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Abstract. Three-point boundary value problems for the second order nonlinear or-
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1 Introduction

We consider the nonlinear second order differential equation

x′′ + k2x = f(t, x, x′) (1.1)

with three-point boundary conditions

x(0) = 0, x(1) = αx (η) , (1.2)

where 0 < η < 1, α > 0, f may be unbounded.
The three-point boundary value problem belongs to the so-called “nonlocal”

or “multi-point” or “m-point” boundary value problem (BVP in short)

x′′ = f(t, x, x′),

x(0) = 0, x(1) =

m−2∑
i=1

aix(ξi),

where f : [0, 1] × R2 → R is a continuous function, ai ∈ R, ξi(0, 1), i =
1, 2, . . . ,m− 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.

The nonlocal BVPs for ordinary differential equations arise in a variety of
different areas of applied mathematics and physics, and describe many phe-
nomena in the applied mathematical sciences. For example, the vibrations of
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a guy wire of a uniform cross-section and composed on N parts of different
densities can be set up as a multi-point BVP (see [13]).

The study of multi-point BVP for linear second-order ordinary differential
equations was initiated by Il‘in and Moiseev in [7], [8].

Since then, by applying the Leray-Schauder continuation theorem, nonli-
near alternative of Leray-Schauder, or coincidence degree theory, many aut-
hors studied more general nonlinear multi-point BVPs, for example, Gupta [3],
[5], Gupta, Ntouyas and Tsamatos [6], Feng and Webb [2], [1], Ma [10], [12],
Ntouyas [14], Webb [23].

The existence problems of positive solution of the nonlocal boundary value
problem were studied by Ma [11], Webb and Infante [24], [25], Liu [9], Sun and
Liu [17].

We are interested in the BVP (1.1), (1.2) at resonance. This problem was
studied by Feng and Webb [2], Gupta [4], Ma [12], Przeradzki and Sta‘nczy
[15]. The most of authors have proved the existence of solutions of (1.1),
(1.2), assuming that nonlinearity f is sublinear with respect to the second
and third variables. Our main result in this paper is to get conditions which
guarantee that the resonant BVP is solvable. To get the existence of a solution
to the resonant BVP (1.1), (1.2), we use the quasilinearization process [26], [27],
which consists in reducing the resonant BVP to nonresonant one using suitable
estimations of expected solutions.

The paper consists of the introduction, 4 sections, the conclusions and re-
ferences.

2 Definition

We consider the BVP (1.1), (1.2).

Definition 1. If the homogeneous BVP

(l2x)(t) = 0, (2.1)

x(0) = 0, x(1)− αx(η) = 0 (2.2)

has only the trivial solution, then the BVP (1.1), (1.2) with a linear part
(l2x)(t) := x′′ + k2x is called nonresonant. Otherwise, if the homogeneous
BVP (2.1), (2.2) has a nontrivial solution, then the BVP (1.1), (1.2) with a
linear part (l2x)(t) is called resonant.

For example, BVP

x′′ = 0, x(0) = 0, x(1) = x (1/2)

is nonresonant, but BVP

x′′ = 0, x(0) = 0, x(1) = 2x (1/2)

is resonant, that is, it has nontrivial solution x(t) = Ct, ∀C.
The BVP

x′′ + k2x = 0, x(0) = 0, x(1) = x (1/2)
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is nonresonant if sin k 6= sin k/2; the coefficient k belongs to one of the intervals[
0,

2π

3

)
,

(
2π

3
, 2π

)
,

(
2π,

10π

3

)
,

(
10π

3
, 4π

)
,

(
4π,

14π

3

)
, . . . .

These intervals are called nonresonant intervals.

3 Quasilinear problem

We consider a quasilinear BVP

x′′ + k2x = ϕ(t, x), (3.1)

x(0) = 0, x(1)− αx(η) = 0. (3.2)

If ϕ is continuous and bounded with M in modulus and corresponding
homogeneous differential equation

x′′ + k2x = ϕ(t, x), (3.3)

with boundary conditions (3.2) has only the trivial solution, then the BVP
(3.1), (3.2) is solvable in accordance with the Theorem of existence at [21].

The solution of the quasilinear BVP (3.1), (3.2) can be written in the in-
tegral form

x(t) =

∫ 1

0

G(t, s)ϕ
(
s, x(s)

)
ds, (3.4)

where G(t, s) is the Green’s function for the respective homogeneous BVP (3.3),
(3.2). If

∣∣ϕ(t, x)
∣∣ ≤M , then from (3.4) it follows that∣∣x(t)

∣∣ ≤ Γ M,

where Γ is bound for
∣∣G(t, s)

∣∣.
For the linear part (l2x)(t) = x′′ + k2x, where sin k − α sin kη 6= 0, with

given boundary conditions, the Green’s function [16], [22] is given by

G(t, s) =



(
sin k(1− s)− α sin k(η − s)

)
sin kt

k(α sin kη − sin k)
, 0 ≤ t ≤ s ≤ η,

sin ks
(
sin k(1− t)− α sin k(η − t)

)
k(α sin kη − sin k)

, s ≤ t, s ≤ η,
sin k(1− s) sin kt

k(α sin kη − sin k)
, t ≤ s, η ≤ s,

α sin kη sin k(t− s) + sin ks sin k(1− t)
k(α sin kη − sin k)

, η ≤ s ≤ t ≤ 1.

The Green’s function (3) is bounded by
∣∣G(t, s)

∣∣ ≤ Γ . Then it follows from the
integral form (3.4) that a solution x(t) satisfies the inequality∣∣x(t)

∣∣ ≤ Γ M.
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4 Quasilinearization process

We consider the BVP

x′′ + k2x = f(t, x), (4.1)

x(0) = 0, x(1)− αx(η) = 0, (4.2)

where f(t, x) is a continuous function.
We use a quasilinearization approach. Previously this approach was used

for the study of different BVPs in [18,19,20].

1. First we modify the equation by adding a linear part so that the resulting
linear part is not resonant

x′′ + k2x+ ε2x = ε2x+ f(t, x) =: F (t, x), (4.3)

where sin
√
k2 + ε2 − α sin η

√
k2 + ε2 6= 0.

2. We choose a constant N > 0 and truncate the right hand side

x′′ + (k2 + ε2)x = FN (t, x) := F
(
t, δ(−N, x,N)

)
, (4.4)

where

δ(−N, x,N) =

 N, x > N,
x, −N ≤ x ≤ N,
−N, x < −N.

3. We check the inequality Γ M ≤ N, where Γ is the estimate of the Green’s
function associated with the linear part in (4.4), M = supI×R

∣∣FN (t, x)
∣∣.

Therefore, the solution of the quasilinear BVP (4.4), (4.2) is also a solution
of the resonant BVP (4.1), (4.2) with unbounded nonlinearity. We can say
that the boundary value problem (4.1), (4.2) allows for quasilinearization with
respect to the linear part (L2x)(t) := x′′ + (k2 + ε2)x.

It appears that the following theorem is valid.

Theorem 1. Suppose that for the modified quasilinear BVP

x′′ + k2x+ ε2x = FN (t, x), x(0) = 0, x(1) = αx(η), (4.5)

where FN (t, x) = k2δ(−N, x,N) + f
(
t, δ(−N, x,N)

)
, δ is truncation function,

N > 0 and the linear part is no more resonant with respect to the given boundary
conditions, the inequality

Γ M ≤ N (4.6)

holds, where Γ is the estimate for the Green’s function associated with the linear
part in (4.5) and M = supI×R2

∣∣FN (t, x)
∣∣.

Then the problem (4.1), (4.2) has a solution such that |x(t)| ≤ N ∀t ∈ [0, 1].

Proof. The proof follows from the above arguments. We apply (4.3) and (4.4).
By Theorem of existence [21] the quasilinear BVP (4.4), (4.2) is solvable and
has a solution x(t), which can be written in the integral form (3.4) using Green’s
function.

Math. Model. Anal., 21(2):270–281, 2016.



274 N. Sveikate

The inequality (4.6) is fulfilled, therefore∣∣x(t)
∣∣ ≤ N for all t ∈ [0, 1].

For these values of x the original equation (4.1) and the modified equation (4.4)
are equivalent. It follows that x(t) is also a solution of the original BVP (4.1),
(4.2). ut

5 Application

Consider the Emden-Fowler type BVP

x′′ + k2x = −λ|x|p sgn x, p > 0, p 6= 1, λ > 0,

x(0) = 0, x(1) = x (1/2) .

The BVP is resonant if sin k − sin k/2 = 0. That is, we give two series of
eigenvalues

k = 4π(n+ 1), k =
2π

3
+

4πn

3
, n = 0, 1, 2, . . .

that are combined and form the nonresonant intervals[
0,

2π

3

)
,

(
2π

3
, 2π

)
,

(
2π,

10π

3

)
,

(
10π

3
, 4π

)
,

(
4π,

14π

3

)
, . . . . (5.1)

5.1 Nonresonant case

We consider the BVP

x′′ = −|x|p sign x, p > 0, p 6= 1, (5.2)

x(0) = 0, x(1) = x (1/2) . (5.3)

The linear part is nonresonant with respect to given boundary conditions,
function −|x|p sign x is unbounded. Theorem 1 was applied modifying the
equation as

x′′ + ε2x = ε2x− |x|p sign x,

where the linear part (L2x)(t) := x′′ + ε2x is nonresonant with respect to the
boundary conditions (5.3), if sin ε− sin ε/2 6= 0.

The results of successful quasilinearizations are summarized in the Table 1.

Example 1. We consider the nonresonant BVP

x′′ = −|x| 1615 sign x, x(0) = 0, x(1) = x

(
1

2

)
. (5.4)

We apply quasilinearization process and rewrite (5.4) equivalently

x′′ +
π2

9
x =

π2

9
x− |x| 1615 sgn x. (5.5)
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Table 1. Results of calculations for the nonresonant BVP (5.2), (5.3).

p nonresonant intervals ε ΓεMε Nε

2

(
0;

2π

3

)
π

3
1.177 1.324(

2π

3
; 2π

)
4π

3
19.795 21.179

6

5

(
0;

2π

3

)
π

3
0.456 2.043(

2π

3
; 2π

)
4π

3
5.027 · 105 21.426 · 105(

2π;
10π

3

)
8π

3
1.029 · 109 2.194 · 109

16

15

(
0;

2π

3

)
π

3
0.406 5.223(

2π

3
; 2π

)
4π

3
4.927 · 1017 60.215 · 1017(

2π;
10π

3

)
8π

3
1.058 · 1027 6.466 · 1027(

10π

3
; 4π

)
11π

3
7.785 · 1031 9.114 · 1031

15

16

(
0;

2π

3

)
π

3
0.023 0.305(

2π

3
; 2π

)
4π

3
1.328 · 10−21 16.520 · 10−21(

2π;
10π

3

)
8π

3
6.182 · 10−31 38.464 · 10−31(

10π

3
; 4π

)
11π

3
1.213 · 10−34 1.443 · 10−34

5

6

(
0;

2π

3

)
π

3
0.165 0.779(

2π

3
; 2π

)
4π

3
1.036 · 10−8 4.645 · 10−8(

2π;
10π

3

)
8π

3
5.058 · 10−12 39.333 · 10−12

1

2

(
0;

2π

3

)
π

3
0.892 1.3212(

2π

3
; 2π

)
4π

3
3.665 · 10−3 4.733 · 10−3

The linear part in (5.5) is no resonant with respect to the given three-point
boundary conditions. The function

f(x) :=
π2

9
x− |x| 1615 sgn x

is continuous, odd and has a local maximum at x0 ≈ 1.515. We truncate it.
Define

M := f(x0) = f (1.515) = 0.104.

Solve the equation f(x) = −M for x > 0. The solution is N := 5.223.

Math. Model. Anal., 21(2):270–281, 2016.
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Define the truncated function

FN (x) =


−0.104, x > 5.223,

π2

9
x− |x| 1615 sgn x, −5.223 ≤ x ≤ 5.223,

0.104, x < −5.223.

(5.6)

The function FN (x) is continuous and bounded by the number M . Therefore
the quasilinear BVP

x′′ + π2x/9 = FN (x), x(0) = 0, x(1) = x (1/2) (5.7)

has a solution x(t). A solution x(t) satisfies the integral form

x(t) =

∫ 1

0

G(t, s)FN
(
x(s)

)
ds, (5.8)

where G is the Green’s function for the respective homogeneous BVP

x′′ + π2x/9 = 0, x(0) = 0, x(1) = x (1/2) .

It follows from integral form (5.8) that solution x(t) satisfies inequality∣∣x(t)
∣∣ ≤ Γ M ∀t ∈ [0, 1], (5.9)

where Γ = 9(1 +
√

3)/(2π) is the estimate of the Green’s function. Since

Γ M =
9(1 +

√
3)

2π
0.104 ≈ 0.406 < 5.223 ≈ N,

then from (5.9) it follows that solution x(t) satisfies inequality∣∣x(t)
∣∣ ≤ N ∀t ∈ [0, 1]. (5.10)

This means that the BVP (5.4) allows for quasilinearization for ε = π/3 from
first nonresonance interval (0; 2π/3), and the solution x(t) of the quasilinear
BVP (5.7) is also a solution of the original resonant BVP (5.4).

The BVP (5.4) allows for quasilinearization also for ε = 4π/3 from second
nonresonance interval (2π/3; 2π), for ε = 8π/3 from third nonresonance interval
(2π; 10π/3) and for ε = 11π/3 from fourth nonresonance interval (10π/3; 4π).

Applying the shooting method we find different solutions for each quasili-
nearization. For results, see Figure 1.

5.2 Resonant case

We consider the resonant BVP

x′′ +
4π2

9
x = −|x|p sign x, p > 0, p 6= 1, (5.11)

x(0) = 0, x(1) = x (1/2) . (5.12)
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0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(a) The trivial solution of the
BVP (5.4). Solution related to first
quasilinearization with linear part

(L2x)(t) := x′′ + π2

9
x of (5.4).

0.2 0.4 0.6 0.8 1.0

1´10
9

2´10
9

3´10
9

4´10
9

(b) Solution of the BVP (5.4) given
for the initial data x(0) = 0, x′(0) =
9 · 109. Solution related to second
quasilinearization with linear part

(L2x)(t) := x′′ + 4π2

9
x of (5.4).

0.2 0.4 0.6 0.8 1.0

-1´10
24

-5´10
23

5´10
23

1´10
24

(c) Solution of the BVP (5.4) given
for the initial data x(0) = 0, x′(0) =
7.5 · 1024. Solution related to third
quasilinearization with linear part

(L2x)(t) := x′′ + 8π2

9
x of (5.4).

0.2 0.4 0.6 0.8 1.0

-4´10
30

-2´10
30

2´10
30

4´10
30

(d) Solution of the BVP (5.4) given
for the initial data x(0) = 0, x′(0) =
5 · 1031. Solution related to fourth
quasilinearization with linear part

(L2x)(t) := x′′ + 11π2x
9

of (5.4).

Figure 1. Different solutions of the BVP (5.4).

The linear part (l2x)(t) := x′′ +
4π2

9
x is resonant with respect to the given

boundary conditions.
Theorem 1 was applied multiply modifying the equation as

x′′ +
4π2

9
x+ ε2x = ε2x− |x|p sign x,

where the linear part (L2x)(t) := x′′ +
(
4π2/9 + ε2

)
x is nonresonant with

respect to the boundary conditions (5.12), if

sin
√

4π2/9 + ε2 − sin

√
4π2/9 + ε2

2
6= 0.

We choose ε so that the resulting coefficient
√

4π2/9 + ε2 of the modified
linear part (L2x)(t) lies in the one of nonresonant intervals (5.1).

The results of successful quasilinearizations are summarized in the Table 2.

Example 2. Consider the BVP

x′′ +
4π2

9
x = −|x| 1615 sgn x, x(0) = 0, x(1) = x

(
1

2

)
. (5.13)

Math. Model. Anal., 21(2):270–281, 2016.
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Table 2. Results of calculations for the resonant BVP (5.11), (5.12).

p nonresonance intervals ε ΓεMε Nε

3

2

(
2π

3
, 2π

)
π 47.687 121.848

5

4

(
2π

3
, 2π

)
π 1.301 · 103 10.931 · 103(

2π,
10π

3

)
8π

3
1.355 · 106 2.482 · 107

16

15

(
2π

3
, 2π

)
π 6.442 · 1013 1.075 · 1015(

2π,
10π

3

)
8π

3
1.122 · 1027 6.466 · 1027(

10π

3
, 4π

)
11π

3
7.785 · 1031 9.114 · 1031

15

16

(
2π

3
, 2π

)
π 9.677 · 10−18 164.459 · 10−18(

2π,
10π

3

)
8π

3
6.556 · 10−31 38.464 · 10−31(

10π

3
, 4π

)
11π

3
1.211 · 10−34 1.443 · 10−34

4

5

(
2π

3
, 2π

)
π 2.891 · 10−6 14.557 · 10−6(

2π,
10π

3

)
8π

3
4.604 · 10−10 8.005 · 10−10

2

3

(
2π

3
, 2π

)
π 5.092 · 10−4 14.552 · 10−4

Using the quasilinearization process we obtain the quasilinear equation

x′′ +
(
4π2/9 + π2

)
x = FN (x), (5.14)

where the linear part is no more resonant with respect to given boundary
conditions, FN is bounded and given by

FN (x) =


−0.002π32, x > 1.07534 · 1015,

π2x− |x| 1615 sgn x, −1.07534 · 1015 ≤ x ≤ 1.07534 · 1015,

0.002π32, x < −1.07534 · 1015.

The function F (x) is continuous and bounded by the number M . Therefore
the quasilinear BVP (5.14) has a solution x(t), which satisfies the integral form

x(t) =

∫ 1

0

G(t, s)FN
(
x(s)

)
ds, (5.15)

where G is the Green’s function for the problem

x′′ +
13π2

9
x = 0, x(0) = 0, x(1) = x

(
1

2

)
.
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It follows from (5.15) that∣∣x(t)
∣∣ ≤ Γ M ∀t ∈ [0, 1], (5.16)

where Γ = 3
(

1 +
∣∣sin √13π

6

∣∣)/(2
√

13π
∣∣sin √13π

12

∣∣∣∣cos

√
13π

4

∣∣), holds.

Since

Γ M=
3
(

1 +
∣∣sin √13π

6

∣∣)
2
√

13π
∣∣sin √13π

12

∣∣∣∣cos
√
13π
4

∣∣ · 0.002π32 ≈ 6.442 · 1013 < 1.075 · 1015≈N,

then the solution x(t) satisfies inequality∣∣x(t)
∣∣ ≤ N ∀t ∈ [0, 1]. (5.17)

This means that the BVP (5.13) allows for quasilinearization for ε = π

and the resulting coefficient
√

4π2/9 + ε2 =
√

13π/3 lies in the nonresonance
interval (2π/3, 2π), and the solution x(t) of the quasilinear BVP (5.14) is also
a solution of the original resonant BVP (5.13).

The BVP (5.13) also allows for quasilinearization for ε = 8π/3 and the

resulting coefficient
√

4π2/9 + ε2 = 2
√

17π/3 lies in the nonresonance interval

(2π, 10π/3); and for ε = 11π/3, when the resulting coefficient
√

4π2/9 + ε2 =

2
√

17π/3 lies in the nonresonance interval (10π/3, 4π).
Applying the shooting method we find different solutions for each quasi-

linearization. At the first quasilinearization we find the trivial solution and
solutions on the next two quasilinearizations are depicted in Figure 2.

0.2 0.4 0.6 0.8 1.0

-2´10
23

-1´10
23

1´10
23

2´10
23

(a) Solution of the BVP (5.13)
given for the initial data x(0) = 0,
x′(0) = 13 · 1023. Solution related
to quasilinearization with linear part

(L2x)(t) := x′′ + 68π2

9
x of the BVP

(5.13).

0.2 0.4 0.6 0.8 1.0

-2´10
30

-1´10
30

1´10
30

2´10
30

(b) Solution of the BVP (5.13)
given for the initial data x(0) = 0,
x′(0) = 25 · 1030. Solution related
to quasilinearization with linear part

(L2x)(t) := x′′ + 125π2

9
x of the BVP

(5.13).

Figure 2. Different solutions of the BVP (5.13).

Conclusions

We showed that the three-point BVP can be studied by using a quasilineariza-
tion process.

Math. Model. Anal., 21(2):270–281, 2016.
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Two examples of the Emden-Fowler type BVP are considered in detail show-
ing the quasilinearization approach in action.

By using quasilinearization process with different linear parts we can state
the existence of different solutions of a problem thus obtaining multiplicity of
results.
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