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Abstract. A 2+1 dimensional PDE traveling wave model describing spatial-lateral
dynamics of edge-emitting broad area semiconductor devices is considered. A numer-
ical scheme based on a split-step Fourier method is presented. The domain decompo-
sition method is used to parallelize the sequential algorithm. The parallel algorithm
is implemented by using Message Passing Interface system, results of computational
experiments are presented and the scalability of the algorithm is analyzed. Simula-
tions of the model equations are used for optimizing of existing devices with respect
to the emitted beam quality, as well as for creating and testing of novel device design
concepts.
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1 Introduction

High power high brightness edge-emitting (EE) broad area semiconductor
(BAS) lasers and optical amplifiers are compact devices playing a key role in
different laser technologies. EE BAS lasers and amplifiers (see Fig. 1(a)) have a
relatively simple geometry allowing an efficient pumping through a broad elec-
tric contact on the top of the device and are able to operate at the high power
(tens of Watts) regimes. BAS devices, however, have one serious drawback:
once operated at high power regimes, they suffer from a relatively low beam
quality which is due to simultaneous irregular contribution of different lateral
and longitudinal modes. As a result, the emitted optical beam has undesirable
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Figure 1. Schemes of a standard EE BAS device (a) and different modifications
admitting a beam quality improvement. (b): master-oscillator tapered power-amplifier

laser. (c): striped array BAS laser with an off-axis external cavity. (d): BAS laser with a
dual angular plane wave injection. (e): BAS amplifier with a spatially periodic electrical

contact.

broad optical and lateral spectra. A quality improvement of the beam ampli-
fied in BAS amplifiers or generated by BAS lasers is a very important issue of
the modern semiconductor laser technology, and there are several BAS device
concepts allowing some improvement of the optical beam.

Mathematical modeling, simulations and analysis play a significant role in
optimization of existing devices or creation of novel design concepts. Typically,
the length (z dimension) and width (x-dimension) of EE BAS devices (see
Fig. 1(a)) are in a few millimeter and hundreds of micrometer range, respec-
tively, whereas the height (y dimension) of the active zone where the optical
beam is generated and amplified is not larger than a micrometer. There ex-
ist different models describing stationary and/or dynamical states in EE BAS
devices. The most complicated of them is resolving temporal-spatial dynamics
of full semiconductor equations accounting for microscopic effects and is given
by (3 + 1)-dimensional PDEs [4]. More simple, but still appropriate models for
BAS devices can be derived assuming paraxial approximation of the Maxwell
equations and averaging over the vertical y direction. Several versions of the
resulting dynamical (2+1)-dimensional Traveling-Wave (TW) model were sim-
ulated and analyzed by different authors in Refs. [2, 9, 15,18,29].

Since full 3-dimensional dynamical simulations of semiconductor devices
with different spatial and temporal scales in a reasonable time are not possible,
we are considering the (2 + 1)-dimensional TW model described briefly in this
paper. This model is based on the TW equations for counter-propagating and
laterally diffracted slowly varying optical fields which are coupled to the ODE
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for induced polarizations and diffusive rate equation for carrier densities [3,25].
The well-posedness of this model was studied in [14], while different algorithms
used for the numerical integration of the model were investigated in [5, 6, 13].
A possibility to formulate various boundary conditions and compact numerical
approximations of these conditions are considered in [21].

Precise dynamic simulations of long and broad or tapered devices and tun-
ing/optimization of the model with respect to one or several parameters, re-
quire huge CPU time and memory resources. A proper resolution of rapidly
oscillating fields in typical BAS devices on a sufficiently large optical frequency
range requires a fine space (106–107 mesh points) and time (up to 106 points
for typical 5 ns transients) discretization. Dynamic simulations of such devices
can easily take one or even several days of computations on a single processor
computer. Some speedup of computations can be achieved by using problem-
dependent relations of the grid steps, including also variable steps in the lateral
dimension. All these grid optimizations, however, are not sufficient when one-
or a few- parameter studies with the simulation times up to 1000 ns should be
performed. It is obvious, that the required computations in an acceptable time
can only be done by means of parallel computers and parallel solvers.

In this paper we present a split-step Fourier method based numerical algo-
rithm for the integration of the 2 + 1 dimensional traveling wave model of BAS
devices. The approximation of all equations is done on the same space grid,
while a staggered grid was used in our previous papers [5,6]. A parallel version
of this finite difference scheme is developed. The method of domain decom-
position is used to parallelize the sequential algorithm. The obtained parallel
algorithm is implemented on the parallel cluster of computers at the Weier-
strass Institute in Berlin. Results of computational experiments are presented
and analyzed. In particular a good strong scaling of the presented parallel
algorithm is obtained, e.g. a speed-up Sn ≈ 25 is obtained on 32 processors
for a fixed problem size. The tests of weak scaling also are done, the results
of computational experiments show a monotonic increase of speed-up Sn for
larger problem sizes.

The proposed numerical algorithm was successfully used by one of the au-
thors for simulations of different BAS lasers and amplifiers (see Fig. 1(b)–(e))
with an improved quality of the beam. The master-oscillator (MO) tapered
power-amplifier (PA) laser shown in Fig. 1(b) was analyzed theoretically and
experimentally in [24, 25, 28]. A narrow waveguide of the MO enables an im-
provement of the lateral profile of the beam, which later is amplified in the
tapered PA part of the device. However, even a small optical feedback at the
PA facet can easily excite multiple longitudinal modes which degrade the per-
formance of the device. Fig. 1(c) represents the striped array BAS device with
the off-axis external feedback [11]. When the angle of the external cavity is in a
proper relation with the lateral period of the striped electrical contact, one can
achieve an effective suppression of all but one lateral modes. The emitted field
with an improved quality then should be collected at the angle adjoint to the
external cavity. The basic drawbacks of this configuration are a large size and
a moderate power of the collected field. Fig. 1(d) and (e) represent two theo-
retically proposed configurations of the BAS laser and amplifier, respectively.

Math. Model. Anal., 19(5):627–646, 2014.
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A pair of coherently injected plane waves at the adjoint angles to the laser axis
(Fig. 1(d)) can create a periodic carrier grating, which in turn can suppress all
but one lateral modes of the laser [22,23]. Finally, Fig. 1(e) represents a situa-
tion where a properly designed periodic modulation of the electrical contact or
active zone in both spatial directions can lead to a significant improvement of
the amplified beam in BAS amplifiers [10,19]. Simulations of all these examples
are briefly presented at the end of this paper. Some preliminary results of this
paper are presented in short note [20].

2 Mathematical Model

We use the traveling wave (TW) model [25] for simulations of BAS devices.
It is a 2 + 1-dimensional system of PDEs which governs the spatio-temporal
dynamics of the complex slowly varying amplitudes of the counter-propagating
fields E±(z′, x′, t′), polarization functions P±(z′, x′, t′) and real carrier density
function N(z′, x′, t′). After rescaling of the coordinates

z =
1

1 mm
z′, x =

√
k0n̄

1 mm
x′, t =

c0
ng · 1 mm

t′,

(n̄: background refraction index, k0 = 2π
λ0

: central wavenumber, λ0: central
wavelength, c0: speed of light in vacuum, ng: group velocity index) and a
suitable normalization of parameters and dynamical variables, the TW model
can be written as follows [5]:(

∂

∂t
± ∂

∂z

)
E± = − i

2

∂2

∂x2
E± − i

[
β
(
N, ‖E‖2

)
− iD

2

]
E± − iκ∓E∓ + F±sp,

∂

∂t
P± = iωP± + γ

(
E± − P±

)
, (2.1)

1

µ

∂

∂t
N = D

∂2

∂x2
N + I(z, x)−R(N)−<e

∑
ν=±

Eν∗
[
G
(
N,
∣∣E±∣∣2)−D]Eν ,

where ‖E‖2 = |E+|2 + |E−|2 is proportional to the local field intensity, the
complex factors κ+ and κ− represent the coupling of the counterpropagating
fields by the (optional) integrated Bragg grating, and the propagation factor β
is defined by

β
(
N,
∣∣E±∣∣2) = ∆− ñ(N) +

i(G(N, ‖E‖2)− α)

2
.

The operator D and functions R, G, ñ in the formulas above denote the
Lorentzian approximation of the material gain dispersion, the spontaneous re-
combination of carriers, the gain peak value, and the refractive index change,
respectively:

R(N) = AN +BN2 + CN3, DE±=g
(
E± − P±

)
,

G
(
N, ‖E‖2

)
=

g′Ntr
1 + ε‖E‖2

log

(
max(N,N∗)

Ntr

)
, ñ(N) = 2σNtr

√
N/Ntr.
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In general, this model should be considered in the unbounded region Q =
Qz,x× (0, T ], where Qz,x = {(z, x) : (z, x) ∈ (0, L)×R} is the spatial domain,
L represents the length of the device, x is the coordinate of the unbounded
lateral axis of the device, and T defines the length of the time interval where we
perform the integration. In our numerical simulations we choose a large enough
lateral interval [−X,X] containing the considered BAS device and assume that
the field and carrier density functions E± and N are periodic along the lateral
axis:

E±(z, x+ 2X, t)=E±(z, x, t), N(z, x+ 2X, t)=N(z, x, t), (z, x, t) ∈ Q. (2.2)

This assumption restricts our considerations of the model equations to the trun-
cated domain QX = QXz,x × (0, T ], QXz,x = {(z, x) : (z, x) ∈ (0, L)× [−X,X]}.
We note, the challenges of the right selection and accurate numerical approx-
imation of the appropriate boundary conditions (BCs) is well known, see [1].
In our previous paper [5] we have investigated the performance of the standard
Crank–Nicolson scheme supplemented with different BCs, including the exact
discrete transparent boundary conditions (DTBCs) [8], and the approximate
DTBCs suggested by Szeftel [26]. High order numerical approximations of BCs
on nonuniform space grids are considered in [7, 21].

The boundary conditions for the optical fields E± at the device facets
(z, x) ∈ 0× [−X,X] and (z, x) ∈ L× [−X,X] in (2.1) are given by

E+(0, x, t) = r0(x)E−(0, x, t) + a(x, t), (2.3)

E−(L, x, t) = r1(x)E+(L, x, t) + F
[
E+(L, ·, t− τ)

]
(x, t),

for (x, t) ∈ [−X,X] × [0, T ], where r0 and r1 are the field amplitude reflectiv-
ity coefficients, a(x, t) denotes the complex amplitude of the possible optical
field injection, and the operator F represents another possible optical source
determined by the delayed optical field re-injected back into the device [11].

The initial conditions

E±(z, x, 0) = E±0 (z, x), P±(z, x, 0) = P±0 (z, x), N(z, x, 0) = N0(z, x) (2.4)

are defined for all (z, x) ∈ QXz,x. If properly stated, they are not very impor-
tant, since after some transients the simulated trajectories approach one of the
existing stable attractors.

The coefficients ∆, α, g′, σ, Ntr, N∗, ε, µ, D, I, A, B and C represent the
static detuning due to the built-in refractive index profile, the internal losses of
the field, the differential gain, the differential index, the carrier density at the
transparency, the gain clamping carrier density, the nonlinear gain compres-
sion, the scaling factor related to the ratio of the photon and carrier life times,
the carrier diffusion coefficient, the current injection density, and three recom-
bination factors, respectively. The parameters g, ω and γ define the Lorentzian
fit of the gain profile and denote the amplitude, the central frequency and the
half width at half maximum of this Lorentzian. Finally, the random function
F±sp represents the spontaneous emission.

Most of the parameters entering model equations are allowed to be spa-
tially non-homogeneous and discontinuous depending on the device geometry.

Math. Model. Anal., 19(5):627–646, 2014.
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More details about the meaning and typical values of these parameters can
be found in [3, 25]. Normalization of the equations and typical values of the
normalized parameters were given in [5]. It is noteworthy, that typical values
of γ ≈ 102 ÷ 103 and µ ≈ 10−3 represent the fast relaxation of the polariza-
tion functions P± and the slow dynamics of the carrier density N , respectively.
Typical size of the dimensionless domain is determined by X ≈ 5 ÷ 30 and
L ≈ 1÷ 10, whereas D ≈ 0.5 and most of other parameters are of order O(1).

3 Numerical Scheme

The computation domain QX is discretized using a uniform in space and time
grid QXh = QXh,z,x × ωh,t, where QXh,z,x = ωh,z × ωh,x, and

ωh,x = {xj : xj = j hx, j = −J/2, . . . , J/2− 1, hx = 2X/J},
ωh,z = {zk : zk = k h, k = 0, . . . ,K, h = L/K},
ωh,t = {tm : tm = mh, m = 0, . . . ,M, M = T/h}.

The temporal discretization step h is equal to the spatial step in z-direction,
what allows an accurate simulation of the optical field propagation along the
characteristic lines z ± t = const. We note also, that h is the maximal allowed
time step: its further increasing violates Courant-Friedrichs-Lewy condition
and, therefore, the stability of the numerical scheme would be not satisfied.
We note that in this paper we are using the collocated grid, while in [5, 6] the
approximation is done on staggered grids.

All spatially depending parameters P (z, x), spatially and temporarily de-
pending functions F (x, t) and unknown functions U(z, x, t) in Eqs. (2.1)–(2.4)
are approximated by their grid analogs defined on QXh,z,x or QXh :

Pk,j = P (zk, xj), Fmj = F (xj , tm), Umk,j ≈ U(zk, xj , tm).

When constructing numerical schemes we exploit a discrete Fourier trans-
form of complex and real laterally-periodic functions U(z, x, t), where U = E±

or U = N . This approach is especially useful for the estimation and approx-
imation of higher order in x linear differential operators of laterally-periodic
systems. Namely, we assume that a complex function Uj(z, t) := U(z, xj , t)
(representing the complex fields E+ and E−) on the uniform lateral mesh ωh,x
can be expressed as a linear combination of the orthonormal grid-functions
eiπ`xj/X , ` = −J/2, . . . , J/2− 1:

Uj(z, t) =
[
F−1

(
Û`(z, t)

∣∣J/2−1
`=−J/2

)]
j

:=
1

J

J/2−1∑
`=−J/2

Û`(z, t)e
iπ`xj/X , (3.1)

where the Fourier coefficients Û`(z, t) are defined as

Û`(z, t) =
[
F
(
Uj(z, t)

∣∣J/2−1
j=−J/2

)]
`

:=

J/2−1∑
j=−J/2

Uj(z, t)e
−iπ`xj/X . (3.2)
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An approximation of the second lateral derivative of the function U at any grid
point xj now can be written as follows:

∂2

∂x2
U(z, xj , t) ≈

1

J

J/2−1∑
`=−J/2

(
−π

2`2

X2

)
Û`(z, t)e

iπ`xj/X . (3.3)

When the function U represents the carrier density N and is real, it can
be expressed as a linear combination of the real orthogonal grid-functions
cos(π`xj/X), ` = 0, . . . , J/2, and sin(π`xj/X), ` = 1, . . . , J/2− 1. An equiva-
lent complex expression of this liner combination still can be written as (3.1)

with the complex Fourier coefficients (3.2) satisfying the relations N̂−J/2 =

N̂∗−J/2 and N̂` = N̂∗−`, ` = 0, . . . , J/2− 1.

Splitting scheme. The TW model (2.1)–(2.4) is integrated numerically us-
ing a splitting scheme, where the lateral field diffraction and carrier diffusion are
resolved with the fast Fourier transform, and the remaining coupled hyperbolic
system in (2.1) is integrated along the characteristics using finite differences.

Various splitting techniques are used to construct efficient integrators of the
Schrödinger type semi-discrete problems [16, 17, 27]. Here we adapt a general
splitting technique to approximate specific equations of the given system of
nonlinear differential equations. We note that the accuracy of approximation
can be increased if the symmetrical version of the splitting scheme would be
used.

Let us assume, that the grid functions E±,mk,j , P±,mk,j and Nm
k,j are known for

the time layer tm. To find the values of these functions at the new time layer
tm+1 we proceed as follows. In the first step of our algorithm we make a simple
prediction of the carrier density at the new time layer:

Ñm+1
k,j −Nm

k,j

µh
= −

(
G
(
Nm
k,j ,
∥∥Emk,j∥∥2)− g)∥∥Emk,j∥∥2 − g<e∑

ν=±
Eν,m∗k,j P ν,mk,j

+ Ik,j −
Ñm+1
k,j R(Nm

k,j)

Nm
k,j

, k = 0, . . . ,K, j = −J/2, . . . , J/2− 1. (3.4)

Due to the slow carrier dynamics (the diffusion is moderate and the factor µ is
small) we use a simple explicit scheme with a totally ignored carrier diffusion
at this step.

In the next step we neglect the field diffraction and find intermediate ap-
proximations for the optical fields and new polarization functions:

Ẽ±,m+1
k,j − E±,mk∓1,j

h
= −

gk,j(Ẽ
±,m+1
k,j − P±,m+1

k,j ) + gk∓1,j(E
±,m
k∓1,j − P

±,m
k∓1,j)

4

− i

2

[
β
(
Ñm+1
k,j ,

∥∥Emk,j∥∥2)Ẽ±,m+1
k,j + β

(
Nm
k∓1,j ,

∥∥Emk∓1,j∥∥2)E±,mk∓1,j
]

− i
κ∓k,jẼ

∓,m+1
k,j + κ∓k∓1,jE

∓,m
k∓1,j

2
, k, k ∓ 1 ∈ {0, . . . ,K}; (3.5)

Math. Model. Anal., 19(5):627–646, 2014.
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Ẽ+,m+1
0,j = r0,jẼ

−,m+1
0,j + am+1

j , Ẽ−,m+1
K,j = r1,jẼ

+,m+1
K,j + Fh

[
E

+,m+1− τh
K,·

]
,

P±,m+1
k,j =

γk,j(1− e(iωk,j−γk,j)h)

γk,j − iωk,j
Ẽ±,m+1
k,j + e(iωk,j−γk,j)hP±,mk,j ,

k = 0, . . . ,K, j = −J/2, . . . , J/2− 1.

Here the stiff ODE for the polarization functions P± in (2.1) (γ is large !) is
resolved using an exponentially weighted scheme with the forward values for
E±, which ensures, that in the limit γ → ∞ the discretized solutions P±

converge to E± [25].

We note, that the scheme above is linear with respect to Ẽ±,m+1
k,j and

P±,m+1
k,j and can be separately resolved for each k = 0, . . . ,K.

In the final step of our algorithm we take into account the carrier diffusion
and field diffraction. Namely, we solve the linear equations

∂

∂t
N = µD

∂2

∂x2
N,

(
∂

∂t
± ∂

∂z

)
E± = − i

2

∂2

∂x2
E±

within the time (and space) interval of length h, whereas the initial conditions

are given by the previously obtained estimates Ñ and Ẽ±. To integrate these
equations we use a lateral discretization of the functions N and E±, approx-
imate their second lateral derivatives by (3.3) and solve the resulting systems
of the differential equations in the (lateral) Fourier domain:

N̂`(z, t+ h) = e−µD
π2`2

X2 hN̂`(z, t), Ê±` (z ± h, t+ h) = ei
π2`2

2X2 hÊ±` (z, t).

The inverse discrete Fourier transform (3.1) and the discretization of the func-
tions N and E± along the longitudinal z direction give us the following equa-
tions, which complete the description of our numerical scheme:

Nm+1
k,j =

1

J

J/2−1∑
`=−J/2

[
e−µD

π2`2

X2 h

J/2−1∑
s=−J/2

Ñm+1
k,s e−i

2π`s
J

]
ei

2π`j
J ,

E±,m+1
k,j =

1

J

J/2−1∑
`=−J/2

[
ei
π2`2

2X2 h

J/2−1∑
s=−J/2

Ẽ±,m+1
k,s e−i

2π`s
J

]
ei

2π`j
J , (3.6)

k = 0, . . . ,K, j = 1, . . . , J.

4 Parallelization

The numerical scheme (3.4)–(3.6) is well suited for the execution on paral-
lel computers by using the domain decomposition technique. To distribute
the computational work among different processes ζl, l = 1, . . . , n we decom-
pose the computational grid QXh along the longitudinal z-direction into n non-

overlapping sub-grids QX,lh . In order to reach a load balancing, the first (n−1)
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Figure 2. A schematic representation of the computational grid (z and t coordinates

only). Vertical dashed lines indicate splitting of the grid QX
h to smaller sub-grids QX,l

h . Full
and empty bullets represent the actual (already computed) and the next time layers,

respectively. Arrows indicate data streams which should be read or recorded by different
processes ζl before the next time iteration. Small boxes: ghost points of the sub-grid

containing an information received from the corresponding border point (light blue bullets)
of the adjacent sub-grid.

sub-grids QX,lh have s longitudinal grid points zk each, whereas the correspond-
ing grid point number in the last sub-grid is smaller or equal to s. In such a
manner, any process ζl operates on the sub-grid

QX,lh = ωlh,z × ωh,x × ωh,t, ωlh,z = ωh,z ∩
[
(l − 1)sh,min

{
(ls− 1)h, L

}]
,

s = d(K + 1)/ne, l = 1, . . . , n.

A schematic representation of the full computational grid and its splitting to
smaller sub-grids is given in Fig. 2.

Before computing the grid functions at the next time layer (empty bullets
in Fig. 2) each process ζl needs to exchange the current time layer (full bul-

lets) values of E±, P± and N at the boundaries of the sub-grid QX,lh (light
blue bullets in the same figure) with the adjacent processes ζl−1 and ζl+1.
This information is recorded to the specially created ghost grid points (small

full boxes) at the adjacent side of the sub-grids QX,l−1h and QX,l+1
h . The left

and right ghost points of the sub-grid QX,lh in the consequent computations
of the process ζl are treated like standard grid points (z(l−1)s−1, xj , t

m) and
(zls, xj , t

m) which, in general, are out of the scope of the process ζl. Here we
are not considering data communication algorithms, when exchange of data
is overlapped with computations in the region where the ghost points are not
included into the stencil of the discrete scheme.

The processes ζ1 and ζn operating on the end sub-grids QX,1h and QX,nh

have no left or right adjacent sub-grid. The required sub-grid boundary infor-
mation in these cases is given by the longitudinal boundary conditions (2.3)
including optional optical injection and optical feedback functions a(x, t) and
F [E+(L, x, t− τ)] (empty in-pointing arrows in the same figure).

In addition to updating the solution of the scheme (3.4)–(3.6) on the sub-

grid QX,nh , the last process ζn records the emitted field E+(L, x, t) and calcu-
lates distributions of the optical feedback (if considered). Thus, the fact that

QX,nh has, possibly, less grid points than the other sub-grids could be advanta-
geous seeking to speed up the simulations. In order to preserve a load balance
among processes it can be recommended to reduce the size of the last sub-grid
even more, if the post processing tasks are even more time consuming.

Math. Model. Anal., 19(5):627–646, 2014.
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4.1 Scalability analysis of the parallel algorithm

In this section we present a detailed scalability analysis of the constructed
parallel algorithm. It is easy to estimate the costs of the sequential scheme to
compute a solution at one time step

W = c1KJ log J,

where the factor J log J is due to application of FFT.
Now let us estimate the complexity of the proposed parallel algorithm. The

computation costs are equal to

T 1
n = c1dK/neJ log J.

Here we are not taking into account the fact that the constant c1 in the es-
timation of complexity of the parallel algorithm can be smaller than for the
sequential algorithm due to better cashing of smaller size parallel subproblems.
Thus we are considering the worst case scenario.

Next we will estimate costs of communication among processors. The im-
plementation of the given parallel algorithm requires only local send/receive
communications of c1J data items between neighbor processes and each pro-
cess has at most two neighbours. All processes ζ1 are divided into two groups,
depending if index l is an even or odd number. Then the well-known red-black
parallel data communication protocol is applied. The communication costs can
be estimated as [12]

T 2
n = c2(α+ βJ),

where α denotes the message startup time and β is the time required to send
one element of data.

Thus the total complexity of the parallel algorithm is equal to

Tn = c1dK/neJ log J + c2(α+ βJ). (4.1)

The scalability analysis of any parallel algorithm finds the rate at which
the size of the sequential algorithm W needs to grow up with respect to the
number of processes n in order to maintain fixed the theoretical efficiency of
the parallel algorithm E = W/(nTn). For a given efficiency E the iso-efficiency
function T0 = g(n,E) is defined by the implicit equation [12]:

W =
E

1− E
H(n,W ). (4.2)

The total overhead of the proposed parallel algorithm is given by

H(n,W ) := nTn −W = c1
(
ndK/ne −K

)
J log J + nc2(α+ βJ).

In order to simplify the scalability analysis, we assume that for large size prob-
lems the following asymptotical estimate is valid

H(n,W ) = nc2βJ.
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After simple computations we get from (4.2) the following iso-efficiency func-
tion, expressed with respect to the number of grid points in z coordinate:

K =
E

1− E
c2β

c1

n

log J
. (4.3)

Thus in order to maintain a fixed efficiency E of the parallel algorithm for a
fixed number of grid points J , it is sufficient to preserve the same number of
grid ωlh,z points per process. Also, it follows from (4.3) that the increase of J
reduces the dependence of K on the number of processes n.

4.2 Results of computational experiments

The numerical scheme (3.4)–(3.6) and the parallel numerical algorithm were
implemented by using the HPMPI library and executed on HP Blade server
with 48 2xXeon5430/2666 Quad-Core nodes. The nodes are interconnected via
Infiniband 4xDDR (20 Gbit/s).

We have performed set of simulations of three different size BA semicon-
ductor devices. The first one (Problem 1) is located within the computational
domain consisting of 640 steps in longitudinal z-direction and 1000 steps in
lateral x-direction, whereas 1665 time iteration steps correspond to 100 ps long
transients. The computational domain of the second case (Problem 2) consists
of 320 steps in longitudinal z-direction, 1000 steps in lateral x-direction, and
3331 time steps (200 ps long transients) are computed. The computational
domain of the third problem (Problem 3) has 300 steps in z-direction and 1000
steps in x-direction, whereas 3278 time iteration steps correspond to 200 ps
long transients.

Obtained performance results are presented in Table 1. Here n = nn × nc
processes are used in computations, where nn denotes the number of nodes
and nc denotes the number of multi-cores per one node. τn represents a CPU
time needed for parallel n-process calculations and Sn = τ1/τn is an estimated
speed-up of these computations. We note, that for comparison of the efficiency
of parallelization we present the CPU time needed for time iterations only, i.e.,
we have excluded the CPU time used by initial data reading and final data
writing procedures.

The main conclusion from the given results is that a general trend of the
efficiency of the parallel algorithm (strong scaling), which is predicted by theo-
retical scalability estimates, is confirmed quite well. Even for moderate sizes of
the discrete Problems 1, 2 and 3 the CPU time of the parallel algorithm mono-
tonically decreases when the number of nodes nd increases and the number of
multi-cores per node is fixed. The second conclusion is that up to 4 multi-cores
per node can be used very efficiently for this type of nodes.

5 Simulations of BAS Devices

As it was mentioned before, an optical field in typical conventional high power
BAS lasers is composed of multiple longitudinal and lateral optical modes, an
emission is irregular, it has broad and irregular optical and lateral (angular)
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Table 1. Results of numerical experiments (time τn and speed-up Sn) for different numbers
of processes n = nn × nc and different problems: Problem1 is solved on grid (K, J,M) =
(640, 1000, 1665), Problem 2 on grid (320, 1000, 3331) and Problem 3 on grid (300, 1000, 3278).

n nn nc Problem 1 Problem 2 Problem 3
time (s) speed-up time (s) speed-up time (s) speed-up

1 1 1 1259.23 1010.83 876.084

2 1 2 656.467 1.918 524.064 1.929 453.311 1.933
2 2 1 646.451 1.948 523.941 1.929 456.635 1.919

4 1 4 355.158 3.546 273.97 3.690 253.47 3.456
4 2 2 336.772 3.739 272.005 3.716 242.963 3.606
4 4 1 334.721 3.762 267.812 3.774 242.947 3.606

8 1 8 235.706 5.342 189.609 5.331 163.154 5.370
8 2 4 186.794 6.742 148.795 6.794 127.956 6.846
8 4 2 172.233 7.311 143.167 7.061 122.799 7.134
8 8 1 170.194 7.398 144.308 7.005 132.82 6.596

16 2 8 121.406 10.373 107.547 9.398 91.7906 9.544
16 4 4 97.2596 12.947 78.7957 12.829 68.7539 12.742
16 8 2 92.7069 13.582 77.146 13.102 68.7514 12.742
16 16 1 90.7107 13.882 75.8379 13.330 68.1719 12.851

32 4 8 67.7683 18.582 66.9519 15.098 55.6138 15.754
32 8 4 57.8495 21.766 49.0234 20.621 36.993 23.683
32 16 2 52.7375 23.878 47.4928 21.283 36.4114 24.061
32 32 1 50.4645 24.954 50.1533 20.154 39.2695 22.310

64 8 8 45.5049 27.673 48.1642 20.986 35.734 24.518
64 16 4 36.9002 34.125 35.8065 28.230 19.1805 45.677

128 16 8 36.2105 34.778 41.4629 24.384 23.4727 37.325

spectra [29]. A simulated example of such a beam is given in Fig. 3. Even
though the power of this computed field is high, an area of its applications is
rather restricted.

Mathematical modeling and fast and robust numerical simulations are a
powerful method used in optimization of the existing BAS devices or in creation
of the novel design concepts for different real world applications. Below in this
section we simulate several BAS devices (shown also in Fig. 1(b-e)) admitting
an improved quality of the emitted beam. Note, that simulations of the effects
discused in this section we typically performed using n = 16 or n = 32 processes
on nn = 4 or nn = 8 nodes. The size of considered discrete problems is indicated
within the captions of corresponding figures.

5.1 Beam generation and amplification in MOPA lasers

In general, an ideal MOPA laser (see Fig. 1(b)) should be able to maintain
a good quality of the emitted beam. The basic idea of a perfect MOPA is as
follows. The narrow MO part of the device generates a stable stationary optical
field determined by a single optical mode. The high power emission is achieved
during the propagation of this beam along the ideal non-reflective tapered PA
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(a)

(b)

(c)

(d) (e)

Figure 3. Simulated irregular dynamics of a conventional high power BAS laser. (a):
history of the near field intensities. (b): time trace of the emitted field intensity. (c):

optical spectrum. (d): near fields. (e): far-fields. Black and red curves in panels (d) and (e)
represent the time-averaged fields and the fields at some time instant. The discrete problem

size is defined by (K, J) = (320, 1000) (the same as Problem 2 in Table 1), whereas
M ≈ 1.67 · 104 corresponds to the represented 1 ns transient. τ16 ≈ 7 minutes.
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Figure 4. Simulations of the MOPA laser. (a) and (b): instantaneous distributions of the
forward and backward field intensities |E+(z, x, t)|2 and |E−(z, x, t)|2. (c): dependence of

the emitted field optical spectrum on the injected current in the power amplifier. The
discrete problem size is defined by (K, J) = (800, 1000), whereas M ≈ 1.67 · 107 is needed

for simulations of 1000 ns transients used for mapping plot (c). τ32 ≈ 1 week.

part of the device. The realistic MOPA devices, however, are not ideal. The
perfect operation of the device is spoiled by the amplification of the random
spontaneous emission Fsp in the PA, by the small separation of the MO and
PA electrical contacts, as well as by the non-vanishing field reflectivity (factor
r1 in Eq. (2.3)) at the PA facet of the device [25].

Panels (a) and (b) of Fig. 4 show the simulated intensity distributions of
the forward- and backward-propagating fields of the MOPA laser operating
at the required stable stationary regime. The generation of the stationary
beam within the MO and its consequent amplification within the PA parts
of the device can be well seen in Fig. 4 (a). Panel (b), however, represents
all the unwanted effects mentioned above. Namely, the presence of the non-
vanishing back-propagating field within the tapered PA is due to amplification
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of the spontaneous emission and, more important, due to residual field back-
reflection at the facet (r1 = 0.04 in this case). The small gap between the
electrical contacts of the MO and PA at z ≈ 2 mm implies also some side-band
scattering of the field.

For the present set of parameters the presence of the back-propagating field
does no harm to the stationary operation of the laser. This situation, however,
can change when tuning the injected current in the MO or PA parts of the de-
vice. The tuning of the injection implies the changes of the phase relations be-
tween complex forward- and back-propagating fields at the interface of the MO
and PA what, in turn, can result unwanted bifurcations [6] leading to transitions
between the states determined by different longitudinal modes. A typical simu-
lated example of the transitions between different states is shown in Fig. 4 (c).
For more details and comparisons with the experiments see [24,25,28].

5.2 Stripe-array lasers with an angular off-axis feedback

Another example of an experimentally available BAS device admitting an im-
provement of the emitted beam quality is the BAS laser with the laterally
dx-periodic striped electrical contact and an optical feedback from the external
mirror or grating located at the angle αFB to the optical axis on the (x, z) plane
of the device: see Fig. 1(c). It was shown experimentally and numerically [11],
that a proper choice of the feedback angle and the lateral period allows to get
a high-quality emission at two opposite angles ±αFB (see Fig. 5(a), (b)).

For small αFB and a small enough ratio of the laser width and the external
cavity length in the non-scaled model, the Fresnel operator F entering the
boundary conditions (2.3) can be defined as [11]

F
[
E+(L, ·, t− 2dec/c0)

]
(x, t) ≈ ν e−ik0αFB x FĒ(t− 2dec/c0),

ν =
(
1− |r1|2

)√ −i
2decλ0

e−ik02dec , Ē(t) =

∫
x′∈R

E+(L, x′, t)e−ik0αFB x
′
dx′,

where dec is the distance from the center of the right facet of the BAS diode to
the external reflector, 2dec + αFB(x + x′) approximates the shortest distance
between two lateral points x′ and x at the diode facet which the light takes
to travel via the (infinitely broad) external reflector, whereas an operator F
accounts for the spectral filtering by the external grating.

Assuming the stationary emission of the BAS device, one can easily show
that the phase of the the complex angular feedback term changes linearly with
a lateral coordinate x, so that each (λ0/αFB)-shift of x implies a change of
this phase by factor 2π (see grey dots in Fig. 5(e) and (f)). Thus, such an
angular feedback can help enhancing a single lateral optical mode with the
complex phases alternating periodically in x-direction (black dots in the same
diagrams). The lateral periodicity of the electrical contact determines multiple
equally separated field intensity peaks in each lateral cross-section of the laser:
see black curve in Fig. 5(c). The best (most stable) emission can be expected
for dx ≈ λ0/2αFB , which supports the opposite phases of the complex fields at
any two laterally-adjacent intensity maxima positions (black dots in Fig. 5(e)).
The performed simulations could also predict a stable operation of the BAS
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Figure 5. Simulations of BAS laser with a dx-periodic striped electrical contact and an
off-axis optical feedback located at αFB = λ0/(2dx) ≈ 2.8◦ [left panels (a), (c) and (e)] and
αFB = λ0/dx ≈ 5.6◦ [right panels (b), (d) and (f)]. (a) and (b): far fields. (c) and (d):
near field intensities. (e) and (f): near field phases. Grey lines and bullets in (c,d,e,f)
represent intensity and phase of the field re-injected into the BAS laser. The discrete

problem size is defined by (K, J) = (300, 1000) (the same as Problem 3 in Table 1), whereas
M ≈ 1.66× 105 is needed for simulations of the required 10 ns transients. τ16 ≈ 1 hour.

laser with doubled feedback angle, αFB = λ0/dx (see Fig. 5(d) and (f)), which
later was confirmed experimentally [11].

5.3 Stabilization of BAS lasers by a dual off-axis optical injection

In our theoretical papers [22, 23] a new control method of BAS lasers was
proposed, which, as we believe, should suppress all but one optical mode, i.e.,
should induce a stabilization of the emitted beam. This control is achieved
by a pair of coherent optical plane waves injected into the BAS laser at the
adjacent angles to the laser axis (see Fig. 1(d)). In the non-scaled model this
optical injection is described by the function

a(x, t) = a0e
i(ωt+xk0αIN−π/2) + a0e

i(ωt−xk0αIN+π/2) = 2a0e
iωt sin(αINk0x)

entering boundary conditions (2.3). The parameters ±αIN and ω in the expres-
sion above denote the free space angles of the injected beams (see Fig. 1(d)) and
the frequency detuning of the optical injection from the central frequency k0c0.
The factor |a0|2 is proportional to the intensity of the optical field injected into
the laser.

We have performed a series of simulations for the fixed detuning ω and
increased intensity of the optical injection (i.e., parameter |a0|2). Some char-
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Figure 6. Stabilization of the BAS laser by the optical injection. (a): mapping of the
optical spectra, (b): mapping of the far-fields computed at some time instant, (c): maximal,

minimal and mean power of the emitted field for the increased injection power and fixed
ω = 0. (d): laser stabilization region in injection power / frequency detuning ω plane. The
discrete problem size is defined by (K, J) = (300, 1000) (the same as Problem 3 in Table 1),

whereas M ≈ 8.3 · 106 is needed for simulations of 500 ns transients used for the
1-parameter representations (a), (b) and (c). τ16 ≈ 2 days. 20 such processes were required

for the 2-parameter representation (d).

acteristics (optical spectra, far-fields, field intensities) of typical observed dy-
namical states for ω = 0 and different injection intensities is summarized in
Fig. 6. Here one can distinguish three qualitatively different regimes, sepa-
rated by thin horizontal lines in Fig. 6. Once the injection intensity is too
small, the spatial-temporal dynamics of the system is similar to that one of
the free-running BAS laser. This can be recognized by multiple peaks of the
optical spectrum (panel (a)), by scattered far-field instants (panel (b)), as well
as by a non-stationary output field (differing minimal and maximal intensi-
ties in panel (c)). For moderate and large injected field intensities the laser
operates at a continuous wave regime (a single spectral line in panel (a) and
coinciding minimal and maximal powers in panel (c)). An inspection of the
far-fields at these injections, however, allows us to distinguish two different
regimes. Namely, for moderate injections we have a stationary state which has
a well pronounced central angular component (a stabilized mode of the laser),
whereas for larger injections only the angular components corresponding to the
injected beam angles αIN are present. In this regime our BAS laser is operating
like an amplifier for the injected beams, but does not generate light by itself.
Finally, panel (d) of the same figure, which shows a laser stabilization region
in injection power/frequency detuning plane, summarizes a series of previously
discussed simulations for different values of ω.

5.4 BAS amplifiers with periodically modulated electrical contacts

An elegant way to improve the lateral beam profile in EE BAS amplifiers was
suggested in the recent theoretical works [10,19]. It was shown, that a periodic
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Figure 7. Amplification of the optical beam in 6.4 mm long EE BAS amplifiers with the
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same. First row: lateral distributions of the carrier density at z = 0.8 mm and z = 4.8 mm.
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the central ±3◦ segment. Third row: central part of the far-fields computed for z = 0.8, 2.4,
4, and 5.6 mm. The discrete problem size for computed 1 ns transient is defined by

(K, J,M) = (1280, 2400, 16666). τ16 ≈ 1 hour.

modulation of the gain and refractive index in both longitudinal and lateral
directions (see Fig. 1(e)) can lead to a significant compression of the far-fields,
what is desirable in the real world applications.

A crucial condition for the desired beam shaping is a proper choice of the
lateral and longitudinal modulation periods dx and dz, which in the non-
normalized model should satisfy the relation Q = 2d2xn̄/(λ0dz) ≈ 1. In the
present work we have performed simulations of the standard BAS amplifier
(left panels of Fig. 7) and of the BAS amplifier with the periodically modu-
lated electrical contact (right panels of the same figure) operating in moderate
and high power regimes. In these regimes the carrier distribution is strongly
depleted, causing also lateral irregularities in the carrier (i.e., gain and refrac-
tive index) modulation amplitudes: see the black curves in the first row panels
of Fig. 7, representing the carrier densities at z = 4.8 mm. The simulations
have shown, that the proposed periodic modulation of the electrical contact
implies the desired beam shaping. It can be seen when comparing the far-fields
of the simple (left) and modulated amplifiers (right) at the middle row panels
of this figure. It is noteworthy, that even though a part of the field amplified
in the modulated device is radiated at the side band components at the angles
±αSB , αSB ≈ λ0/dx ≈ 7.2◦, the intensity of the remaining central angle field
still can be higher than that one of the field amplified in the conventional BAS
device (compare the lower row panels).
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6 Conclusions

In conclusion, we have presented a numerical scheme for the (2+1)-dimensional
PDE model describing the dynamics of BAS devices, and discussed its imple-
mentation on the parallel cluster of computers. The mathematical model and
the numerical scheme were applied for the study of the beam stabilization in
different configurations of BAS devices.
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[5] R. Čiegis and M. Radziunas. Effective numerical integration of traveling wave
model for edge-emitting broad-area semiconductor lasers and amplifiers. Math.
Model. Anal., 15(4):409–430, 2010.
http://dx.doi.org/10.3846/1392-6292.2010.15.409-430.
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