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Abstract. In this article, the existence of multiple positive solutions of boundary-
value problems for nonlinear singular fractional order elastic beam equations is estab-
lished. Here f depends on x, x′ and x′′, f may be singular at t = 0 and t = 1 and f
is non-Caratheodory function. The analysis relies on the well known Schauder fixed
point theorem and the five functional fixed point theorems in the cones.
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1 Introduction

Fourth order two-point boundary value problems are useful for material me-
chanics because the problems usually characterize the deflection of an elastic
beam. The following problem{

u′′′′(t) = f
(
t, u(t)

)
, t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0
(1.1)

describes the deflection of an elastic beam with both ends rigidly fixed. The
existence of positive solutions of (1.1) was studied extensively, see [1,6,20,25].
In known papers, the assumptions imposed on f is continuous on [0, 1]×R or
is Caratheodory function.

Differential equations with fractional-order derivatives/integrals are called
fractional differential equations. In some real world problems, fractional-order
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models (or fractional differential models) are found to be more adequate than
integer-order models. The last two decades have witnessed a great progress
in fractional calculus and fractional-order dynamical systems. It has been
found that fractional calculus is a mathematical tool that works adequately for
anomalous social and physical systems with nonlocal, frequency and history-
dependent properties, and for intermediate states such as soft materials, which
are neither ideal solid nor ideal fluid (see [3, 12,13,14]).

Some basic theory for the initial value problems of fractional differential
equations has been discussed by Lakshmikantham [16], El-Sayed et al. [11].
Mathematical aspects of studies on fractional differential equations were dis-
cussed by many authors, see text books [21] and [23], papers [2, 7, 9, 10, 15, 22,
24,26] and references therein.

The use of cone theoretic techniques in studies of the existence of positive
solutions of boundary value problems for differential equations with fractional
order α ∈ (1, 2] has a rich and diverse history [7, 9, 10, 24, 26]. Moreover, there
are some works that deal with the existence and multiplicity of solutions to
nonlinear fractional differential equations by using a fixed-point theorem or
the topological degree theory.

In [24], the authors studied the existence of positive solutions of the follow-
ing boundary value problem (a generalization of BVP (1.1)) for the fractional
order beam equation{

Dα
0+u(t) = f

(
t, u(t)

)
, t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.2)

where 3 < α ≤ 4, Dα
0+ (Dα for short) is the Riemann–Liouville fractional

derivative of order α, and f : [0, 1] × [0,∞) → [0,∞) is continuous or f :
[0, 1]× (0,∞)→ [0,∞) is continuous and f is singular at x = 0. We note that
f in (1.2) depends on x, t → f(t, x) is continuous on [0, 1], and the solutions
obtained in [24] satisfy that both x and x′ are continuous on [0, 1] (hence
they are bounded on [0, 1]). In [18], authors studied the existence of positive
solutions for fractional order elastic beam equation{

Dα
0+u(t) = f

(
t, u(t)

)
, t ∈ (0, 1),

u(0) = u′′(0) = u′(0) = u′′(1) = 0,
(1.3)

where 3 < α ≤ 4, Dα
0+ (Dα for short) is the Riemann–Liouville fractional

derivative of order α, and f : [0, 1]× [0,∞)→ [0,∞) is a continuous function.
A question appears: does there exist solutions when f in (1.2) or even in (1.1)

is not a Caratheodory function? Let σ(t) = t−
1
2 (1− t)− 3

2 . It is easy to see that
σ /∈ L1(0, 1) ∪ C0[0, 1]. Consider the following problem{

Dα
0+x(t) = σ(t),

lim
t→0

t4−αx(t) = lim
t→0

t4−αx′(t) = x(1) = x′(1) = 0.
(1.4)

Here, 3 < α < 4. Since (1 + x)µ ≥ 1 + µx for all x ≥ 0 and µ < 0, then∫ t

0

(t− s)α−2

Γ (α− 1)
s−

1
2 (1− s)− 3

2 ds ≥ (1− t)− 3
2 tα−

3
2

∫ 1

0

(1− w)α−2

Γ (α− 1)
w−

1
2 dw
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− 3

2
(1− t)− 5

2 tα−
5
2

∫ 1

0

(1− w)α−3

Γ (α− 1)
w−

1
2 dw →∞, t→ 1.

Then problem (1.4) has a unique solution

x(t) =

∫ t

0

(t− s)α−1

Γ (α)
σ(s) ds

+ tα−1
(

(α− 2)

∫ 1

0

(1− s)α−1

Γ (α)
σ(s) ds−

∫ 1

0

(1− s)α−2

Γ (α− 1)
σ(s) ds

)
+ tα−2

(∫ 1

0

(1− s)α−2

Γ (α− 1)
σ(s) ds− (α− 1)

∫ 1

0

(1− s)α−1

Γ (α)
σ(s) ds

)
satisfying that x is bounded but x′ is unbounded on (0, 1], while σ is not a
Caratheodory function. Hence it is interesting to study the solvability of BVP
(1.2) with f being a non-Caratheodory function.

For nonlinear fractional order equations in (1.2) and (1.3), only the situa-
tion that the nonlinear term does not depend on the first order derivative are
considered. It is interesting to deal with the situation that lower order deriva-
tives are involved in the nonlinear term explicitly. In fact, the derivatives are
of great importance in the problem in some cases. For example, in the linear
elastic beam equation (Euler–Bernoulli equation)(

EIu′′(t)
)′′

= f(t), t ∈ (0, L),

where u(t) is the deformation function, L is the length of the beam, f(t) is
the load density, E is the Youngs modulus of elasticity and I is the moment of
inertia of the cross-section of the beam. In this problem, the physical meaning
of the derivatives of the function u(t) is as follows: u(4)(t) is the load density
stiffness, and u′(t) is the slope and u′′(t) is the bending moment stiffness. If
the payload depends on the slope and on the bending moment stiffness, the
lower order derivatives of the unknown function are involved in the nonlinear
term (the load density term) explicitly.

Authors in [8] obtained the continuous solutions on [0, 1] of boundary value
problem {

cDα
0+u(t) + f

(
t, u(t),cDβ

0+(t)
)

= 0, t ∈ (0, 1),

u(0) = u′′(0) = u′(0) = u(1)− u(ξ) = 0,
(1.5)

where 3 < α ≤ 4, cD0+ is the Caputo fractional derivative, 0 < β ≤ α − 1,
ξ ∈ (0, 1) and f : [0, 1]×[0,∞)×R→ [0,∞) is continuous or f : [0, 1]×(0,∞)→
[0,∞) is continuous. The methods used in [5] are based upon the Schauder fixed
point theorem in Banach space.

Authors in [5] obtained the continuous positive solutions on [0, 1] of bound-
ary value problem{

Dα
0+u(t) + a(t)f

(
t, u(t), u′′(t)

)
= 0, t ∈ (0, 1),

u(0) = u′′(0) = u′(0) = u′′(1) = 0,
(1.6)

where 3 < α ≤ 4, Dα
0+ (Dα for short) is the Riemann–Liouville fractional

derivative of order α, and f : [0, 1] × [0,∞) × R → [0,∞) is continuous,
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a : [0, 1] → [0,∞) is continuous and there exists 0 < w < 1 such that∫ 1

w
[(1 − s)α−3 − (1 − s)α−1]a(s) ds > 0. The methods used in [5] are based

upon the fixed point theorem in cones in Banach space.
Suggested by [27], for constructing a suitable Banach space X, we replace

boundary conditions u(0) = 0 and u′(0) = 0 in BVP (1.2) by limt→0 t
4−αu(t) =

limt→0 t
4−αu′(t) = 0, which make the possible solutions be non-continuous on

[0, 1].
Motivated by [18,24,27] and above mentioned example and reasons, in this

paper, we discuss the boundary value problem for nonlinear singular fractional
order elastic beam equation of the form

Dα
0+u(t) = f

(
t, u(t), u′(t), u′′(t)

)
, t ∈ (0, 1),

lim
t→0

t4−αu(t) = lim
t→0

t4−αu′(t) = 0,

u(1) = u′(1) = 0,

(1.7)

where 3 < α < 4, Dα
0+ (Dα for short) is the Riemann–Liouville fractional

derivative of order α, and f : (0, 1) × [0,∞) × R2 → [0,∞) is continuous. f
depends on u, u′ and u′′ and may be singular at t = 0 and t = 1, f is a
non-Caratheodory function.

The purpose of this paper is to establish some existence results for one and
three positive solutions of BVP (1.7) by using the Schauder fixed point theorem
and the five functionals fixed point theorem in the cones (see Theorems 1 and 2).
The solutions obtained in this paper may be unbounded since limt→0 t

4−αx(t) =
limt→0 t

4−αx′(t) = 0. The methods used in this paper are different from those
ones concerning existence of positive solutions of boundary value problems for
integer order elastic beam equations used in [1]: contraction mapping and
iterative techniques, [25]: Guo–Krasnosel’skii fixed point theorem, [6]: upper
and lower solution methods, [19]: topological degree theory in order Banach
space, [17]: fixed point theorem of generalized concave operators, [4]: the global
bifurcation techniques.

A function x : (0, 1] → R is called a solution of BVP (1.7) if x ∈ C2(0, 1]
and all equations in (1.7) are satisfied. x is called a positive solution of BVP
(1.7) if it is a solution of BVP (1.7) and x(t) ≥ 0 for all t ∈ (0, 1].

The remainder of the paper is divided into two sections. In Section 2, we
present some preliminary results. The main theorems and their proofs are given
in Section 3.

2 Preliminary Results

For the convenience of the reader, we present here the necessary definitions
from fixed point theory and fractional calculus theory. These definitions and
results can be found in the literatures [4, 21,23].

Definition 1. [4] Let X be a real Banach space. The nonempty convex closed
subset P of X is called a cone in X if ax ∈ P for all x ∈ P and a ≥ 0, x ∈ X
and −x ∈ X imply x = 0.
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Definition 2. [4] A map ψ : P → [0,+∞) is a nonnegative continuous con-
cave (or convex) functional map if ψ is nonnegative, continuous and satisfies
ψ(tx+(1− t)y) ≥ tψ(x)+(1− t)ψ(y) (or ψ(tx+(1− t)y) ≤ tψ(x)+(1− t)ψ(y))
for all x, y ∈ P and t ∈ [0, 1].

Definition 3. [4] An operator T : X → X is completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

To prove our results, we need the Five Functionals Fixed Point Theorem
due to Avery [4] which is a generalization of the Leggett–Williams fixed point
theorem, and the well known Schauder’s fixed point theorem.

Suppose that X is a real Banach space, P a cone in X. Let c1, c2, c3, c4, c5 >
0 be positive constants, α1, α2 be two nonnegative continuous concave func-
tionals on the cone P , β1, β2, β3 be three nonnegative continuous convex
functionals on the cone P . Define the convex sets as follows:

Pc5 =
{
x ∈ P : ‖x‖ < c5

}
,

P (β1, α1; c2, c5) =
{
x ∈ P : α1(x) ≥ c2, β1(x) ≤ c5

}
,

P (β1, β3, α1; c2, c4, c5) =
{
x ∈ P : α1(x) ≥ c2, β3(x) ≤ c4, β1(x) ≤ c5

}
,

Q(β1, β2; , c1, c5) =
{
x ∈ P : β2(x) ≤ c1, β1(x) ≤ c5

}
,

Q(β1, β2, α2; c3, c1, c5) =
{
x ∈ P : α2(x) ≥ c3, β2(x) ≤ c1, β1(x) ≤ c5

}
.

Lemma 1. [4] Let X be a real Banach space, P be a cone in X. α1, α2 be
two nonnegative continuous concave functionals on the cone P , β1, β2, β3 be
three nonnegative continuous convex functionals on the cone P . Then T has
at least three fixed points y1, y2 and y3 such that β2(y1) < c1, α1(y2) > c2,
β2(y3) > c1, α1(y3) < c2, if

(i) T : X → X is a completely continuous operator ;

(ii) there exists a constant M > 0 such that α1(x) ≤ β2(x), ‖x‖ ≤ Mβ1(x)
for all x ∈ P ;

(iii) there exist positive numbers c1, c2, c3, c4, c5 with c1 < c2 such that

(C1) TPc5 ⊂ Pc5 ;

(C2) {y ∈ P (β1, β3, α1; c2, c4, c5) | α1(x) > c2} 6= ∅ and

α1(Tx) > c2 for every x ∈ P (β1, β3, α1; c2, c4, c5);

(C3) {y ∈ Q(β1, β2, α2; c3, c1, c5) | β2(x) < c1} 6= ∅ and

β2(Tx) < c1 for every x ∈ Q(β1, β2, α2; c3, c1, c5);

(C4) α1(Ty) > c2 for each y ∈ P (β1, α1; c2, c5) with β3(Ty) > c4;

(C5) β2(Tx) < c1 for each x ∈ Q(β1, β2; c1, c5) with α2(Tx) < c3.

Denote the Gamma and Beta functions, respectively, by

Γ (σ1) =

∫ +∞

0

sσ1e−s ds, B(σ2, σ3) =

∫ 1

0

(1− s)σ2−1sσ3−1 ds.

Math. Model. Anal., 19(3):395–416, 2014.
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Definition 4. [21] The Riemann–Liouville fractional integral of order α > 0
of a function f : (0,∞)→ R is given by

Iα0+f(t) =
1

Γ (α)

∫ t

0

(t− s)α−1f(s) ds,

provided that the right-hand side exists.

Definition 5. [21] The Riemann–Liouville fractional derivative of order α > 0
of a continuous function f : (0,∞)→ R is given by

Dα
0+f(t) =

1

Γ (n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α−n+1
ds,

where n < α ≤ n + 1, provided that the right-hand side is point-wise defined
on (0,∞).

Lemma 2. [21] Let n < α ≤ n+ 1, u ∈ C0(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where Ci ∈ R, i = 1, 2, . . . , n.

For our construction, we choose

X =


x : (0, 1]→ R

x(1) = 0, x′(1) = 0,

x ∈ C0(0, 1], x′ ∈ C0(0, 1], x′′ ∈ C0(0, 1]

there exist the limits

limt→0 t
4−αx(t), limt→0 t

4−αx′(t),

limt→0 t
4−αx′′(t)


with the norm

‖u‖ = max
{

sup
t∈(0,1]

t4−α
∣∣u(t)

∣∣, sup
t∈(0,1]

t4−α
∣∣u′(t)∣∣, sup

t∈(0,1]
t4−α

∣∣u′′(t)∣∣}
for u ∈ X. It is easy to show that X is a real Banach space.

Lemma 3. Suppose that h ∈ C0(0, 1) and there exist σ ∈ (2 − α,−1) and
k ∈ (−2− σ, α− 4) such that |h(t)| ≤ tk(1− t)σ for all t ∈ (0, 1). Then x ∈ X
is a solution of problem

Dαx(t) = h(t), 0 < t < 1,

lim
t→0

t4−αx(t) = lim
t→0

t4−αx′(t) = 0,

x(1) = x′(1) = 0,

(2.1)

if and only if x ∈ X satisfies

x(t) =

∫ 1

0

G(t, s)h(s) ds, (2.2)

where G(t, s) is defined by

G(t, s) =


(t−s)α−1+(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]

Γ (α) , 0 ≤ s ≤ t ≤ 1,

tα−2(1−s)α−2[(s−t)+(α−2)(1−t)s]
Γ (α) , 0 ≤ t ≤ s ≤ 1.

(2.3)
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Proof. Since h ∈ C0(0, 1) and there exist σ ∈ (2 − α,−1) and k ∈ (−2 − σ,
α− 4) such that |h(t)| ≤ tk(1− t)σ for all t ∈ (0, 1), then∣∣∣∣∫ t

0

(t− s)α−1

Γ (α)
sk(1− s)σ ds

∣∣∣∣ ≤ tα+σ+kB(α+ σ, k + 1)

Γ (α)
, (2.4)∣∣∣∣∫ t

0

(t− s)α−2

Γ (α− 1)
sk(1− s)σ ds

∣∣∣∣ ≤ tα+σ+k−1B(α+ σ − 1, k + 1)

Γ (α− 1)
, (2.5)∣∣∣∣∫ t

0

(t− s)α−3

Γ (α− 2)
sk(1− s)σ ds

∣∣∣∣ ≤ tα+σ+k−2B(α+ σ − 2, k + 1)

Γ (α− 2)
. (2.6)

So, for t ∈ (0, 1], Dαu(t) = h(t) together with Lemma 2 implies that there exist
constants ci (i = 1, 2, 3, 4) such that

x(t) =

∫ t

0

(t− s)α−1

Γ (α)
h(s) ds+ c1t

α−1 + c2t
α−2 + c3t

α−3 + c4t
α−4 (2.7)

with

x′(t) =

∫ t

0

(t− s)α−2

Γ (α− 1)
h(s) ds+

c1Γ (α)

Γ (α− 1)
tα−2

+
c2Γ (α− 1)

Γ (α− 2)
tα−3 +

c3Γ (α− 2)

Γ (α− 3)
tα−4 +

Γ (α− 3)

Γ (α− 4)
c4t

α−5 (2.8)

x′′(t) =

∫ t

0

(t− s)α−3

Γ (α− 2)
h(s) ds+

c1Γ (α)

Γ (α− 2)
tα−3

+
c2Γ (α− 1)

Γ (α− 3)
tα−4 +

c3Γ (α− 2)

Γ (α− 4)
tα−5 +

Γ (α− 3)

Γ (α− 5)
c4t

α−6. (2.9)

Now, from (2.4) (σ ∈ (2 − α,−1) and k ∈ (−2 − σ, α − 4)) and (2.7),
limt→0 t

4−αx(t) = 0 implies that c4 = 0. Hence from (2.5) (σ ∈ (2 − α,−1)
and k ∈ (−2− σ, α− 4)) and (2.8), limt→0 t

4−αx′(t) = 0 implies c3 = 0. Thus
(2.9) with x(1) = x′(1) = 0 implies that

c1 = (α− 2)

∫ 1

0

(1− s)α−1

Γ (α)
h(s) ds−

∫ 1

0

(1− s)α−2

Γ (α− 1)
h(s) ds,

c2 =

∫ 1

0

(1− s)α−2

Γ (α− 1)
h(s) ds− (α− 1)

∫ 1

0

(1− s)α−1

Γ (α)
h(s) ds.

Substituting c1, c2, c3 and c4 into (2.7), we get

x(t) =

∫ 1

0

G(t, s)h(s) ds, G is defined by (2.3).

It is easy to see from (2.4)–(2.6), σ ∈ (2 − α,−1), k ∈ (−2 − σ, α − 4) that
x, x′, x′′ ∈ C0(0, 1] and

lim
t→0

t4−αx(t) = 0, lim
t→0

t4−αx′(t) = 0, lim
t→0

t4−αx′′(t) =
c2Γ (α− 1)

Γ (α− 3)

and x(1) = x′(1) = 0. Hence x ∈ X and satisfies (2.2).
On the other hand, if x ∈ X satisfies (2.2), we can prove that x is a solution

of problem (2.1) and x ∈ X. The proof is completed. ut
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Lemma 4. [11, Lemma 2.4] Let G(t, s) be defined by (2.3). Then

G(t, s) ≤ max{α− 1, (α− 2)2}s2(1− s)α−2

Γ (α)
, t, s ∈ [0, 1], (2.10)

G(t, s) ≥ (α− 2)tα−2(1− t)2s2(1− s)α−2

Γ (α)
, t, s ∈ [0, 1]. (2.11)

Lemma 5. Let 0 < p < 1
2 < q < 1. Suppose that h ∈ C0(0, 1) is nonnegative

and there exist σ ∈ (2−α,−1) and k ∈ (−2−σ, α−4) such that |h(t)| ≤ tk(1−t)σ
for all t ∈ (0, 1). Then the unique solution of BVP (2.1) satisfies

min
t∈[p,q]

t4−αu(t) ≥ µ sup
t∈(0,1]

t4−αu(t), (2.12)

where µ is defined by

µ =
(α− 2) min

{
p2(1− p)2, q2(1− q)2

}
max{α− 1, (α− 2)2}

.

Proof. Suppose that u is a solution of BVP (2.1). By Lemmas 3 and 4, we
have

u(t) =

∫ 1

0

G(t, s)h(s) ds ≥ 0, t ∈ (0, 1].

Since [t2(1 − t)2]′ = 2t(1 − t)(1 − 2t) and 0 < p < 1
2 < q < 1, we have from

(2.11) that

min
t∈[p,q]

t4−αG(t, s) ≥ (α−2) min{p2(1−p)2, q2(1−q)2}
Γ (α)

s2(1− s)α−2, s ∈ [0, 1].

It follows from (2.10) that

min
t∈[p,q]

t4−αu(t) ≥ µ
∫ 1

0

G(t, s)h(s) ds = µt4−αu(t).

Then

min
t∈[p,q]

t4−αu(t) ≥ µ sup
t∈(0,1]

t4−αu(t).

The proof is completed. ut

We seek solutions of BVP (1.7) that lie in the cone

P =

u ∈ X :

u(t) ≥ 0, t ∈ (0, 1],

u(1) = 0, u′(1) = 0,

mint∈[p,q] t
4−αu(t) ≥ µ supt∈(0,1] t

4−αu(t)

 .

Define the operator T on P by

(Tu)(t) =

∫ 1

0

G(t, s)f
(
s, u(s), u′(s), u′′(s)

)
ds.

By Lemma 3, we have that x ∈ P is a positive solution if and only if x ∈ P is
a fixed point of T .
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Lemma 6. Suppose that f(t, x, y, z) is continuous on (0, 1)× [0,∞)×R2 and
satisfies that for each r > 0 there exist σ ∈ (2−α,−1) and k ∈ (−2− σ, α− 4)
and Mr > 0 such that∣∣f(t, tα−4x, tα−4y, tα−4z)∣∣ ≤Mrt

k(1− t)σ for all t ∈ (0, 1), |x|, |y|, |z| ≤ r.

Then T : P → P is completely continuous.

Proof. We divide the proof into four steps.
Step 1. We prove that T : P → P is well defined.
For x ∈ P , we find x(t) ≥ 0 for all t ∈ [0, 1] and there exits r > 0 such that

‖x‖ = max
{

sup
t∈(0,1]

t4−α
∣∣x(t)

∣∣, sup
t∈(0,1]

t4−α
∣∣x′(t)∣∣, sup

t∈(0,1]
t4−α

∣∣x′′(t)∣∣} ≤ r.
Then there exist σ ∈ (2− α,−1) and k ∈ (−2− σ, α− 4), Mr ≥ 0 such that

f
(
t, x(t), x′(t), x′′(t)

)
≤Mrt

k(1− t)σ (2.13)

for all t ∈ (0, 1). Since f is nonnegative, and Lemma 4, we get

(Tx)(t) =

∫ 1

0

G(t, s)f
(
s, x(s), x′(s), x′′(s)

)
ds ≥ 0, t ∈ (0, 1). (2.14)

From (2.13) and that f is nonnegative, similarly to the proof of Lemma 3,
we can show that Tx ∈ X.

By the same methods used in Lemma 5, together with that f is nonnegative,
we can prove that

min
t∈[p,q]

t4−α(Tx)(t) ≥ µ sup
t∈(0,1]

t4−α(Tx)(t).

So Tx ∈ P . So T : P → P is well defined.
Step 2. T is continuous.
Let {xn ∈ P} be a sequence such that xn → x0 as n → ∞ in X. Then

there exists r > 0 such that

max
{

sup
t∈(0,1]

t4−α
∣∣xn(t)

∣∣, sup
t∈(0,1]

t4−α
∣∣x′n(t)

∣∣, sup
t∈(0,1]

t4−α
∣∣x′′n(t)

∣∣} ≤ r,
for n = 0, 1, 2, . . . . Then similarly to (2.13) there exists Mr > 0 such that∣∣f(t, xn(t), x′n(t), x′′n(t)

)∣∣ ≤Mrt
k(1− t)σ

holds for all t ∈ (0, 1), n = 0, 1, 2, . . . . Then

t4−α
∣∣(Txn)(t)− (Tx0)(t)

∣∣ ≤ 2Mr

×
[B(α+ σ, k + 1)

Γ (α)
+ (2α− 3)

B(α+ σ, k + 1)

Γ (α)
+ 2

B(α+ σ − 1, k + 1)

Γ (α− 1)

]
Math. Model. Anal., 19(3):395–416, 2014.
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and similarly we get

t4−α
∣∣(Txn)′(t)− (Tx0)′(t)

∣∣ ≤ 2Mr

[
B(α+ σ − 1, k + 1)

Γ (α− 1)

+

(
(α− 2)

Γ (α)

Γ (α− 1)
+ (α− 1)

Γ (α− 1)

Γ (α− 2)

)
B(α+ σ, k + 1)

Γ (α)

+

(
Γ (α− 1)

Γ (α− 2)
+

Γ (α)

Γ (α− 1)

)
B(α+ σ − 1, k + 1)

Γ (α− 1)

]
and

t4−α
∣∣(Txn)′′(t)− (Tx0)′′(t)

∣∣ ≤ 2Mr

[
B(α+ σ − 2, k + 1)

Γ (α− 2)

+

(
(α− 2)

Γ (α)

Γ (α− 2)
+ (α− 1)

Γ (α− 1)

Γ (α− 3)

)
B(α+ σ, k + 1)

Γ (α)

+

(
Γ (α− 1)

Γ (α− 3)
+

Γ (α)

Γ (α− 2)

)
B(α+ σ − 1, k + 1)

Γ (α− 1)

]
.

Since f(t, x, y, z) is continuous in x, y, z, by dominant convergence theorem,
we have ‖Txn − Tx0‖ → 0 as n→∞. Then T is continuous.

Let Ω ⊂ P be a bounded subset. Then there exists r > 0 such that

max
{

sup
t∈(0,1]

t4−α
∣∣x(t)

∣∣, sup
t∈(0,1]

t4−α
∣∣x′(t)∣∣, sup

t∈(0,1]
t4−α

∣∣x′′(t)∣∣} ≤ r, x ∈ Ω.

Then there exists Mr > 0 such that (2.13) holds for all t ∈ (0, 1), x ∈ Ω.
Step 3. Prove that TΩ is a bounded set in X.

t4−α
∣∣(Tx)(t)

∣∣ ≤Mr

[
B(α+ σ, k + 1)

Γ (α)
+ (2α− 3)

B(α+ σ, k + 1)

Γ (α)

+ 2
B(α+ σ − 1, k + 1)

Γ (α− 1)

]
and similarly we get

t4−α
∣∣(Tx)′(t)

∣∣ ≤Mr

[
B(α+ σ − 1, k + 1)

Γ (α− 1)

+

(
(α− 2)

Γ (α)

Γ (α− 1)
+ (α− 1)

Γ (α− 1)

Γ (α− 2)

)
B(α+ σ, k + 1)

Γ (α)

+

(
Γ (α− 1)

Γ (α− 2)
+

Γ (α)

Γ (α− 1)

)
B(α+ σ − 1, k + 1)

Γ (α− 1)

]
and

t4−α
∣∣(Tx)′′(t)

∣∣ ≤Mr

[
B(α+ σ − 2, k + 1)

Γ (α− 2)

+

(
(α− 2)

Γ (α)

Γ (α− 2)
+ (α− 1)

Γ (α− 1)

Γ (α− 3)

)
B(α+ σ, k + 1)

Γ (α)

+

(
Γ (α− 1)

Γ (α− 3)
+

Γ (α)

Γ (α− 2)

)
B(α+ σ − 1, k + 1)

Γ (α− 1)

]
.

So T maps bounded sets into bounded sets in X.
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Step 4. Prove that TΩ is a relatively compact set in X.

We prove that both {Tu : u ∈ Ω} and {(Tu)′ : u ∈ Ω} are equi-continuous
on (0, 1], and {(Tu)′′ : u ∈ Ω} is equi-continuous on each [e, h] ⊂ (0, 1] and is
equi-convergent at t = 0. Firstly, let t1, t2 ∈ [0, 1] with t1 < t2 and x ∈ Ω.
Then we have

∣∣t4−α1 (Tx)(t1)− t4−α2 (Tx)(t2)
∣∣≤∣∣∣∣t4−α1

∫ t1

0

(t1−s)α−1

Γ (α)
f
(
s, x(s), x′(s), x′′(s)

)
ds

− t4−α2

∫ t2

0

(t2 − s)α−1

Γ (α)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
+Mr

∣∣∣(α− 2)
[
t32 − t31

]
+ (α− 1)

[
t21 − t22

]∣∣∣B(α+ σ, k + 1)

Γ (α)

+Mr

∣∣t21 − t22 + t32 − t31
∣∣B(α+ σ − 1, k + 1)

Γ (α− 1)
sk(1− s)σ ds.

Since ∣∣∣∣t4−α1

∫ t1

0

(t1 − s)α−1

Γ (α)
f
(
s, x(s), x′(s), x′′(s)

)
ds

− t4−α2

∫ t2

0

(t2 − s)α−1

Γ (α)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
≤Mr

∣∣t4−α2 − t4−α1

∣∣ ∫ t2

0

(t2 − s)α−1

Γ (α)
sk(1− s)σ ds

+Mrt
4−α
1

∫ t2

t1

(t2 − s)α−1

Γ (α)
sk(1− s)σ ds

+Mrt
4−α
1

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1|
Γ (α)

sk(1− s)σ ds.

We can prove that 1 − xτ ≤ τ
τ−2 (1 − x)τ−2 for all x ∈ [0, 1] and τ ∈ (2, 3).

Hence∣∣∣∣t4−α1

∫ t1

0

(t1 − s)α−1

Γ (α)
f
(
s, x(s), x′(s), x′′(s)

)
ds

− t4−α2

∫ t2

0

(t2 − s)α−1

Γ (α)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
≤Mr

∣∣t4−α2 − t4−α1

∣∣ ∫ 1

0

(1− w)α+σ−1

Γ (α)
wk dw +Mr

∫ 1

t1/t2

(1− w)α+σ−1

Γ (α)
wk dw

+Mr
α− 1

α− 3

∫ t2

0

(t2 − s)2(t2 − t1)α−3

Γ (α)
sk(t2 − s)σ ds

≤Mr

∣∣t4−α2 − t4−α1

∣∣ ∫ 1

0

(1− w)α+σ−1

Γ (α)
wk dw

+Mr

∫ 1

t1/t2

(1− w)α+σ−1

Γ (α)
wk dw +Mr

α− 1

α− 3
(t2 − t1)α−3

B(σ + 3, k + 1)

Γ (α)
.
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As t1 → t2, the right-hand side of the above inequality tends to zero uniformly.
So ∣∣t4−α1 (Tx)(t1)− t4−α2 (Tx)(t2)

∣∣→ 0 uniformly as t1 → t2. (2.15)

Secondly, for t1, t2 ∈ [0, 1] with t1 < t2 and x ∈ Ω, we get similarly that∣∣t4−α1 (Tx)′(t1)− t4−α2 (Tx)′(t2)
∣∣

≤
∣∣∣∣t4−α1

∫ t1

0

(t1 − s)α−2

Γ (α− 1)
f
(
s, x(s), x′(s), x′′(s)

)
ds

− t4−α2

∫ t2

0

(t2 − s)α−2

Γ (α− 1)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
+Mr

∣∣∣∣(α− 2)
Γ (α)

Γ (α− 1)

[
t22 − t21

]
+ (α− 1)

Γ (α− 1)

Γ (α− 2)
[t1 − t2]

∣∣∣∣
× B(α+ σ, k + 1)

Γ (α)
+Mr

∣∣∣∣Γ (α− 1)

Γ (α− 2)
[t1 − t2] +

Γ (α)

Γ (α− 1)

[
t22 − t21

]∣∣∣∣
× B(α+ σ − 1, k + 1)

Γ (α− 1)
sk(1− s)σ ds.

We can prove that 1− xτ ≤ τ
τ−2 (1− x)τ−1 for all x ∈ [0, 1] and τ ∈ (1, 2).

Then

aα−2 − bα−2 ≤ α− 2

α− 3
a(a− b)α−3, a ≥ b.

Hence∣∣∣∣t4−α1

∫ t1

0

(t1 − s)α−2

Γ (α− 1)
f
(
s, x(s), x′(s), x′′(s)

)
ds

− t4−α2

∫ t2

0

(t2 − s)α−2

Γ (α− 1)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
≤Mr

∣∣t4−α2 − t4−α1

∣∣ ∫ 1

0

(1− w)α+σ−2

Γ (α− 1)
wk dw

+Mr

∫ 1

t1
t2

(1− w)α+σ−2

Γ (α− 1)
wk dw +Mr

α− 2

α− 3
(t2 − t1)α−3

B(σ + 2, k + 1)

Γ (α− 1)
.

As t1 → t2, the right-hand side of the above inequality tends to zero uniformly.
So ∣∣t4−α1 (Tx)′(t1)− t4−α2 (Tx)′(t2)

∣∣→ 0 uniformly as t1 → t2. (2.16)

Thirdly, for t1, t2 ∈ [e, h] ⊂ (0, 1] with t1 < t2 and x ∈ Ω, we have∣∣t4−α1 (Tx)′′(t1)− t4−α2 (Tx)′′(t2)
∣∣

≤
∣∣∣∣t4−α1

∫ t1

0

(t1 − s)α−3

Γ (α− 2)
f
(
s, x(s), x′(s), x′′(s)

)
ds
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− t4−α2

∫ t2

0

(t2 − s)α−3

Γ (α− 2)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
+Mr

∣∣∣(α− 2)
Γ (α)

Γ (α− 2)
[t2 − t1]

∣∣∣B(α+ σ, k + 1)

Γ (α)

+Mr|t1 − t2|
Γ (α)

Γ (α− 2)

B(α+ σ − 1, k + 1)

Γ (α− 1)
sk(1− s)σ ds.

From 2 − α < σ < −1, we can choose σ0 ∈ (2 − α, σ). Then we have
1− x% ≤ (1− x)σ0+1+% for all x ∈ [0, 1] and % ∈ (−1− σ0, 1).

In fact, we have σ0 < σ < −1. Then % ∈ (−1 − σ0, 1) implies % > 0 and
σ0 + 1 + % > 0. Let F (x) = 1−x%− (1−x)σ0+1+%, we have F is continuous on
[0, 1], F (0) = 0 and F (1) = 0. On the other hand, we have

F ′(x) = −%x%−1 + (σ0 + 1 + %)(1− x)σ0+%,

F ′′(x) = −%(%− 1)x%−2 − (σ0 + 1 + %)(σ0 + %)(1− x)σ0+%−1.

Since σ0 ∈ (2− α, σ) and % ∈ (−1− σ0, 1), we know that % > 0, %− 1 < 0 and
σ0 +% < 0. Then F ′′(x) ≥ 0 for all x ∈ (0, 1). Hence F (x) ≤ 0 for all x ∈ [0, 1].
Then 1− x% ≤ (1− x)σ0+1+% for all x ∈ [0, 1] and % ∈ (−1− σ, 1). So

1− xα−3 ≤ (1− x)σ0+α−2 for all x ∈ [0, 1].

It follows that

aα−3 − bα−3 ≤ a−1−σ0(a− b)σ0+α−2, a ≥ b ≥ 0.

Hence for [e, h] ⊂ (0, 1] and t1 < t2 with t1, t2 ∈ [e, h], we have∣∣∣∣t4−α1

∫ t1

0

(t1 − s)α−3

Γ (α− 2)
f
(
s, x(s), x′(s), x′′(s)

)
ds

− t4−α2

∫ t2

0

(t2 − s)α−3

Γ (α− 2)
f
(
s, x(s), x′(s), x′′(s)

)
ds

∣∣∣∣
≤Mr

∣∣t4−α2 −t4−α1

∣∣ ∫ 1

0

(1− w)α+σ−3

Γ (α− 2)
wk dw +Mr

∫ 1

t1/t2

(1− w)α+σ−3

Γ (α− 2)
wk dw

+Mr[t2−t1]σ0+α−2 max{eσ−σ0+k, hσ−σ0+k}
∫ t1/t2

0

(1−w)σ−σ0−1

Γ (α− 2)
wk dw.

As t1 → t2, the right-hand side of the above inequality tends to zero uniformly.
So∣∣t4−α1 (Tx)′′(t1)− t4−α2 (Tx)′′(t2)

∣∣→ 0 uniformly as t1 → t2 on [e, h] ⊆ (0, 1].
(2.17)

Fourthly we have∣∣∣∣t4−α(Tx)′′(t)−
[
(α− 1)

Γ (α− 1)

Γ (α− 3)

∫ 1

0

(1− s)α−1

Γ (α)

∣∣f(s, x(s), x′(s), x′′(s)
)∣∣ ds
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+
Γ (α− 1)

Γ (α− 3)

∫ 1

0

(1− s)α−2

Γ (α− 1)

∣∣f(s, x(s), x′(s), x′′(s)
)∣∣ ds]∣∣∣∣

≤Mrt
2+σ

∫ 1

0

(1− w)α+σ−3

Γ (α− 2)
wk dw +Mrt

[
(α− 2)

Γ (α)

Γ (α− 2)

B(α+ σ, k + 1)

Γ (α)

+
Γ (α)

Γ (α− 2)

B(α+ σ − 1, k + 1)

Γ (α− 1)

]
.

It follows that

t4−α(Tx)′′(t) is uniformly convergent as t→ 0. (2.18)

From (2.17) and (2.18), we get∣∣t4−α1 (Tx)′′(t1)− t4−α2 (Tx)′′(t2)
∣∣→ 0 uniformly as t1 → t2 on (0, 1]. (2.19)

Therefore, (2.15), (2.16) and (2.19) imply that TΩ is relatively compact. From
above discussion, T is completely continuous. ut

Remark 1. The proof in Step 4 can be simplified. Since T : X → P , we can
take

t4−αTx(t)|t=0 = lim
t→0

t4−α(Tx)(t), t4−α(Tx)′(t)|t=0 = lim
t→0

t4−α(Tx)′(t),

t4−α(Tx)′′(t)|t=0 = lim
t→0

t4−α(Tx)′′(t).

Then t4−α(Tx)(t),t4−α(Tx)′(t) and t4−α(Tx)′′(t) ∈ C[0, 1] for each x ∈ Ω.

Because t4−α(Tx)(t) =
∫ 1

0
t4−αG(t, s)f(s, x(s), x′(s), x′′(s)) ds, and t4−αG(t, s)

is uniformly continuous, for any ε > 0, there exists δ0 > 0, when t1, t2 ∈ [0, 1],
|t1 − t2| < δ0 and x ∈ Ω, we can get |t4−αTx(t1) − t4−αTx(t2)| < ε. Similar
methods should be applied to the remaining two formulas. We omit the details.

3 Main Results

In this section, we prove the main results. Choose 0 < p < 1
2 < q < 1. Denote

µ =
(α− 2) min{p2(1− p)2, q2(1− q)2}

max{α− 1, (α− 2)2}
.

Denote the following assumption by

(B0) f(t, x, y, z) is continuous on (0, 1) × [0,∞) × R2 and there exist σ ∈
(2− α,−1) and k ∈ (α− 4,−σ − 2) such that for each r > 0 there exists
Mr > 0 such that∣∣f(t, tα−4x, tα−4y, tα−4z)

∣∣ ≤Mrt
k(1− t)σ for all t ∈ (0, 1), |x|, |y| ≤ r.

Theorem 1. Suppose that

(B1) φ : (0, 1) → R satisfies that there exist σ0 ∈ (2 − α,−1) and k0 ∈ (−2 −
σ0, α− 4) and M0 > 0 such that |φ(t)| ≤M0t

k0(1− t)σ0 for all t ∈ (0, 1);



Multiple Positive Solutions of BVPs 409

(B2) there exist numbers σi ∈ (2 − α,−1) and ki ∈ (−2 − σi, α − 4) (i =
1, 2, . . . ,m), τi1, τi2, τi3 ≥ 0 (i = 1, 2, . . . ,m), Ai ≥ 0 (i = 1, 2, . . . ,m)
such that∣∣f(t, tα−4x, tα−4y, tα−4z)− φ(t)

∣∣ ≤ m∑
i=1

Ait
ki(1− t)σi |x|τi1 |y|τi2 |z|τi3

holds for all t ∈ (0, 1), x, y, z ∈ R.

Let µi = τi1 + τi2 + τi3 (i = 1, 2, . . . ,m) and

Pi =
B(α+ σi − 2, ki + 1)

Γ (α− 2)
+

[
(α− 2)

Γ (α)

Γ (α− 2)
+ (α− 1)

Γ (α− 1)

Γ (α− 3)

]
× B(α+ σi, ki + 1)

Γ (α)
+

[
Γ (α− 1)

Γ (α− 3)
+

Γ (α)

Γ (α− 2)

]
B(α+ σi − 1, ki + 1)

Γ (α− 1)
.

Then BVP (1.7) has at least one positive solution if

(i) µ = max{µi (i = 1, 2, . . . ,m)} < 1 or

(ii) µ = max{µi (i = 1, 2, . . . ,m)} = 1 with
∑m
i=1AiPi‖Φ‖µi−1 < 1 or

(iii) µ = max{µi (i = 1, 2, . . . ,m)} > 1 with

‖Φ‖(µ− 1)µ−1

(‖Φ‖µ)µ
≥

m∑
i=1

AiPi‖Φ‖µi−µ.

Proof. It is easy to show that (B1) and (B2) imply (B0) with k = min{ki (i =
0, 1, 2, . . . ,m)} and σ = min{σi (i = 0, 1, 2, . . . ,m)}. In fact, for r > 0, we have
that |x|, |y|, |z| ≤ r imply that

∣∣f(t, tα−4x, tα−4y, tα−4z)∣∣ ≤ tk(1− t)σ
(
M0 +

m∑
i=1

Air
τi1rτi2rτi3

)
.

Then (B0) holds.
Let Banach space X, cone P in X and operator T defined on P be defined

in Section 2. By Lemma 6, T : P → P is well defined, completely continuous,
x ∈ P is a positive solution if and only if x ∈ P is a fixed point of T . Let

Φ(t) =

∫ t

0

(t− s)α−1

Γ (α)
φ(s) ds+

[
(α− 2)tα−1−(α− 1)tα−2

]∫ 1

0

(1− s)α−1

Γ (α)
φ(s) ds

+
[
tα−2 − tα−1

] ∫ 1

0

(1− s)α−2

Γ (α− 1)
φ(s) ds.

It is easy to see that Φ ∈ X and Φ(1) = Φ′(1) = 0. For r > 0, denote
Ωr = {x ∈ X ∩ P : ‖x− Φ‖ ≤ r}. One sees that

‖x‖ = max


supt∈(0,1] t

4−α|x(t)|,
supt∈(0,1] t

4−α|x′(t)|,
supt∈(0,1] t

4−α|x′′(t)|

 ≤ ‖x− Φ‖+ ‖Φ‖ ≤ r + ‖Φ‖, x ∈ Ωr.
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Hence for x ∈ Ωr, we have∣∣f(t, x(t), x′(t), x′′(t)
)
− φ(t)

∣∣
≤

m∑
i=1

Ait
ki(1− t)σi

∣∣t4−αx(t)
∣∣τi1∣∣t4−αx′(t)∣∣τi2 ∣∣t4−αx′′(t)∣∣τi3

≤
m∑
i=1

Ait
ki(1− t)σi

[
r + ‖Φ‖

]µi
.

Since for each y ∈ X with y(1) = y′(1) = 0, there exist ξ, η ∈ (t, 1] such that

t4−α
∣∣y(t)

∣∣ = t4−α
∣∣y(t)− y(1)

∣∣ = t4−α
∣∣y′(ξ)∣∣(1− t)

≤ ξ4−α
∣∣y′(ξ)∣∣ ≤ sup

t∈(0,1]
t4−α

∣∣y′(t)∣∣,
t4−α

∣∣y′(t)∣∣ = t4−α
∣∣y′(t)− y′(1)

∣∣ = t4−α
∣∣y′′(η)

∣∣(1− t)
≤ η4−α

∣∣y′′(η)
∣∣ ≤ sup

t∈(0,1]
t4−α

∣∣y′′(t)∣∣.
We have

sup
t∈(0,1]

t4−α
∣∣y(t)

∣∣ ≤ sup
t∈(0,1]

t4−α
∣∣y′(t)∣∣ ≤ sup

t∈(0,1]
t4−α

∣∣y′′(t)∣∣.
So

‖y‖ = sup
t∈(0,1]

t4−α
∣∣y′′(t)∣∣. (3.1)

Then

t4−α
∣∣(Tx)′′(t)− Φ′′(t)

∣∣
≤ t4−α

∫ t

0

(t− s)α−3

Γ (α− 2)

∣∣f(s, x(s), x′(s), x′′(s)
)
− φ(s)

∣∣ ds
+

∣∣∣∣(α− 2)t
Γ (α)

Γ (α− 2)
− (α− 1)

Γ (α− 1)

Γ (α− 3)

∣∣∣∣
×
∫ 1

0

(1− s)α−1

Γ (α)

∣∣f(s, x(s), x′(s), x′′(s)
)
− φ(s)

∣∣ ds
+

∣∣∣∣Γ (α− 1)

Γ (α− 3)
− t Γ (α)

Γ (α− 2)

∣∣∣∣
×
∫ 1

0

(1− s)α−2

Γ (α− 1)

∣∣f(s, x(s), x′(s), x′′(s)
)
− φ(s)

∣∣ ds
≤

m∑
i=1

Ai
[
r + ‖Φ‖

]µi
t2+ki+σi

∫ 1

0

(1− w)α+σi−3

Γ (α− 2)
wki dw

+

[
(α− 2)

Γ (α)

Γ (α− 2)
+ (α− 1)

Γ (α− 1)

Γ (α− 3)

]
×

m∑
i=1

Ai
B(α+ σi, ki + 1)

Γ (α)

[
r + ‖Φ‖

]µi
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+

[
Γ (α− 1)

Γ (α− 3)
+

Γ (α)

Γ (α− 2)

] m∑
i=1

Ai
B(α+ σi − 1, ki + 1)

Γ (α− 1)

[
r + ‖Φ‖

]µi
≤

m∑
i=1

AiPi
[
r + ‖Φ‖

]µi
.

It follows the methods used in (3.1) that

sup
t∈(0,1]

t4−α
∣∣(Tx)′′(t)− Φ′′(t)

∣∣ ≤ m∑
i=1

AiPi
[
r + ‖Φ‖

]µi
. (3.2)

It is easy to show by the similar methods of (29) that

‖Tx− Φ‖ = sup
t∈(0,1]

t4−α
∣∣(Tx)′′(t)− Φ′′(t)

∣∣.
Then (3.2) implies that

‖Tx− Φ‖ ≤ P0

m∑
i=1

AiPi
[
r + ‖Φ‖

]µi
.

Then

‖Tx− Φ‖ ≤
[
r + ‖Φ‖

]µ m∑
i=1

AiPi
[
r + ‖Φ‖

]µi−µ ≤ m∑
i=1

AiPi‖Φ‖µi−µ
[
r + ‖Φ‖

]µ
.

Case 1. µ < 1.
Since there exists r0 > 0 sufficiently large such that

m∑
i=1

AiPi‖Φ‖µi−µ
[
r0 + ‖Φ‖

]µ
< r0.

Choose Ωr0 = {x ∈ X : ‖x− Φ‖ ≤ r0}. From above discussion, we have

‖Tx− Φ‖ ≤
m∑
i=1

AiPi‖Φ‖µi−µ
[
r0 + ‖Φ‖

]µ ≤ r0.
Then Tx ∈ Ωr0 . By Schauder fixed point theorem, T has at least one fixed
point x ∈ Ωr0 . Since T : P → P , we know that x is nonnegative on (0, 1].
Then x is a positive solution of BVP (1.7).

Case 2. µ = 1.
Choose r0 >

∑m
i=1AiPi‖Φ‖µi−µ‖Φ‖/(1−

∑m
i=1AiPi‖Φ‖µi−µ). Let Ωr0 =

{x ∈ X : ‖x− Φ‖ ≤ r0}. From above discussion, we have

‖Tx− Φ‖ ≤
m∑
i=1

AiPi‖Φ‖µi−µ
[
r0 + ‖Φ‖

]
≤ r0.

Then Tx ∈ Ωr0 . By Schauder fixed point theorem, T has at least one fixed
point x ∈ Ω. Since T : P → P , we know that x is nonnegative on (0, 1]. Then
x is a positive solution of BVP (1.7).
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Case 3. µ > 1.

Choose r0 = ‖Φ‖
µ−1 . Let Ωr0 = {x ∈ X : ‖x − Φ‖ ≤ r0}. From above discus-

sion, we have

‖Tx− Φ‖ ≤
m∑
i=1

AiPi‖Φ‖µi−µ
[
‖Φ‖
µ− 1

+ ‖Φ‖
]µ
≤ ‖Φ‖
µ− 1

= r0.

Then Tx ∈ Ωr0 . By Schauder fixed point theorem, T has at least one fixed
point x ∈ Ωr0 . From x ∈ P , T : P → P , we know that x is nonnegative on
(0, 1]. Then x is a positive solution of BVP (1.7).

The proof of Theorem 1 is completed. ut

Theorem 2. Suppose that (B0) holds. Furthermore, suppose that there exist
positive constants e1, e2, c with 0 < e1 < e2 < e2/µ < c. If

Q =
B(α+ σ − 2, k + 1)

Γ (α− 2)
+

[
(α− 2)

Γ (α)

Γ (α− 2)
+ (α− 1)

Γ (α− 1)

Γ (α− 3)

]
× B(α+ σ, k + 1)

Γ (α)
+

[
Γ (α− 1)

Γ (α− 3)
+

Γ (α)

Γ (α− 2)

]
B(α+ σ − 1, k + 1)

Γ (α− 1)
,

W =
1

e2

(α− 2) max{p2(1− p)2, q2(1− q)2}
Γ (α)

∫ q

p

s2+k(1− s)α+σ−2 ds,

E =
1

e1

[
2(α− 1)(α− 2)

B(α+ σ, k + 1)

Γ (α)
+ 2(α− 1)

B(α+ σ − 1, k + 1)

Γ (α− 1)

]
with Q < W and

(A1) f(t, tα−4u, tα−4v, tα−4w) < tk(1−t)σ
Q c for all t ∈ (0, 1), u ∈ [0, c], v, w ∈

[−c, c],

(A2) f(t, tα−4u, tα−4v, tα−4w) ≥ e2t
k(1−t)σ
W for all t ∈ [p, q], u ∈ [e2,

e2
µ ], v, w ∈

[−c, c],

(A3) f(t, tα−4u, tα−4v, tα−4w) ≤ e1t
k(1−t)σ
E for all t ∈ (0, 1), u ∈ [0, e1], v, w ∈

[−c, c],

then BVP (1.7) has three positive solutions x1, x2 and x3 such that

sup
t∈(0,1]

t4−αx1(t) < e1, min
t∈[p,q]

t4−αx2(t) > e2,

sup
t∈(0,1]

t4−αx3(t) > e1, min
t∈[p,q]

t4−αx3(t) < e2. (3.3)

Proof. Let Banach space X, cone P in X and operator T defined on P be
defined in Section 2. By Lemma 6, T : P → P is well defined, completely
continuous, x ∈ P is a positive solution if and only if x ∈ P is a fixed point
of T .

Let µ be defined in Lemma 5. Define the functionals by

β1(y) = sup
t∈(0,1]

t4−α
∣∣y′′(t)∣∣, y ∈ P, β2(y) = sup

t∈(0,1]
t4−α

∣∣y(t)
∣∣, y ∈ P,
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β3(y) = sup
t∈(0,1]

t4−α
∣∣y(t)

∣∣, y ∈ P, α1(y) = min
t∈[p,q]

t4−α
∣∣y(t)

∣∣, y ∈ P,

α2(y) = min
t∈[p,q]

t4−α
∣∣y(t)

∣∣, y ∈ P.

It is easy to see that α1, α2 are two nonnegative continuous concave functionals
on the cone P , β1, β2, β3 are three nonnegative continuous convex functionals
on the cone P .

It follows that α1(x) ≤ β2(x) for all x ∈ P . We can show by similar methods
of (29) that

‖x‖ = supt∈(0,1]t
4−α∣∣x′′(t)∣∣ ≤ β1(x) for all x ∈ P.

From above discussion, (i) and (ii) in Lemma 1 hold.
Now, we prove that (iii) in Lemma 1 holds. Choose c5 = c, c4 = µe1,

c3 = e2/µ, c2 = e2, c1 = e1. One sees that 0 < c1 < c2. The remainder is
divided into five steps.

Step 1. Prove that T : Pc5 → Pc5 ;
For u ∈ Pc, we have ‖u‖ ≤ c. Then 0 ≤ t4−αu(t) ≤ c, −c ≤ t4−αu′(t) ≤ c

and −c ≤ t4−αu′′(t) ≤ c for all t ∈ (0, 1]. So (A1) implies that

f
(
t, u(t), u′(t), u′′(t)

)
≤ ctk(1− t)σ

Q
, t ∈ (0, 1).

By the definition of T , we have

t4−α
∣∣(Tu)′′(t)

∣∣ ≤ B(α+ σ − 2, k + 1)

Γ (α− 2)

c

Q

+

[
(α− 2)

Γ (α)

Γ (α− 2)
+ (α− 1)

Γ (α− 1)

Γ (α− 3)

]
B(α+ σ, k + 1)

Γ (α)

c

Q

+

[
Γ (α− 1)

Γ (α− 3)
+

Γ (α)

Γ (α− 2)

]
B(α+ σ − 1, k + 1)

Γ (α− 1)

c

Q
≤ c.

By definition of Tu, we get from similar methods of (3.1) that

sup
t∈(0,1]

t4−α
∣∣(Tu)(t)

∣∣ ≤ sup
t∈(0,1]

t4−α
∣∣(Tu)′(t)

∣∣ ≤ sup
t∈(0,1]

t4−α
∣∣(Tu)′′(t)

∣∣.
It follows that ‖Tu‖ ≤ c. Then Tu ∈ Pc. Then T : Pc → Pc. Hence (3)-(C1)
holds.

Step 2. Prove that α1(Ty) > c2 for y ∈ P (β1, α1; c2, c5) with β3(Ty) > c3;
For y ∈ P (β1, α1; a2, a5) = P (β1, α1; e2, c) with β3(Ty) > e2

µ , we have that

α1(y) ≥ e2, β1(y) ≤ c, and

sup
t∈(0,1]

t4−α(Ty)(t) >
e2
µ
.

Hence Ty ∈ P implies that

α1(Ty) = min
t∈[p,q]

(Ty)(t) ≥ µ sup
t∈(0,1]

t4−α(Ty)(t) > µ
e2
µ

= e2 = c2.
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This completes the proof of (3)-(C2).
Step 3. Prove that β2(Ty) < c1 for each y ∈ Q(β1, β2; c1, c5) with

α2(Ty) < c4.
For y ∈ Q(β1, β2; c1, c5) with α2(Ty) < c4, we have that β1(y) ≤ c5 = c,

β2(y) ≤ c1 = e1, and α2(Ty) < c4 = µe1. Then

β2(Ty) = sup
t∈(0,1]

t4−α(Ty)(t) ≤ 1

µ
min
t∈[p,q]

t4−α(Ty)(t) <
1

µ
µe1 = c1.

This completes the proof of (3)-(C3).
Step 4. Prove that {y ∈ P (β1, β3, α1; c2, c3, c5) : α1(x) > c2} 6= ∅ and

α1(Ty) > e2 for every y ∈ P (β1, β3, α1; e2,
e2
µ , c1);

It is easy to see that {y ∈ P (β1, β3, α1; e2,
e2
µ , c1) : α1(y) > e2} 6= ∅.

For y ∈ P (β1, β3, α1; e2,
e2
µ , c1), one has that α1(y) ≥ e2, β3(y) ≤ e2

µ ,

β1(y) ≤ c1. Then

e2 ≤ t4−αy(t) ≤ e2
µ
, t ∈ [p, q], t4−α

∣∣y′(t)∣∣ ≤ c5, t4−α∣∣y′′(t)∣∣ ≤ c5.
Thus (A2) implies that

f
(
t, y(t), y′(t), y′′(t)

)
≥ e2t

k(1− t)σ

W
, t ∈ [p, q].

For t ∈ [p, q], (7) implies that

t4−α(Ty)(t) ≥
∫ q

p

(α− 2)t2(1− t)2s2(1− s)α−2

Γ (α)

e2s
k(1− s)σ

W
ds

≥ (α− 2) max{p2(1− p)2, q2(1− q)2}
Γ (α)

∫ l

k

s2+k(1− s)α+σ−2 ds e2
W

= e2.

This completes the proof of (3)-(C4).
Step 5. Prove that {y ∈ Q(β1, β3, α2; c4, c1, c5) : β2(x) < c1} 6= ∅ and

β2(Tx) < c1 for every x ∈ Q(β1, β3, α2; c4, c1, c5);
It is easy to see that

{
y ∈ Q(β1, β3, α2; c4, c1, c5) : β2(x) < c1

}
6= ∅. For

y ∈ Q(β1, β3, α2; c4, c1, c5), one has that α2(y) ≥ c4 = µe1, β3(y) ≤ c1 = e1,
β1(y) ≤ c5 = c. Hence we get that

0 ≤ t4−αy(t) ≤ e1, t ∈ [0, 1];

−c ≤ t4−αy′(t) ≤ c, −c ≤ t4−αy′′(t) ≤ c, t ∈ (0, 1).

Then (A3) implies that

f
(
t, y(t), y′(t), y′′(t)

)
≤ e1tk(1− t)σ/E, t ∈ (0, 1).

Similarly to Step 1, we get that

β2(Ty) = sup
t∈(0,1]

t4−α(Ty)(t) ≤ sup
t∈(0,1]

t4−α(Ty)′′(t) ≤ e1.

This completes the proof of (3)-(C5).
Then Lemma 1 implies that T has at least three fixed points y1, y2 and y3

such that β2(y1) < e1, α1(y2) > e2, β2(y3) > e1, α1(y3) < e2. Hence BVP (1.7)
has three positive solutions x1, x2 and x3 such that (3.3) holds. The proof is
complete. ut
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