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Abstract. We study a mathematical model of electrochemical processes in the thin
diffusive layer of polymer electrolyte between the electrode and the bulk. We consider
diffusion, migration, dissociation and recombination of positive and negative ions in
the electric field that take place in this region under various boundary conditions.
We demonstrate that the unique stable steady state of the electrochemical system is
determined by the ratio of dissociation to recombination. This state attracts time-
dependent solutions of the model, but their convergence strongly depends on the
electroneutrality of the bulk.
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1 Introduction

The influence of the dissociative and recombinative processes of ions on the
migration current has been studied by many authors for various cations, an-
ions and neutral substances [3,7,10]. Modeling the formation of concentration
gradients in electrolyte adjacent to different interfaces [8] and the response of
an electrochemical cell to the applied ac and dc voltage [6] reveals complicated
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non-equilibrium behavior of ions including the local violation of electroneu-
trality and the appearance of concentration oscillations in the diffusive layer.
In this paper we investigate the waves of ion concentrations that arise under
certain conditions in the polymer electrolyte.

Polymer electrolytes make an important class of solid ionic conductors.
They are formed as a result of dissolving the alkali metal salts (such as LiClO4)
in polymers (such as PEO , the polyethylene oxide). These electrolytes exhibit
strong interactions between the polymer hosts and cations. Simultaneously
the cation-anion interactions prove to be also very strong. It leads to signifi-
cant ion association [1, 2, 4, 5]. Experimental data from [4, 5] suggest that the
neutral ion pairs greatly outnumber single ions. Nevertheless there is strong
evidence obtained by various spectroscopic methods [1, 2] that simultaneously
in PEO there exist separate cations (Li+), anions (ClO−4 ) and recombined
pairs (LiClO4). As a result, in spite of several attempts to explain the ion
transport in polymer electrolytes [4, 5], its mechanism remains unclear.

To clarify this important problem we propose a simple mathematical model
describing transport and reactions of charged species in polymer electrolyte.
This model includes diffusion, migration, dissociation and recombination of ions
in the diffusive layers close to the electrodes’ surfaces. The previous models [4,5]
deal mainly with the steady state solutions and do not consider the establishing
stage, which may be very long.

2 The Model

Following [4, 5], in our model we invoke the following basic assumptions:

Assumption 1. The electrodes and the electrolyte between them are planar
symmetric.

Assumption 2. The electrolyte consists of cations Li+, anions ClO−4 , ion pairs
LiClO4 and the polymer, the concentration of the latter remains constant.

Assumption 3. The total salt concentration Cmax is a constant parameter,
while the concentration of cations P = P (t, x) and the concentration of an-
ions N = N(t, x) depend both on time t and on distance from the electrode
surface x.

Assumption 4. The cations, anions and ion pairs are not assumed to be in
equilibrium. They dissociate and recombine according to the scheme:

KD : LiClO4 → Li+ + ClO−4 ,

KR : LiClO4 ← Li+ + ClO−4 ,

where KD and KR denote the dissociation and recombination rates. The molar
production rates for Li+ and ClO−4 equal KD (Cmax −N − P )−KRPN while
the same rate for LiClO4 equals −KD (Cmax −N − P ) +KRPN .



Mathematical Model of Electrodiffusion 445

The component mass balance is based on Assumptions 1–4. Together with
the Poisson equation for the electric potential Φ = Φ(t, x), it gives us the
system:

∂P

∂t
= DP

∂

∂x

(
∂P

∂x
+

F

RT
P
∂Φ

∂x

)
+KD (Cmax −N − P )−KRPN ; (2.1)

∂N

∂t
= DN

∂

∂x

(
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∂x
− F

RT
N
∂Φ
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)
+KD (Cmax −N − P )−KRPN ; (2.2)

∂2Φ

∂x2
=

F

ε0ε
(N − P ) ; 0 < x < L. (2.3)

The meanings and values of all coefficients may be found below in Table 1.
This system is supplemented with the boundary conditions:

∂P

∂x
= 0;

∂N

∂x
= 0; Φ = −Φ∗ = const at x = 0; (2.4)

P = P ∗ = const , N = N∗ = const , Φ = 0 at x = L. (2.5)

These conditions mean: 1) diffusive ion flows at the left boundary (electrode)
are absent, 2) cation and anion concentrations at the right boundary (bulk) are
constant, 3) potential difference between the electrode and the bulk is fixed.
Let us represent the diffusion coefficients as DP = D·δP , DN = D·δN , where D
is the scaling factor. Then we may normalize the system (2.1)–(2.5) as follows:

P = Cmax · p, N = Cmax · n, Φ =
RT

F
ϕ, x = L · ξ, t =

L2

D
τ,

KR =
D

L2 · Cmax
· kR, KD =

D

L2
· kD, µ =

ε0εRT

Cmax · L2 · F 2
. (2.6)

Further on we shall study our model in the dimensionless variables (τ, ξ):

ṗ− δP (p′ + p · ϕ′)′ = kD (1− p− n)− kRpn; (2.1’)

ṅ− δN (n′ − nϕ′)′ = kD (1− p− n)− kRpn; (2.2’)

µϕ′′ = n− p; (2.3’)

p′ = 0; n′ = 0; ϕ = −ϕ∗ for ξ = 0. (2.4’)

p = p∗; n = n∗; ϕ = 0 for ξ = 1. (2.5’)

Here · stands for ∂/∂τ and ′ – for ∂/∂ξ. It should be mentioned that functions
in the right hand sides of (2.1’) and (2.2’) are exactly the same:

f(p, n) = kD (1− p− n)− kRpn.

3 Exact Steady State Solution

Suppose that p = n = c, where c ≡ const is the root of the equation f(c, c) = 0.
Together with ϕ(ξ) = ϕ∗ ·(ξ−1), this p = n = c gives us a steady state solution
to (2.1’)–(2.5’). There are two roots of f(c, c) = 0:
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c± =
kD
kR

(
±
√

1 +
kR
kD
− 1

)
.

Being a value of ion concentration, the root should satisfy: 0 ≤ c ≤ 1. It is
easy to see that c− is negative and thus is not suitable, but c+ always satisfies
given condition, since the rates kR and kD are positive due to their physical
meaning. And thus (2.1’)–(2.5’) always has a steady state solution:

p0(τ, ξ) = n0(τ, ξ) = c∗ ≡ kD
kR

(√
1 +

kR
kD
− 1

)
, ϕ0(τ, ξ) = ϕ∗ · (ξ− 1). (3.1)

To study the stability of this solution we put:

p(τ, ξ) = c∗ + p̃(τ, ξ); n(τ, ξ) = c∗ + ñ(τ, ξ); ϕ(τ, ξ) = ϕ∗ · (ξ − 1) + ϕ̃(τ, ξ);

p̃, ñ, ϕ̃ are small perturbations of p, n, ϕ;

and linearize (2.1’)–(2.5’) in its vicinity. After substituting ϕ′′ from (2.3’) into
(2.1’)–(2.2’) and discarding the nonlinear terms, we obtain:

˙̃p = δP

(
p̃′′ + ϕ∗p̃′ +

c∗

µ
(ñ− p̃)

)
− kD (p̃+ ñ)− kRc∗ · (p̃+ ñ) ;

˙̃n = δN

(
ñ′′ − ϕ∗ñ′ − c∗

µ
(ñ− p̃)

)
− kD (p̃+ ñ)− kRc∗ (p̃+ ñ) . (3.2)

For checking the stability of (3.1) we seek the solution to (3.2) in form of:(
p̃(τ, ξ)

ñ(τ, ξ)

)
=

(
u

ν

)
exp(στ + ikξ),

and obtain a SLAE with respect to (u, v). The solvability condition for this
SLAE is a quadratic equation with respect to σ; its both roots are real and
negative. Therefore (p̃, ñ) tend to zero when τ → ∞, and thus the solution
(3.1) is unconditionally stable. It should be the attractor for time-dependent
solutions to (2.1’)–(2.5’). We demonstrate this feature numerically in the next
section.

4 Numerical Results and Discussion

In this section we present the results of numerical solving of (2.1’)–(2.5’). We
use the symmetric implicit finite difference scheme which has the 2-nd order
of accuracy with respect both to τ and to ξ. The mesh contains 104 nodes
in ξ; the time step ∆τ is taken equal 10−2∆ξ; the obtained system of nonlinear
equations is solved with Seidel-type iterations. The parameters of the model
are presented in Table 1 [1, 2, 4, 5].

Initially we suppose that the bulk is electroneutral, which means that
p∗ = n∗ in the boundary condition (2.5’). In this case the time-dependent
solution converges to the steady state distribution of p, n and ϕ very quickly.
If p∗ = n∗ = c∗ then we immediately obtain the constant solution (3.1). In the



Mathematical Model of Electrodiffusion 447

Table 1. Constants and parameter values of the model.

Symbol Physical meaning Value

L Thickness of the diffusive layer 1.00E − 05 m
Cmax Maximal alkali salt concentration 2.84E + 03 mol ·m−3

D Diffusion scaling factor 1.00E − 09
δP Normalized diffusion coefficient of Li+ 7.00E − 03 m2 · s−1

δN Normalized diffusion coefficient of ClO−
4 3.30E − 02 m2 · s−1

KD Rate constant for LiClO4 dissociation 1.03E + 03 s−1

KR Rate constant for LiClO4 recombination 2.71E01 m3 ·mol−1 · s−1

T Absolute temperature 4.03E + 02 K
ε Relative permittivity 1.00E + 00
ε0 Absolute permittivity 8.85E − 12 F ·m−1

R Universal gas constant 8.31 J ·mol−1 ·K−1

F Faraday constant 9.6487E + 04 C ·mol−1

Figure 1. The steady state distribution: p∗ = n∗, but p∗ 6= c∗, n∗ 6= c∗. The curves
p = p(ξ) and n = n(ξ) coincide with each other.

case of p∗ = n∗ with p∗ 6= c∗ and n∗ 6= c∗ the bulk is also electroneutral, but
its state differs from the equilibrium of the diffusive layer. As a result, by the
moment of τ = 10−4 we get the final distribution of p and n with a boundary
layer at ξ = 1 (see Fig. 1).

Let us denote the current density J as the difference between the flows of
positive and negative ions through the unit electrode surface at ξ = 0. Given
the boundary condition (2.4’), J may be evaluated as follows:

J =
(
δP · (p′ + p · ϕ′)− δN · (n′ − nϕ′)

)∣∣
ξ=0

=
(
(δP p− δ −N · n)ϕ′

)∣∣
ξ=0

.

During the formation of the final distribution J exhibits a single pulse.
After that it remains constant, as it is shown in Fig. 2. This pulse corresponds
to the short establishing period for the ions’ steady state concentrations.

The process becomes completely different with p∗ 6= n∗, when the elec-
troneutrality of the bulk is not supported (it may happen in very long and
narrow pores [9], though the authors of [9] do not consider such possibility in
their model). Besides the boundary layer at ξ = 1, we now observe the on-
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Figure 2. Current density J = J(ξ) at the electrode surface. Electroneutral bulk.

Figure 3. The concentration waves: p∗ 6= n∗, p∗ 6= c∗ and n∗ 6= c∗. Solid line:
p = p(τ, ξ). Dashed line: n = n(τ, ξ). 1: τ = 10, 2: τ = 100, 3: τ = 900, 4: τ = 100,

5: τ = 9000, 6: τ = 10000, 7: equilibrium.

set of concentration oscillations. Slowly attenuating waves of p = p(τ, ξ) and
n = n(τ, ξ) are shown in Fig. 3. Simultaneously the current density oscillations
occur, as it is shown in Fig. 4.

Concentration waves in Fig. 3 fade and finally approach the steady state
solution which practically coincides with the equilibrium (3.1), except for the
vicinity of ξ = 1. There the steady state solution exhibits the boundary layer,
and concentrations reach the prescribed values (p∗ = 0.44, n∗ = 0.42).

5 Conclusions

We have proposed and studied a mathematical model of the ion dissociation, re-
combination, diffusion and migration in the polymer electrolyte diffusive layer.
We have proved that when the electrolyte bulk is electroneutral, then under
certain boundary conditions there exists a unique steady state, which is un-
conditionally stable. Numerically we have demonstrated that when the elec-
troneutrality of the bulk is not supported, then the model exhibits concentra-
tion waves that cause the current density oscillations at the electrode surface.
These oscillations may be observed in physical experiments.
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Figure 4. Current density J = J(τ) at the electrode surface. Non-electroneutral bulk.

References

[1] M. Furlani, C. Stappen, B.E. Mellander and G.A. Niklasson. Concentration
dependence of ionic relaxation in lithium doped polymer electrolytes. J. Non-
Crystalline Solids, 356:710–714, 2010.
http://dx.doi.org/10.1016/j.jnoncrysol.2009.07.039.

[2] A. Karmakar and A. Ghosh. Dielectric permittivity and electric modulus of
polyethylene oxide (PEO)−LiClO4 composite electrolytes. Cur. Appl. Physics,
12:539–543, 2012. http://dx.doi.org/10.1016/j.cap.2011.08.017.

[3] Yu.I. Kharlats and A.V. Sokirko. Theory of the effect of migration current exal-
tation taking into account dissociation-recombination reactions. J. Electroanal.
Chem., 303:27–44, 1991. http://dx.doi.org/10.1016/0022-0728(91)85113-4.

[4] C. Lin, R.E. White and H.J. Ploehn. Modeling the effects of ion association on
direct-current polarization of solid polymer electrolytes. J. Electrochem. Soc.,
147(3):936–944, 2000. http://dx.doi.org/10.1149/1.1393295.

[5] C. Lin, R.E. White and H.J. Ploehn. Modeling the effects of ion association
on alternating current impedance of solid polymer electrolytes. J. Electrochem.
Soc., 149(7):E242–E251, 2002. http://dx.doi.org/10.1149/1.1480018.

[6] L.H. Oesen, M.Z. Bazant and H. Bruus. Strongly nonlinear dynamics of elec-
trolytes in large ac voltages. Phys. Rev. E, 82:011501(29), 2010.

[7] I. Rubinstein. Effects of deviation from local electroneutrality upon electro-
diffusional ionic transport across a cation-selective membrane. Reactive Poly-
mers, 2:117–131, 1984.

[8] I. Rubinstein and B. Zaltzman. Electro-osmotically induced convection at a
permselective membrane. Phys. Rev. E, 62(2):2238–2251, 2000.
http://dx.doi.org/10.1103/PhysRevE.62.2238.

[9] M. Verbrugge and P. Liu. Microstructural analysis and mathematical modeling
of electric double-layer supercapacitors. J. Electrochem. Soc., 152(5):D79–D87,
2005. http://dx.doi.org/10.1149/1.1878052.

[10] V.I. Zabolotskii, V.V. Nikonenko, N.M. Korzhenko, R.R. Seidov and M.K.
Urtenov. Mass transfer of salt ions in an electrochemical system with violated
electroneutrality in the diffusion layer: The effect of a heterolytic dissociation of
water. Russian J. Electrochem., 38(8):810–818, 2002.
http://dx.doi.org/10.1023/A:1016849309018.

Math. Model. Anal., 19(4):443–449, 2014.

http://dx.doi.org/10.1016/j.jnoncrysol.2009.07.039
http://dx.doi.org/10.1016/j.cap.2011.08.017
http://dx.doi.org/10.1016/0022-0728(91)85113-4
http://dx.doi.org/10.1149/1.1393295
http://dx.doi.org/10.1149/1.1480018
http://dx.doi.org/10.1103/PhysRevE.62.2238
http://dx.doi.org/10.1149/1.1878052
http://dx.doi.org/10.1023/A:1016849309018

	Introduction
	The Model
	Exact Steady State Solution
	Numerical Results and Discussion
	Conclusions
	References

