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Domitia

52 Avenue de Paul Alduy, 66 860 Perpignan, France
bTiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

P.O. Box 68-1, 400110 Cluj-Napoca, Romania
cFaculty of Mathematics and Computer Science, Babeş-Bolyai University
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Abstract. We consider a mathematical model which describes the quasistatic con-
tact between a viscoelastic body and an obstacle, the so-called foundation. The
material’s behavior is modelled with a constitutive law with long memory. The con-
tact is with normal compliance, unilateral constraint, memory effects and adhesion.
We present the classical formulation of the problem, then we derive its variational
formulation and prove an existence and uniqueness result. The proof is based on
arguments of variational inequalities and fixed point.
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1 Introduction

Processes of contact with adhesion are important in many industrial settings
where parts, usually nonmetallic, are glued together. For this reason, a consid-
erable effort has been made in their modeling, analysis, numerical analysis, and
numerical simulations and, as a result, the engineering and computational liter-
ature on this related topics is extensive. Moreover, the mathematical literature
devoted to the analysis of adhesive contact process is rapidly growing.

General models with adhesion can be found in [7, 8, 9, 15,18] and the refer-
ences therein. In particular, a description of the derivation of various equations
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and conditions related to the adhesive contact can be found in [9]. The anal-
ysis of various contact models with adhesion, including existence and unique-
ness results for weak solutions, can be found in [1, 2, 3, 4, 20, 25, 26], for in-
stance. In carrying out this analysis, a systematic use of results on elliptic
and evolutionary variational inequalities, convex analysis, nonlinear equations
with monotone operators, and fixed points of operators was made. The nu-
merical analysis of quasistatic and dynamic models of adhesive contact can
be found in [20]. There, fully discrete schemes were considered and error es-
timates were derived. Moreover, an application of the theory in the medical
field of prosthetic limbs was described in [16, 17]. There, the bonding arises
between the artificial limb and the tissue and is of considerable importance,
since debonding may lead to decrease in the person’s ability to use the limb.
The main ingredient in the models presented in all the above mentioned pa-
pers is the introduction of a surface internal variable, the bonding field, which
describes the fractional density of active bonds on the contact surface. As a
fraction its values are restricted to 0 ≤ β ≤ 1. When β = 1 at a point of the
contact surface, the adhesion is complete and all the bonds are active; when
β = 0 all the bonds are inactive, severed, and there is no adhesion; finally,
when 0 < β < 1 the adhesion is partial and only a fraction β of the bonds is
active.

In this paper, we cover the modelling and variational analysis of a new
contact problem with adhesion within the infinitesimal strain theory. The evo-
lution of the bonding field is described by a general first order ordinary differ-
ential equation, already used in the previously cited papers. Nevertheless, we
introduce three novelties in the contact model, which make the difference with
our previous papers. First, we describe material’s behavior by a viscoelastic
constitutive law with long memory. Second, we model the adhesive contact
with a normal compliance condition with unilateral condition which takes into
account the memory effect of the surfaces. A similar condition was introduced
in [23, 24] in the study of frictionless contact process without adhesion. Also,
a contact condition with normal compliance, unilateral constraint and adhe-
sion was used in [11]. There, in contrast with this paper, the memory effects of
the foundation were neglected, the process was assumed to be dynamic and the
material’s behavior was described with an elastic-visco-plastic constitutive law.
The third novelty arises in the fact that, unlike a large number of references,
the adhesive contact problem considered in this paper are formulated on the
unbounded interval of time R+ = [0,∞). This implies the use of the frame-
work of Fréchet spaces of continuous functions, instead of that of the classical
Banach spaces of continuous functions defined on a bounded interval of time,
used in our previous papers.

The rest of the paper is organized as follows. In Section 2 we introduce
some notations and preliminary material. In Section 3 we provide a detailed
description of the model of adhesive contact. Then, in Section 4, we list the
assumptions on the data, derive the variational formulation of the problem
and state our main existence and uniqueness result, Theorem 2. The proof is
provided in Section 5. It is based on arguments of variational inequalities and
fixed point.



A Viscoelastic Contact Problem 609

2 Notations and Preliminaries

In this short section we present the notations we shall use and some preliminary
material. For further details we refer the reader to [10, 18, 22]. Everywhere in
this paper we use the notation N for the set of positive integers and R+ will
represent the set of nonnegative real numbers, i.e. R+ = [0,+∞). For a given
r ∈ R we denote by r+ its positive part, i.e. r+ = max{r, 0}. Let d ∈ N. Then,
we denote by Sd the space of second order symmetric tensors on Rd. The inner
product and norm on Rd and Sd are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ, τ ∈ Sd.

Here and below the indices i, j, k, l run between 1 and d and, unless stated
otherwise, the summation convention over repeated indices is used.

LetΩ be a bounded domainΩ ⊂ Rd (d = 1, 2, 3) with a Lipschitz continuous
boundary Γ and let Γ1 be a measurable part of Γ such that meas(Γ1) > 0.
We use the notation x = (xi) for a typical point in Ω ∪ Γ and we denote by
ν = (νi) the outward unit normal at Γ . Also, an index that follows a comma
represents the partial derivative with respect to the corresponding component
of the spatial variable, e.g. ui,j = ∂ui/∂xj . We use standard notations for the
Lebesgue and Sobolev spaces associated to Ω and Γ and, moreover, we consider
the spaces

V =
{
v = (vi) ∈ H1(Ω)d : v = 0 on Γ1

}
,

Q =
{
τ = (τij) ∈ L2(Ω)d×d : τij = τji

}
.

These are real Hilbert spaces endowed with the inner products

(u,v)V =

∫
Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω

σ · τ dx

and the associated norms ‖ · ‖V and ‖ · ‖Q, respectively. Here ε represents the
deformation operator given by

ε(v) =
(
εij(v)

)
, εij(v) =

1

2
(vi,j + vj,i) ∀v ∈ H1(Ω)d.

Completeness of the space (V, ‖·‖V ) follows from the assumption meas(Γ1) > 0,
which allows the use of Korn’s inequality.

For an element v ∈ V we still write v for the trace of v on the boundary Γ .
We denote by vν and vτ the normal and the tangential component of v on Γ ,
respectively, defined by vν = v · ν, vτ = v− vνν. Let Γ3 be a measurable part
of Γ . Then, by the Sobolev trace theorem, there exists a positive constant c0
which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0 ‖v‖V ∀v ∈ V. (2.1)

For a regular function σ : Ω∪Γ → Sd we denote by σν and στ the normal and
the tangential components of the vector σν on Γ , respectively, and we recall
that σν = σν · ν and στ = σν − σνν.

Math. Model. Anal., 19(5):607–626, 2014.
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We also introduce the space of fourth order tensor fields given by

Q∞ =
{
E = (Eijkl)

∣∣ Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d
}

and we recall that Q∞ is a real Banach space with the norm

‖E‖Q∞ =
∑

1≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Moreover, a simple calculation shows that

‖Eτ‖Q ≤ ‖E‖Q∞‖τ‖Q ∀E ∈ Q∞, τ ∈ Q. (2.2)

Given a normed space (X, ‖·‖X) we use the notation C(R+;X) for the space
of continuous functions defined on R+ with values in X. It is well known that,
if X is a Banach space, then C(R+;X) can be organized in a canonical way
as a Fréchet space, i.e., as a complete metric space in which the corresponding
topology is induced by a countable family of seminorms. Details can be found
in [5] and [14], for instance. Also, for a subset K ⊂ X we still use the symbol
C(R+;K) for the set of continuous functions defined on R+ with values in K.
Finally, for n ∈ N and K ⊂ X we denote by C([0, n];K) the set of continuous
functions defined on [0, n] with values in K.

We end this section with the following result which will be used in Section 5
of the paper.

Theorem 1. Let (X, ‖ · ‖X) be a Banach space, K a nonempty closed subset
of X and let Λ : C(R+;K) → C(R+;K) be a nonlinear operator. Assume that
there exists k ∈ N with the following property: for all n ∈ N there exist two
constants cn ≥ 0 and dn ∈ [0, 1) such that

∥∥Λu(t)− Λv(t)
∥∥k
X
≤ cn

∫ t

0

∥∥u(s)− v(s)
∥∥k
X
ds+ dn

∥∥u(t)− v(t)
∥∥k
X

for all u, v ∈ C(R+;K) and for all t ∈ [0, n]. Then the operator Λ has a unique
fixed point η∗ ∈ C(R+;K).

Theorem 1 was proved in [19] in the case when K = X. Nevertheless,
a careful examination of the proof shows that the theorem is still valid for
operators Λ : C(R+;K) → C(R+;K), provided that K is a nonempty closed
part of X. The modification in proof are straightforward and, therefore, we
do not provide the details. We only mention that the difference consists in the
use of the Banach fixed point argument for contractive maps defined on the set
C([0, n];K) with values on C([0, n];K), for all n ∈ N, instead of contractive
maps defined on the space C([0, T ];X) with values in C([0, T ];X).

3 Problem Statement

The physical setting is as follows. A viscoelastic body occupies a bounded
domain Ω ⊂ Rd (d = 1, 2, 3) with a Lipschitz continuous boundary Γ , divided
into three measurable parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. The body
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is subject to the action of body forces of density f0, is fixed on Γ1 and is
submitted to the action of surface tractions of density f2 on Γ2. Moreover, the
body is in adhesive contact on Γ3 with an obstacle, the so-called foundation.
We adopt the framework of the small strain theory, we assume that the contact
process is quasistatic and we study it in the interval of time R+ = [0,∞). To
derive a mathematical model which corresponds to this physical setting we
need to precise the constitutive law of the material, the balance equations and
the boundary conditions, as well.

In this paper we assume that the material’s behavior follows a viscoelastic
constitutive law with long memory of the form

σ(t) = Aε
(
u(t)

)
+

∫ t

0

B(t− s)ε
(
u(s)

)
ds in Ω, (3.1)

where, here and below, u denotes the displacement field, σ represents the
stress field, ε(u) is the linearized strain tensor and t ∈ R+ represents the time
variable. Also, A and B represent the elasticity operator and the relaxation
tensor, respectively, and are assumed to verify the following conditions:

(a) A : Ω × Sd → Sd.
(b) There exists LA > 0 such that∥∥A(x, ε1)−A(x, ε2)

∥∥ ≤ LA‖ε1 − ε2‖
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that(
A(x, ε1)−A(x, ε2)

)
· (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ A(x, ε) is measurable on Ω,

for any ε ∈ Sd.
(e) The mapping x 7→ A(x,0) belongs to Q,

(3.2)

B ∈ C(R+;Q∞). (3.3)

Note that in (3.1) and below, in order to simplify the notation, we do not
indicate explicitly the dependence of various functions on the spatial variable x.
Various examples and mechanical interpretation concerning viscoelastic consti-
tutive laws of the from (3.1) can be found in [6, 21,22].

Next, since process is quasistatic, we shall use the equilibrium equation

Divσ(t) + f0(t) = 0 in Ω, (3.4)

where Div denotes the divergence operator for tensor valued functions, i.e.
Divσ = (σij,j). This equation shows that at each time moment the exter-
nal forces are balanced by the internal stresses. Moreover, since the body
is fixed on Γ1 and given tractions are acting on Γ2 we impose the following
displacement-traction conditions:

u(t) = 0 on Γ1, σ(t)ν = f2(t) on Γ2.

Math. Model. Anal., 19(5):607–626, 2014.
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In addition, we assume that the densities of body forces and surface tractions
have regularity

f0 ∈ C
(
R+;L2(Ω)d

)
, f2 ∈ C

(
R+;L2(Γ2)d

)
. (3.5)

We now turn to the description on the adhesive contact conditions on the
surface Γ3 in which our main interest is. First, we assume that the penetration
is limited by a bound g > 0 and, therefore, at each time moment t ∈ R+, the
normal displacement satisfies the inequality

uν(t) ≤ g on Γ3. (3.6)

Next, we assume that the normal stress has an additive decomposition of
the form

σν(t) = σDν (t) + σRν (t) + σMν (t) + σAν (t) on Γ3, (3.7)

where the functions σDν (t), σRν (t), σAν (t) and σMν (t) describe the deformability,
the rigidity, the adhesive and the surface memory properties of the foundation.
We assume that σDν (t) satisfies the normal compliance contact condition:

−σDν (t) = pν
(
uν(t)

)
on Γ3. (3.8)

Here pν is a given function which satisfies

(a) pν : Γ3 × R→ R+.

(b) There existsLν > 0 such that∣∣pν(x, r1)− pν(x, r2)
∣∣ ≤ Lν |r1 − r2|

∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(c)
(
pν(x, r1)− pν(x, r2)

)
(r1 − r2) ≥ 0

∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ pν(x, r) is measurable on Γ3,

for any r ∈ R.
(e) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.9)

The part σRν (t) of the normal stress satisfies the Signorini condition in the
form with a gap function, i.e.

σRν (t) ≤ 0, σRν (t)
(
uν(t)− g

)
= 0 on Γ3. (3.10)

Details on the Signorini condition and normal compliance function can be found
in [10,12,13,18], for instance. Here we restrict ourselves to recall that the nor-
mal compliance condition describes the contact with a deformable foundation
and the Signorini contact condition describes the contact with a perfectly rigid
foundation.

The function σMν (t) satisfies the condition

∣∣σMν (t)
∣∣ ≤ ∫ t

0

b(t− s)u+ν (s) ds,

σMν (t) = 0 if uν(t) < 0, on Γ3,

σMν (t) = −
∫ t

0

b(t− s)u+ν (s) ds if uν(t) > 0,

(3.11)
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where b is a surface memory function which verifies

b ∈ C
(
R+;L∞(Γ3)

)
, b(t,x) ≥ 0 for all t ∈ R+, a.e. x ∈ Γ3. (3.12)

Details on this condition can be found in [24]. Finally, the contribution of the
bonding to the normal traction, σAν (t), satisfies

σAν (t) = γνβ
2(t)R̃

(
uν(t)

)
on Γ3, (3.13)

where R̃ is the truncation function given by

R̃(s) =


L if s < −L,
−s if −L ≤ s ≤ 0,

0 if s > 0.

(3.14)

Here and below L > 0 is the characteristic length of the bond, beyond which
it stretches without offering any additional resistance (see, e.g., [15]) and γν
represents an adhesion coefficient. More details on this condition can be found
in [20].

We combine (3.7), (3.8), (3.13) and denote −σMν (t) = ξ(t) to see that

σRν (t) = σν(t) + pν
(
uν(t)

)
− γνβ2(t)R̃

(
uν(t)

)
+ ξ(t) on Γ3. (3.15)

Then we substitute equality (3.15) in (3.10) and use (3.6), (3.11) and (3.12) to
obtain the following contact condition

uν(t) ≤ g, σν(t) + pν
(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

)
≤ 0,(

uν(t)− g
)(
σν(t) + pν

(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

))
= 0,

0 ≤ ξ(t) ≤
∫ t

0

b(t− s)u+ν (s) ds, on Γ3.

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0

b(t− s)u+ν (s) ds if uν(t) > 0,

(3.16)

To complete our model we assume that the resistance to tangential motion
is generated mainly by the glue, and the frictional traction can be neglected. In
particular, when all the adhesive bonds are inactive, or broken, the motion is
frictionless. Thus, the tangential traction depends on the intensity of adhesion
and on the tangential displacement, but only up to the bond length L, that is

−στ (t) = pτ
(
β(t)

)
R∗
(
uτ (t)

)
on Γ3, (3.17)

where the truncation operator R∗ is defined by

R∗(v) =

v if ‖v‖ ≤ L,
L

‖v‖
v if ‖v‖ ≥ L.

(3.18)

Math. Model. Anal., 19(5):607–626, 2014.
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Then, pτ (β) acts as the stiffness or spring constant, and the traction is in
direction opposite to the displacement. The tangential function pτ satisfies

(a) pτ : Γ3 × R→ R+.

(b) There existsLτ > 0 such that∣∣pτ (x, β1)− pτ (x, β2)
∣∣ ≤ Lτ |β1 − β2|

∀β1, β2 ∈ R, a.e. x ∈ Γ3.

(c) There existsMτ > 0 such that pτ (x, β) ≤Mτ

∀β ∈ R, a.e. x ∈ Γ3.

(d) The mapping x 7→ pτ (x, β) is measurable on Γ3,

for any β ∈ R.
(e) pτ (x, 0) = 0 a.e. x ∈ Γ3.

(3.19)

We follow [7,8,20] and assume that the bonding field satisfies the unilateral
constraint

0 ≤ β(t) ≤ 1 on Γ3. (3.20)

Moreover, its evolution is governed by the differential equation

β̇(t) = −
(
γνβ(t)

[
R
(
uν(t)

)]2 − εa)+ on Γ3, (3.21)

in which εa represents the Dupré energy and R is the truncation operator given
by

R(s) =


−L if s < −L,
s if −L ≤ s ≤ L,
L if s > L.

(3.22)

We complete this differential equation with the initial condition

β(0) = β0 on Γ3 (3.23)

and we assume that the adhesion coefficient, γν , the Dupré energy εa, and
initial bonding field, β0, satisfy the conditions

γν ∈ L∞(Γ3), γν ≥ 0, εa ∈ L∞(Γ3), εa ≥ 0, (3.24)

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.25)

We gather the above equations and conditions to obtain the following for-
mulation of the mechanical problem of quasistatic adhesive contact with normal
compliance, unilateral constraint and surface memory term.

Problem P. Find a displacement field u : Ω × R+ → Rd, a stress field σ :
Ω × R+ → Sd and a adhesion field β : Γ3 × R+ → [0, 1] such that

σ(t) = Aε
(
u(t)

)
+

∫ t

0

B(t− s)ε
(
u(s)

)
ds in Ω, (3.26)

Divσ(t) + f0(t) = 0 in Ω, (3.27)

u(t) = 0 on Γ1, (3.28)

σ(t)ν = f2(t) on Γ2, (3.29)

−στ (t) = pτ
(
β(t)

)
R∗
(
uτ (t)

)
on Γ3, (3.30)

β̇(t) = −
(
γνβ(t)

[
R
(
uν(t)

)]2 − εa)+ on Γ3 (3.31)
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for all t ∈ R+, there exists ξ : Γ3 × R+ → R which satisfies

uν(t) ≤ g, σν(t) + pν
(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

)
≤ 0,(

uν(t)− g
)[
σν(t) + pν(uν(t)) + ξ(t)− γνβ2(t)R̃

(
uν(t)

)]
= 0,

0 ≤ ξ(t) ≤
∫ t

0

b(t− s)u+ν (s) ds,

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0

b(t− s)u+ν (s) ds if uν(t) > 0


on Γ3, (3.32)

for all t ∈ R+ and, moreover,

β(0) = β0 on Γ3. (3.33)

The unique weak solvability of the contact problem P will be stated in
Section 4 and proved in Section 5. We end this current section with some
additional comments of the contact condition (3.32), which represents one of
the novelties of this paper.

First, we recall that (3.32) describes a condition with unilateral constraint,
since inequality (3.6) holds at each time moment. The rest of the comments
in this paragraph, together with the corresponding equalities and inequalities,
are valid for a given point x on the contact surface Γ3. Nevertheless, we recall
that, for simplicity, we skip the dependence of various functions on x. Assume
that at a given moment t there is penetration which did not reach the bound g,
i.e. 0 < uν(t) < g. Then, (3.32) yields

−σν(t) = pν
(
uν(t)

)
+

∫ t

0

b(t− s)u+ν (s) ds. (3.34)

This equality shows that at the moment t, the reaction of the foundation de-
pends both on the current value of the penetration (represented by the term
pν(uν(t))) and on the history of the penetration (represented by the integral
term in (3.34)). Assume now that at a given moment t there is separation
between the body and the foundation, i.e. uν(t) < 0. Then, (3.32) shows
that

σν(t) = γνβ
2(t)R̃

(
uν(t)

)
,

i.e. the reaction of the foundation is nonnegative and depends on adhesion
coefficient, on the square of intensity of adhesion and on the normal displace-
ment, but as it does not exceed the bound length L. Once it exceeds it the
normal traction remains constant and |σν(t)| ≤ γνL.

In conclusion, condition (3.32) shows that delimitation takes place when
there is separation. When there is penetration the contact stress is given by a
normal compliance condition with memory term of the form (3.34) but up to
the limit g. When the limit g is reached, the stress is given by a Signorini-type
unilateral condition. This condition can be interpreted physically as follows.
The foundation is assumed to be made of a hard material covered with a thin

Math. Model. Anal., 19(5):607–626, 2014.
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layer made of a soft adhesive material with thickness g. The layer has adhe-
sive viscoelastic behavior, i.e. is deformable, allows penetration and develops
memory effects. The hard material is perfectly rigid and, therefore, it does
not allow penetration. To summarize, the foundation has a rigid-adhesive-
viscoelastic behavior; its adhesive- viscoelastic behavior is caused by the layer
of the soft material while its rigid behavior is caused by the hard material.

4 Variational Formulation and Main Result

We now turn to the variational formulation of Problem P and, to this end, we
assume in what follows that (u,σ,β) represents a triple of regular functions
which satisfy (3.26)–(3.33). We introduce the set of admissible displacements
and the set of admissible bonding fields, respectively, defined by

U =
{
v ∈ V : vν ≤ g a.e. on Γ3}, (4.1)

Z =
{
ω ∈ L2(Γ3) : 0 ≤ ω ≤ 1 a.e. on Γ3

}
. (4.2)

Let v ∈ U and t ∈ R+ be given. We use the Green’s formula to see that∫
Ω

σ(t) · ε(v) dx+

∫
Ω

Divσ(t) · v dx =

∫
Γ

σ(t)ν · v da ∀v ∈ V

and, combining this equality with the equilibrium equation (3.27), we find that∫
Ω

σ(t)·
(
ε(v)−ε

(
u(t)

))
dx =

∫
Ω

f0(t)·
(
v−u(t)

)
dx+

∫
Γ

σ(t)ν ·
(
v−u(t)

)
da.

Then, we split the surface integral over Γ1, Γ2 and Γ3 and, since v − u(t) = 0
a.e. on Γ1, σ(t)ν = f2(t) on Γ2, we deduce that∫

Ω

σ(t) ·
(
ε(v)− ε

(
u(t)

))
dx =

∫
Ω

f0(t) ·
(
v − u(t)

)
dx

+

∫
Γ2

f2(t) ·
(
v − u(t)

)
da+

∫
Γ3

σ(t)ν ·
(
v − u(t)

)
da.

Moreover, since

σ(t)ν ·
(
v − u(t)

)
= σν(t)

(
vν − uν(t)

)
+ στ (t) ·

(
vτ − uτ (t)

)
on Γ3,

taking into account condition (3.30) we obtain∫
Ω

σ(t) ·
(
ε(v)− ε

(
u(t)

))
dx

=

∫
Ω

f0(t) ·
(
v − u(t)

)
dx+

∫
Γ2

f2(t) ·
(
v − u(t)

)
da (4.3)

+

∫
Γ3

σν(t)
(
vν − uν(t)

)
da−

∫
Γ3

pτ
(
β(t)

)
R∗
(
uτ (t)

)
·
(
vτ − uτ (t)

)
da.
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We write now

σν(t)
(
vν − uν(t)

)
=
[
σν(t) + pν

(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

)]
(vν − g)

+
[
σν(t) + pν

(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

)](
g − uν(t)

)
−
[
pν
(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

)](
vν − uν(t)

)
on Γ3,

then we use the contact condition (3.32) and definition (4.1) of the set U to
see that

σν(t)
(
vν − uν(t)

)
≥ −

[
pν
(
uν(t)

)
+ ξ(t)− γνβ2(t)R̃

(
uν(t)

)](
vν − uν(t)

)
on Γ3. (4.4)

We use (3.32), again, and the hypothesis (3.12) on function b to deduce that(∫ t

0

b(t− s)u+ν (s) ds

)(
v+ν − u+ν (t)

)
≥ ξ(t)

(
vν − uν(t)

)
on Γ3. (4.5)

Then we add the inequalities (4.4) and (4.5) and integrate the result on Γ3 to
find that∫

Γ3

σν(t)
(
vν − uν(t)

)
da+

∫
Γ3

(∫ t

0

b(t− s)u+ν (s) ds

)(
v+ν − u+ν (t)

)
da

≥ −
∫
Γ3

pν
(
uν(t)

)(
vν−uν(t)

)
da+

∫
Γ3

γνβ
2(t)R̃

(
uν(t)

)(
vν − uν(t)

)
da.

(4.6)

Finally, we combine (4.3) and (4.6) to obtain that∫
Ω

σ(t) · (ε(v)− ε
(
u(t)

)
dx+

∫
Γ3

pν
(
uν(t)

)(
vν − uν(t)

)
da

+

∫
Γ3

pτ
(
β(t)

)
R∗
(
uτ (t)

)
·
(
vτ − uτ (t)

)
da

+

∫
Γ3

(∫ t

0

b(t− s)u+ν (s) ds

)(
v+ν − u+ν (t)

)
da

−
∫
Γ3

γνβ
2(t)R̃

(
uν(t)

)(
vν − uν(t)

)
da

≥
∫
Ω

f0(t) ·
(
v − u(t)

)
dx+

∫
Γ2

f2(t) ·
(
v − u(t)

)
dx ∀v ∈ U. (4.7)

Next, we use the Riesz representation Theorem to define the operator P :
V → V and the function f : R+ → V by equalities

(Pu,v)V =

∫
Γ3

pν(uν)vν da ∀u, v ∈ V, (4.8)

(f(t),v)V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da ∀v ∈ V. (4.9)
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It follows from assumptions (3.9) and (2.1) that

(Pu− Pv,u− v)V ≥ 0, ‖Pu− Pv‖V ≤ c20Lν‖u− v‖V ∀u, v ∈ V, (4.10)

which shows that P : V → V is a monotone Lipschitz continuous operator.
Moreover, the regularity (3.5) implies that

f ∈ C(R+;V ). (4.11)

We also consider the functional j : Z × V × V → R defined by

j(β,u,v) =

∫
Γ3

[
pτ
(
β(t)

)
R∗
(
uτ (t)

)
· vτ − γνβ2(t)R̃

(
uν(t)

)
vν
]
da. (4.12)

Then, we use (4.7) and notations (4.8)–(4.12) to deduce that(
σ(t), ε(v)− ε

(
u(t)

))
Q

+
(
Pu(t),v − u(t)

)
V

+ j
(
β(t),u(t),v

)
− j
(
β(t),u(t),u(t)

)
+

(∫ t

0

b(t− s)u+ν (s) ds, v+ν − u+ν (t)

)
L2(Γ3)

≥
(
f(t),v − u(t)

)
V
. (4.13)

Also we integrate the differential equation (3.31) with the initial condition
(3.33) to obtain that

β(t) = β0 −
∫ t

0

(
γνβ(s)

[
R
(
uν(s)

)]2 − εa)+ ds on Γ3. (4.14)

Finally, we recall that the unilateral constraints imposed to the displace-
ment and bonding field, combined with the definitions (4.1) and (4.2), yield

u(t) ∈ U, β(t) ∈ Z. (4.15)

We now gather the constitutive law (3.26), the variational inequality (4.13),
the integral equation (4.14) and the unilateral constraints (4.15) to obtain the
following variational formulation of Problem P.

Problem PV . Find a displacement field u : R+ → U , a stress field σ : R+ → Q
and a bonding field β : R+ → Z such that for all t ∈ R+ we have

σ(t) = Aε
(
u(t)

)
+

∫ t

0

B(t− s)ε
(
u(s)

)
ds, (4.16)(

σ(t), ε(v)− ε
(
u(t)

))
Q

+
(
Pu(t),v − u(t)

)
V

+

(∫ t

0

b(t− s)u+ν (s) ds, v+ν − u+ν (t)

)
L2(Γ3)

+ j
(
β(t),u(t),v − u(t)

)
≥ (f(t),v − u(t))V ∀v ∈ U, (4.17)

β(t) = β0 −
∫ t

0

(
γνβ(s)

[
R
(
uν(s)

)]2 − εa)+ ds. (4.18)
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The existence of the unique solution of Problem PV is stated below and
proved in the next section.

Theorem 2. Assume that (3.2), (3.3), (3.5), (3.9), (3.12), (3.19), (3.24), and
(3.25) hold. Then, there exists a unique solution (u,σ, β) of Problem PV .
Moreover, the solution satisfies,

u ∈ C(R+;U), σ ∈ C(R+;Q), β ∈ C(R+;Z). (4.19)

We conclude that, under assumptions of Theorem 2, Problem P has a unique
weak solution with regularity (4.19).

We end this section with some inequalities involving the functional j which
will be used in the proof of Theorem 2. Below in this section β, β1, and β2
denote elements of Z while u1, u2, and v represent elements of V ; recall also
that uiν and uiτ denote the normal component and the tangential part of ui,
for i = 1, 2; and, finally, c denotes a generic positive constant which may depend
on Ω, Γ1, Γ2, Γ3, A, B, pν , pτ , γν and L, but does not depend on t nor on the
rest of the input data, and whose value may change from place to place.

First, we note that j is linear with respect to the last argument and, there-
fore,

j(β,u,−v) = −j(β,u,v). (4.20)

Next, using (4.12) we find that

j(β1,u1,u2 − u1) + j(β2,u2,u1 − u2)

=

∫
Γ3

γνβ
2
1

(
R̃(u1ν)− R̃(u2ν)

)
(u1ν − u2ν) da

+

∫
Γ3

γν
(
β2
1 − β2

2

)
R̃(u2ν)(u1ν − u2ν) da

+

∫
Γ3

pτ (β1)
(
R∗(u1τ )−R∗(u2τ )

)
· (u2τ − u1τ ) da

+

∫
Γ3

(
pτ (β1)− pτ (β2)

)
R∗(u2τ ) · (u2τ − u1τ ) da

and since (
R̃(u1ν)− R̃(u2ν)

)
(u1ν − u2ν) ≤ 0 a.e. on Γ3,(

R∗(u1τ )−R∗(u2τ )
)
· (u2τ − u1τ ) ≤ 0 a.e. on Γ3,

we obtain

j(β1,u1,u2 − u1) + j(β2,u2,u1 − u2)

≤
∫
Γ3

γν
(
β2
1 − β2

2

)
R̃(u2ν)(u1ν − u2ν) da

+

∫
Γ3

(
pτ (β1)− pτ (β2)

)
R∗(u2τ ) · (u2τ − u1τ ) da.

Math. Model. Anal., 19(5):607–626, 2014.
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Using now the inequalities |R̃(u2ν)| ≤ L, ‖R∗(u2τ )‖ ≤ L, |β1| ≤ 1, |β2| ≤ 1,
valid a.e. on Γ3, and the property (3.19)(c) of the function pτ , we deduce that

j(β1,u1,u2 − u1) + j(β2,u2,u1 − u2) ≤ c
∫
Γ3

|β1 − β2| ‖u1 − u2‖ da.

Next, we combine the previous inequality with (2.1) to obtain

j(β1,u1,u2 − u1) + j(β2,u2,u1 − u2) ≤ c ‖β1 − β2‖L2(Γ3)‖u1 − u2‖V .

We now choose β1 = β2 = β in (4.21) to find that

j(β,u1,u2 − u1) + j(β,u2,u1 − u2) ≤ 0. (4.21)

Similar manipulations, based on the Lipschitz continuity of the truncation op-
erators R̃ and R∗ and on the boundedness of the function pτ , show that∣∣j(β,u1,v)− j(β,u2,v)

∣∣ ≤ c ‖u1 − u2‖V ‖v‖V . (4.22)

Inequalities (4.21)–(4.22) and equality (4.20) will be used in various places
in the next section.

5 Proof of Theorem 2

The proof of Theorem 2 will be carried out in several steps. To present it
everywhere below we assume that the hypothesis (3.2), (3.3), (3.5), (3.9), (3.12),
(3.19), (3.24), and (3.25) hold. Also, we use the product spaceX = Q×L2(Γ3)×
L2(Γ3), endowed with the norm

‖η‖X = ‖θ‖Q + ‖ζ‖L2(Γ3) + ‖β‖L2(Γ3) ∀η = (θ, ζ, β) ∈ X.

Let η = (θ, ζ, β) ∈ C(R+;Q × L2(Γ3) × Z). In the first step we consider the
following variational problem.

Problem PVη . Find a displacement field uη : R+ → U such that, for all t ∈ R+,
uη(t) ∈ U and(

Aε
(
uη(t)

)
, ε(v)− ε

(
uη(t)

))
Q

+
(
θ(t), ε(v)− ε

(
uη(t)

))
Q

+
(
Puη(t),v − uη(t)

)
V

+
(
ζ+(t), v+ν − u+ην(t)

)
L2(Γ3)

+ j
(
β(t),uη(t),v − uη(t)

)
≥
(
f(t),v − uη(t)

)
V
∀v ∈ U. (5.1)

We have the following result concerning this problem.

Lemma 1. There exists a unique solution to Problem PVη which satisfies uη ∈
C(R+;U). Moreover, if ui represents the solution of Problem PVη for η = ηi ∈
C(R+;Q× L2(Γ3)× Z), i = 1, 2, then there exists c > 0 such that∥∥u1(t)− u2(t)

∥∥
V
≤ c

∥∥η1(t)− η2(t)
∥∥
X
∀t ∈ R+. (5.2)
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Proof. Let t ∈ R+ and consider the operator Aηt : V → V and the functional
ϕηt : V → R defined by

(Aηtu,v)V =
(
Aε(u), ε(v)

)
Q

+ (Pu,v)V + j
(
β(t),u,v

)
∀u,v ∈ V, (5.3)

ϕηt(v) =
(
θ(t), ε(v)

)
Q

+
(
ζ+(t), v+ν

)
L2(Γ3)

∀v ∈ V. (5.4)

We use (3.2), (4.10), (4.20), (4.21) and (4.22) to see that the operator Aηt is
strongly monotone and Lipschitz continuous; moreover, it is easy to see that
the functional ϕηt is convex and lower semicontinuous and, in addition, the
set U is a closed convex nonempty subset of V . Using these ingredients, it
follows from standard arguments on variational inequalities (see, for instance
Theorem 2.8 in [22]) that there exists a unique element uηt ∈ U such that

(Aηtuηt,v − uηt)V + ϕηt(v)− ϕηt(uηt) ≥
(
f(t),v − uηt

)
V
∀v ∈ U. (5.5)

Denote uη(t)=uηt. Then, it follows from (5.3)–(5.5) that the element uη(t)∈U
is the unique element which solves the variational inequality (5.1).

We now prove the continuity of the function t 7→ uη(t) : R+ → V . To this
end, let t1, t2 ∈ R+ and denote uη(ti) = ui, θ(ti) = θi, ζ(ti) = ζi, β(ti) = βi,
f(ti) = f i, for i = 1, 2. We use standard arguments in (5.1) to find that(

Aε(u1)−Aε(u2), ε(u1)− ε(u2)
)
Q

+ (Pu1 − Pu2,u1 − u2)V

≤
(
θ1 − θ2, ε(u2)− ε(u1)

)
Q

+
(
ζ+1 − ζ

+
2 , u

+
2ν − u

+
1ν

)
L2(Γ3)

+ j(β1,u1,u2 − u1) + j(β2,u2,u1 − u2) + (f1 − f2,u1 − u2)V .

Therefore, (3.2), (4.10), (4.21) and (2.1) yield

‖u1 − u2‖V ≤ c
(
‖θ1 − θ2‖Q + ‖ζ1 − ζ2‖L2(Γ3)

+ ‖β1 − β2‖L2(Γ3) + ‖f1 − f2‖V
)
, (5.6)

where c is a positive constant. This inequality combined with (4.11) and the
regularity of the functions θ, ζ, β show that uη ∈ C(R+;V ). Thus, we conclude
the existence part in Lemma 1. The uniqueness part follows from of the unique
solvability of (5.1) for each t ∈ R+. Finally, the estimate (5.2) follows by using
simuilar arguments as those used in the proof of the inequality (5.6). ut

We now consider the operator Λ which maps every element η = (θ, ζ, β) ∈
C(R+;Q× L2(Γ3)× Z) into the element Λη given by

Λη(t) =

(∫ t

0

B(t− s)ε
(
uη(s)

)
ds,

∫ t

0

b(t− s)u+ην(s) ds,(
β0 −

∫ t

0

(
γνβ(s)

[
R
(
uην(s)

)]2 − εa)+ ds)+)
(5.7)

for all t ∈ R+. Here uη ∈ C(R+;U) is the solution of Problem PVη provided in
Lemma 1. We have the following result.
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Lemma 2. The operator Λ takes values in the set C(R+;Q × L2(Γ3) × Z).
Moreover, it has a unique fixed point η∗ ∈ C(R+;Q× L2(Γ3)× Z).

Proof. Let η = (θ, ζ, β) ∈ C(R+;Q×L2(Γ3)×Z) and denote by ω the function
defined by

ω(t) =

(
β0 −

∫ t

0

(
γνβ(s)

[
R
(
uην(s)

)]2 − εa)+ ds)+

∀t ∈ R+. (5.8)

Then, using (3.24) and (3.25) it follows that ω(t) ∈ L2(Γ3) and, moreover,
0 ≤ ω(t) ≤ β0 ≤ 1 a.e. on Γ3, for all t ∈ R+. We conclude from here that
ω(t) ∈ Z. On the other hand, it is easy to see that t 7→ Λ(t) is a continuous
function from R+ to the product space X = Q × L2(Γ3) × L2(Γ3), which
concludes the first part of the lemma.

For the second part, we consider η1 = (θ1, ζ1, β1),η2 = (θ2, ζ2, β2) ∈
C(R+;Q × L2(Γ3) × Z) and, for the sake of simplicity, we use the notation
uηi = ui, for i = 1, 2. Let n ∈ N and let t ∈ [0, n]. We use assumptions (3.3)
and (3.12) on B and b, respectively, inequalities (2.2) and (2.1) as well as the
bounds |R(u1ν(s))| ≤ L, |R(u2ν(s))| ≤ L, |β1(s)| ≤ 1, |β2(s)| ≤ 1, valid a.e.
on Γ3, for all s ∈ [0, t]. After some elementary calculation we deduce that

∥∥Λη1(t)− Λη2(t)
∥∥
X
≤ c max

s∈[0,n]

∥∥B(s)
∥∥
Q∞

∫ t

0

∥∥u1(s)− u2(s)
∥∥
V
ds

+ c max
s∈[0,n]

∥∥b(s)∥∥
L∞(Γ3)

∫ t

0

∥∥u1(s)− u2(s)
∥∥
V
ds

+ c

(∫ t

0

∥∥u1(s)− u2(s)
∥∥
V
ds+

∫ t

0

∥∥β1(s)− β2(s)
∥∥
L2(Γ3)

ds

)
, (5.9)

where, here and below, c represent various positive constants which do not
depend on n. We conclude from here that∥∥Λη1(t)− Λη2(t)

∥∥
X

≤ cn
∫ t

0

∥∥u1(s)− u2(s)
∥∥
V
ds+ c

∫ t

0

∥∥β1(s)− β2(s)
∥∥
L2(Γ3)

ds, (5.10)

where now cn represent various positive constants which depend on n. We now
combine the inequalities (5.10) and (5.2) to deduce that

∥∥Λη1(t)− Λη2(t)
∥∥
X
≤ cn

∫ t

0

∥∥η1(s)− η2(s)
∥∥
X
ds

and we note that, obviously, Q×L2(Γ3)×Z is a closed subset of the space X.
These ingredients allow us to apply Theorem 1 to conclude the proof. ut

Now, we have all the ingredients needed to prove Theorem 2.
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Existence. Let η∗ = (θ∗, ζ∗, β∗) ∈ C(R+;Q × L2(Γ3) × Z) be the fixed point
of Λ and let u∗, σ∗ be the functions defined by

u∗(t) = uη∗(t), (5.11)

σ∗(t) = Aε
(
u∗(t)

)
+

∫ t

0

B(t− s)ε
(
u∗(s)

)
ds (5.12)

for all t ∈ R+. We recall that η∗ = Λη∗ and, using the equalities (5.7), (5.11)
and assumption (3.12) we deduce that

θ∗(t) =

∫ t

0

B(t− s)ε
(
u∗(s)

)
ds, (5.13)

ζ∗+(t) =

∫ t

0

b(t− s)u∗+ν (s) ds, (5.14)

β∗(t) =

(
β0 −

∫ t

0

(
γνβ

∗(s)
[
R
(
u∗ν(s)

)]2 − εa)+ ds)+

(5.15)

for all t ∈ R+. We show that (u∗,σ∗, β∗) satisfies the system (4.16)–(4.18).
First, we note that (4.16) is a direct consequence of (5.12). Next, we write

the variational inequality (5.1) for η = η∗ and use the equalities (5.11)–(5.14)
to see that (4.17) holds. And, finally, we claim that (4.18) also holds. Indeed,
let ω∗ be the function defined by

ω∗(t) = β0 −
∫ t

0

(
γνβ

∗(s)
[
R
(
u∗ν(s)

)]2 − εa)+ ds ∀t ∈ R+. (5.16)

A careful examination of equalities (5.16) and (5.15) shows that the following
properties hold, a.e. on Γ3: t 7→ ω∗(t) is a non increasing function, ω∗(0) =
β0 ≥ 0 and, if there exists t0 ∈ R+ such that ω∗(t0) = 0, then ω∗(t) = 0 for all
t ≥ t0. We deduce from here that ω∗(t) ≥ 0 for any t ∈ R+. Therefore, since
(5.15) and (5.16) imply that β∗(t) = ω∗(t)+ we find that

β∗(t) = ω∗(t) ∀t ∈ R+. (5.17)

Equality (4.18) is now a direct consequence of the equalities (5.16) and (5.17).
This proves that the triple (u∗,σ∗, β∗) represents a solution of Problem PV .

The regularity expressed in (4.19) is a direct consequence of the Lemmas 1
and 2, combined with assumptions (3.2) and (3.3).

Uniqueness. The uniqueness of the solution follows from the uniqueness of the
fixed point of operator Λ defined by (5.7) combined with the unique solvability
of Problem PVη . Indeed, let (u,σ, β) be a solution of Problem PV which
satisfies (4.19) and let η = (θ, ζ, β) ∈ C(R+;Q× L2(Γ3)× Z) be given by

η(t) =

(∫ t

0

B(t− s)ε(u(s)) ds,

∫ t

0

b(t− s)u+ν (s) ds,(
β0 −

∫ t

0

(
γνβ(s)

[
R
(
uν(s)

)]2 − εa)+ ds)+)
(5.18)
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for all t ∈ R+. We substitute equality (4.16) in (4.17) and, using (5.18), we
deduce that u satisfies the inequality (5.1), at each time moment t ∈ R+.
On the other hand, it follows from Lemma 1 that Problem PVη has a unique
solution, denoted uη, with regularity uη ∈ C(R+;U). Therefore, we conclude
that

u = uη. (5.19)

We use (5.19) to see that∫ t

0

B(t− s)ε(uη(s)) ds =

∫ t

0

B(t− s)ε(u(s)) ds,∫ t

0

b(t− s)u+ην(s) ds =

∫ t

0

b(t− s)u+ν (s) ds,(
β0 −

∫ t

0

(
γνβ(s)

[
R
(
uην(s)

)]2 − εa)+ ds)+

=

(
β0 −

∫ t

0

(
γνβ(s)

[
R
(
uν(s)

)]2 − εa)+ ds)+

for all t ∈ R+. Therefore, (5.7) and (5.18) show that Λη = η and, using the
uniqueness part in Lemma 2, we deduce that

η = η∗. (5.20)

We now use (5.19), (5.20) and (5.11) to see that

u = uη = uη∗ = u∗. (5.21)

Then we use (4.16), (5.21) and (5.12) to deduce that

σ(t) = Aε
(
u(t)

)
+

∫ t

0

B(t− s)ε
(
u(s)

)
ds (5.22)

= Aε
(
u∗(t)

)
+

∫ t

0

B(t− s)ε
(
u∗(s)

)
ds = σ∗(t) ∀t ∈ R+

and, finally, (5.20) and (4.18) show that

β = β∗. (5.23)

The uniqueness part of the theorem is now a consequence of equalities (5.21),
(5.22) and (5.23). ut
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