)− U(tn+1 − τ)

]
F(τ) dτ

∥∥∥∥
(Hm)5

−−−→
δt→0

0.
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For the remaining term following [4, 6] we introduce Fδt(tl) by evaluating the
residual terms (3.1) and (4.3) at Q(tl) instead of Qδt(tl). Hence it holds∥∥∥∥∫ tl+1

tl

U(tn+1 − tl)
[
Fδt(τ̃)−F(τ)

]
dτ

∥∥∥∥
(Hm)5

≤ δt
(∥∥Fδt(τ̃)−Fδt(τ̃)

∥∥
(Hm)5

+ sup
τ∈[tl,tl+1]

∥∥Fδt(tl)−F(τ)
∥∥

(Hm)5

)
.

Now, on the one hand, since ∇φ ∈ C2([0, T (φ0)[, Hm), we have

δt

N∑
l=0

sup
τ∈[tl,tl+1]

∥∥Fδt(tl)−F(τ)
∥∥

(Hm)5
−−−→
δt→0

0.

On the other hand using the uniform estimates on Q and Qδt in [0, Nδt] we
conclude that there is a constant such that∥∥Fδt(tl)−Fδt(tl)∥∥(Hm)5

≤ Const. ‖Qδt −Q‖L∞([0,Nδt];(Hm)5).

Eventually combining these results with (4.4) we obtain

‖Q−Qδt‖L∞([0,Nδt];(Hm)5) ≤ o(1) + Const. N δt‖Q−Qδt‖L∞([0,Nδt];(Hm)5).

Thus, if we pick N such that Const. N δt < 1, then we get

‖Q−Qδt‖L∞([0,Nδt];(Hm)5) −−−→
δt→0

0.

Now, iterating the argument on the whole interval [0, T ] by considering now
initial data at Nδt, we get the lower semicontinuity of the existence time Tδt
as δt −→ 0 and the convergence on [0, τ ] for all 0 ≤ τ ≤ T . The proof of
Theorem 3 is finished.

5 Conclusion

In this paper we have analyzed a relaxation-type scheme for a nonlinear Schrö-
dinger equation. We have demonstrated that the proposed scheme conserves
mass and energy as opposed to classical schemes like splitting, Runge–Kutta,
symplectic, etc. that fail in preserving these important physical observables.
Furthermore, we have proved the well posedness of the semi-discretized system
and that its solution converges towards the solution of the continuous problem
in suitable Sobolev spaces. Let us also mention that the scheme avoids a costly
numerical treatment of the nonlinearity and doesn’t require a particular space
discretization. The scheme is inspired by [4] where the case of the cubic NLS
is treated, it can be easily adapted to the Davey–Stewartson system.

References

[1] G.D. Akrivis. Finite difference discretization of the cubic Schrödinger equation.
IMA J. Numer. Anal., 13(1):115–124, 1993.
http://dx.doi.org/10.1093/imanum/13.1.115.

Math. Model. Anal., 19(2):257–274, 2014.

http://dx.doi.org/10.1093/imanum/13.1.115


274 D. Oelz and S. Trabelsi

[2] G.D. Akrivis, V.A. Dougalis and O. Karakashian. Solving the systems of equa-
tions arising in the discretization of some nonlinear p.d.e.’s by implicit Runge–
Kutta methods. ESAIM: Mathematical Modelling and Numerical Analysis -
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[8] A. Fei, V.M. Pérez-Garćıa and L. Vázquez. Numerical simulation of nonlinear
Schrödinger systems: a new conservative scheme. Appl. Math. Comput., 71(2–
3):165–177, 1995. http://dx.doi.org/10.1016/0096-3003(94)00152-T.

[9] S. Jin, P.A. Markowich and C. Sparber. Mathematical and computational meth-
ods for semiclassical Schrödinger equations. Acta Numer., 20:121–209, 4 2011.

[10] O. Karakashian, G.D. Akrivis and V.A. Dougalis. On optimal order error esti-
mates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal., 30(2):377–
400, 1993. http://dx.doi.org/10.1137/0730018.

[11] J.M. Sanz-Serna and M.P. Calvom. Numerical Hamiltonian problems, volume 7 of
Applied Mathematics and Mathematical Computation. Chapman & Hall, London,
1994.

[12] J.M. Sanz-Serna and J.G. Verwer. Conservative and nonconservative schemes
for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal.,
6(1):25–42, 1986. http://dx.doi.org/10.1093/imanum/6.1.25.

[13] J.A.C. Weideman and B.M. Herbst. Split-step methods for the solution of the
nonlinear Schrödinger equation. SIAM J. Numer. Anal., 23(3):485–507, 1986.
http://dx.doi.org/10.1137/0723033.

[14] G. Zouraris. On the convergence of a linear two-step finite element method
for the nonlinear Schrödinger equation. M2AN Math. Model. Numer. Anal.,
35(3):389–405, 2001. http://dx.doi.org/10.1051/m2an:2001121.

http://dx.doi.org/10.1016/0167-2789(94)00242-I
http://dx.doi.org/10.1137/S0036142901396521
http://dx.doi.org/10.3934/dcds.1998.4.671
http://dx.doi.org/10.1016/0021-9991(81)90052-8
http://dx.doi.org/10.1016/0096-3003(94)00152-T
http://dx.doi.org/10.1137/0730018
http://dx.doi.org/10.1093/imanum/6.1.25
http://dx.doi.org/10.1137/0723033
http://dx.doi.org/10.1051/m2an:2001121

	Introduction
	Conservation Laws
	Local Existence
	Convergence
	Conclusion
	References

