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Abstract. In this paper we indicate some applications of homotopy analysis method
for solving the systems of linear and nonlinear integral equations. The method is
based on the concept of creating function series. If the series converges, its sum is
the solution of this system of equations. The paper presents conditions to ensure
the convergence of this series and estimation of the error of approximate solution
obtained when the partial sum of the series is used. Application of the method will
be illustrated by examples.
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1 Introduction

Homotopy analysis method was developed in the 90s of the last century by
Chinese mathematician Shijun Liao [13, 14, 15, 16, 17]. Using this method we
are able to solve the operator equation

N(u(x)) = 0, x ∈ Ω, (1.1)

where N is an operator (in particular, it may be non-linear operator) and u is
an unknown function. In the first step we define the homotopy operator H as

H(Φ, p) ≡ (1− p)L
(
Φ(x; p)− u0(x)

)
− p hN

(
Φ(x; p)

)
,

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2016.1167787
mailto:rafal.brociek@polsl.pl
mailto:edyta.hetmaniok@polsl.pl
mailto:jaroslaw.matlak@polsl.pl
mailto:damian.slota@polsl.pl


Application of the Homotopy Analysis Method 351

where p ∈ [0, 1] is the embedding parameter, h 6= 0 is the convergence control
parameter, u0 denotes the initial approximation of solution of problem (1.1)
and L is the auxiliary linear operator with property L(0) = 0.

Solving equation H(Φ, p) = 0, we get the zero-order deformation equation

(1− p)L
(
Φ(x; p)− u0(x)

)
= p hN

(
Φ(x; p)

)
. (1.2)

For p = 0 we get L(Φ(x; 0) − u0(x)) = 0. It implies that Φ(x; 0) = u0(x). For
p = 1 we get N(Φ(x; 1)) = 0 and Φ(x; 1) = u(x), where u is the solution of
equation (1.1). In this way, change of parameter p from zero to one corresponds
to the transition from a trivial task to the original task.

By expanding function Φ in the Maclaurin series with respect to parameter p
we get

Φ(x; p) = Φ(x; 0) +

∞∑
m=1

1

m!

∂mΦ(x; p)

∂pm

∣∣∣
p=0

pm.

Denoting

um(x) =
1

m!

∂mΦ(x; p)

∂pm

∣∣∣
p=0

, m = 1, 2, 3, . . .

we can write the previous relation as follows

Φ(x; p) = u0(x) +

∞∑
m=1

um(x) pm. (1.3)

If the above series possesses the radius of convergence not smaller than one
and the series

∑∞
m=0 um(x) is absolutely convergent, then according to Abel’s

Theorem the solution of equation (1.1) is obtained

u(x) =

∞∑
m=0

um(x). (1.4)

In order to determine function um we differentiate m-times the left and the
right side of equation (1.2) with respect to parameter p. Next, we divide the
result by m! and substitute p = 0 getting the mth-order deformation equation
(m > 0):

L
(
um(x)− χm um−1(x)

)
= hRm

(
um−1, x

)
, (1.5)

where um−1 = {u0(x), u1(x), . . . , um−1(x)},

χm =

{
0 m ≤ 1,
1 m > 1,

(1.6)

Rm
(
um−1, x

)
=

1

(m− 1)!

(
∂m−1

∂pm−1
N
( ∞∑
i=0

ui(x) pi
))∣∣∣∣

p=0

.

If we are not able to determine the sum of series in (1.4), then as an ap-
proximate solution of considered equation we can accept the partial sum of this
series

ûn(x) =

n∑
m=0

um(x). (1.7)
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Setting appropriately the value of the convergence control parameter h we
can affect the area of convergence of series (1.3) as well as the convergence
rate [17, 19, 23]. One method of determining value of the convergence control
parameter is the “optimization method” [3, 17, 26]. In this method we define
the squared residual of governing equation

En(h) =

∫
Ω

∥∥N[ûn(x)
]∥∥2 dx.

We can obtain the optimal value of the convergence control parameter by calcu-
lating the minimum of squared residual (1). Effective region of the convergence
control parameter is defined by

Rh =
{
h : lim

n→∞
En(h) = 0

}
.

By choosing the convergence control parameter value other than optimal (but
from the effective region) we get a convergent series as well, only the rate of
convergence of the series will be less. More details concerning the effective
region and the optimal value of the convergence control parameter are given
by the inventor of this method S. Liao in his book [17].

Papers [2, 4, 5, 6, 18, 24] describe the use of investigated method for solving
the integral equations. However, most of these papers describe only examples
illustrating the application of homotopy analysis method, mostly without any
theoretical analysis. Most often there is given only a theorem showing that if
the series converges its sum is the solution of the equation. More theoretical
results are contained in papers [1, 10,11,25].

Papers [1, 25] describe an application of considerd method for nonlinear
Fredholm and Volterra integral equation of the second kind. Paper [1] shows
that if the series converges its sum is the solution of the Fredholm equation.
The same theorem for Volterra equation was proven in paper [25]. Uniqueness
of solution of the Volterra equation and the sufficient condition of convergence
of the created series are also shown. Paper [11] describes the application of
homotopy analysis method for nonlinear and linear integral equations of the
second kind. The form of considered equations is more general than the form of
equations described in [1,25]. In particular, paper [11] shows that the equation
has a unique solution (under appropriate assumptions) and proves that if the
created series converges its sum is the solution of considered equation. Authors
describe also the sufficient condition of convergence of the created series and
error estimation of the approximate solution. In paper [11] the authors present
also the example which has practical application for charge calculation in supply
circuit of flash lamps used in cameras. In paper [10] the nonlinear and linear
Volterra-Fredholm integral equation are considered.

Papers [20, 21] present the examples of application of the homotopy analy-
sis method for systems of integral equations. However, there is no theoretical
results. In the current study we will show that if the created series converges
its sum is the solution of considered system of equations. We will also for-
mulate and prove the sufficient condition of convergence of the created series
and uniqueness of the solution. Next, we will describe estimation of error of
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the approximate solution obtained when the partial sum of the series is used.
Application of the method will be illustrated by examples.

2 System of linear integral equations

We consider a system of the integral equations

U(x)−
∫ g(x)

f(x)

K(x, t)R(U(t)) dt = F(x), (2.1)

where x ∈ [a, b] and

K(x, t) =


K11(x, t) K12(x, t) . . . K1n(x, t)
K21(x, t) K22(x, t) . . . K2n(x, t)

...
...

. . .
...

Kn1(x, t) Kn2(x, t) . . . Knn(x, t)

 ,

U(x) =


u1(x)
u2(x)

...
un(x)

 , F(x) =


f1(x)
f2(x)

...
fn(x)

 ,
where R : (C[a, b])n → (C[a, b])n is a bounded linear operator, f, g ∈ C[a, b],
a 6 f(x) 6 g(x) 6 b, functions Kij ∈ C([a, b] × [a, b]) and fi ∈ C[a, b] are
known, whereas the functions ui are sought. Special cases of the above system
of equations are the systems of Fredholm and Volterra integral equations of the
second kind.

Assume the supremum norm as the norm of function v ∈ C(Ω):

‖v‖ = sup
x∈Ω
|v(x)|.

For the vector of functions V(x) = [v1(x), v2(x), . . . , vn(x)]T , vi ∈ C(Ω) for
i = 1, 2, . . . , n, we define the norm as

‖V‖ = max{‖v1‖, ‖v2‖, . . . , ‖vn‖}.

Then it induces the matrix norm of the form

‖A‖ := max
16i6n

n∑
j=1

‖aij‖.

The functions Kij and fi are continuous in regions Ω1 = [a, b] × [a, b] and
Ω = [a, b], respectively. This means that there exist the positive numbers MK

and MF such that

‖K(x, t)‖ 6MK ∧ ‖F(x)‖ 6MF for all x, t ∈ [a, b]. (2.2)

Math. Model. Anal., 21(3):350–370, 2016.



354 R. Brociek, E. Hetmaniok, J. Matlak and D. S lota

Operators L and N can be defined in the following way

L(V) = V, N(V) = V(x)− F(x)−
∫ g(x)

f(x)

K(x, t)R(V(t)) dt. (2.3)

Let U0 ∈ (C[a, b])n. In this case, after using the homotopy analysis method
we get the following formula for function Um:

Um(x) = χmUm−1(x) + hRm
(
Um−1, x

)
, (2.4)

where Um(x) = [um,1(x), . . . , um,n(x)]T , Um−1 = {U0(x), . . . ,Um−1(x)}, χm
and Rm are specified by formulas (1.6).

In considered case the operator Rm takes the following form (under assump-
tion that the series is convergent, which will be discussed later):

Rm(Um−1, x) =
1

(m− 1)!

(
∂m−1

∂pm−1
N
( ∞∑
i=0

Ui(x) pi
))

p=0

=
1

(m− 1)!

∂m−1

∂pm−1

[ ∞∑
i=1

Ui(x) pi − F(x)−
∫ g(x)

f(x)

K(x, t)R
( ∞∑
i=1

Ui(t) p
i
)
dt

]
p=0

=
1

(m− 1)!

∂m−1

∂pm−1

[ ∞∑
i=1

Ui(x) pi − F(x)−
∞∑
i=1

∫ g(x)

f(x)

K(x, t)R(Ui(t)) p
i dt

]
p=0

=
1

(m− 1)!

(
(m− 1)!Um−1(x)− (1− χm)F(x)

−
∫ g(x)

f(x)

K(x, t) (m− 1)!R(Um−1(t)) dt

)
= Um−1(x)− 1− χm

(m− 1)!
F(x)−

∫ g(x)

f(x)

K(x, t)R(Um−1(t)) dt.

Using the formula above and equation (2.4) we obtain the formulas for func-
tions Um:

U1(x) = h
(
U0(x)− F(x)−

∫ g(x)

f(x)

K(x, t)R(U0(t)) dt
)

(2.5)

and for m > 2:

Um(x) = (1 + h)Um−1(x)− h
∫ g(x)

f(x)

K(x, t)R(Um−1(t)) dt. (2.6)

Let us start with presenting the following theorem.

Theorem 1. If the condition given below is fulfilled

‖R‖MK (b− a) < 1, (2.7)

then the system of equations (2.1) has at most one solution.
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Proof. Assume that there exist two solutions U1 and U2. Then for every
x ∈ [a, b] we have

‖U1(x)−U2(x)‖ =
∥∥∫ g(x)

f(x)

K(x, t)R(U1(t)−U2(t)) dt
∥∥

6 ‖R‖MK (b− a) ‖U1 −U2‖.

The above inequality is satisfied for all x ∈ [a, b], thus the following inequality
is true

‖U1 −U2‖ 6 ‖R‖MK (b− a) ‖U1 −U2‖.

We get then (
1− ‖R‖MK (b− a)

)
‖U1 −U2‖ 6 0.

Since condition (2.7) is satisfied, the equality U1 = U2 is true. ut

We will show now that the sum of series generated in the homotopy analysis
method is the solution of considered system of integral equations.

Theorem 2. Let the vector-valued functions Um, m > 1, be defined by formu-
las (2.5) and (2.6). Thus, if the series in (1.4) is convergent then the sum of
this series is the solution of the system of integral equations (2.1).

Proof. Assume that the series in (1.4) is convergent. From the necessary
condition for convergence of the series we get that for every x ∈ [a, b]:

lim
m→∞

Um(x) = 0.

Bearing in mind that we assumed the identity operator as the operator L,
we have

n∑
m=1

L
(
Um(x)− χmUm−1(x)

)
=

n∑
m=1

(
Um(x)− χmUm−1(x)

)
= U1(x) + (U2(x)−U1(x)) + . . .+ (Un(x)−Un−1(x)) = Un(x).

Hence
∞∑
m=1

L
(
Um(x)− χmUm−1(x)

)
= lim
n→∞

Un(x) = 0.

From equation (1.5) we get

h

∞∑
m=1

Rm
(
Um−1, x

)
=

∞∑
m=1

L
(
Um(x)− χmUm−1(x)

)
and since h 6= 0 we have

∞∑
m=1

Rm
(
Um−1, x

)
= 0.
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356 R. Brociek, E. Hetmaniok, J. Matlak and D. S lota

After some transformation we get

0 =

∞∑
m=1

Rm
(
Um−1, x

)
=

∞∑
m=1

(
1

(m− 1)!

∂m−1

∂pm−1

[ ∞∑
i=1

Ui(x) pi − F(x)

−
∫ g(x)

f(x)

K(x, t)R
( ∞∑
i=1

Ui(t) p
i
)
dt

]
p=0

)

=

∞∑
m=1

(
Um−1(x)− 1− χm

(m− 1)!
F(x)−

∫ g(x)

f(x)

K(x, t)R
(
Um−1(t)

)
dt

)

=

∞∑
m=1

Um−1(x)− F(x)−
∫ g(x)

f(x)

K(x, t)R
( ∞∑
m=1

Um−1(t)
)
dt

= U(x)− F(x)−
∫ g(x)

f(x)

K(x, t)R
(
U(t)

)
dt,

therefore U(x) =
∑∞
m=0 Um(x) fulfills the considered system of integral equa-

tions. ut

In the next theorem we formulate the sufficient condition for the convergence
of considered series.

Theorem 3. If inequality (2.7) is fulfilled then the value of the convergence
control parameter can be selected so that the series in (1.4) converges uniformly
in the interval [a, b].

Proof. Let U0 be the vector of functions from the C[a, b] class. Therefore
there exists a positive constant M0 such that for every x ∈ [a, b] we have

‖U0(x)‖ 6M0.

We seek the constraints for the vector–valued functions Um in the interval [a, b]:

‖U1(x)‖ =
∥∥∥h (U0(x)− F(x)−

∫ g(x)

f(x)

K(x, t)R(U0(t)) dt
)∥∥∥

6 |h|
(
‖U0(x)‖+ ‖F(x)‖+

∫ g(x)

f(x)

‖K(x, t)‖ ‖R(U0(t))‖ dt
)

6 |h|
(
M0 +MF +MK ‖R‖M0 (b− a)

)
=: α,

‖U2(x)‖ =
∥∥∥(1 + h)U1(x)− h

∫ g(x)

f(x)

K(x, t)R(U1(t)) dt
∥∥∥

6
(
|1 + h|+ |h|MK ‖R‖ (b− a)

)
α = βh α,

where
βh := |1 + h|+ |h|MK ‖R‖ (b− a).

Using the above formula it is easy to show by induction that for m > 1 and for
every x ∈ [a, b] we obtain

‖Um(x)‖ 6 αβm−1h .
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In this way we have the estimation for the considered series

∞∑
m=0

Um(x) 6
∞∑
m=0

‖Um(x)‖ 6M0 + α

∞∑
m=1

βm−1h .

The last series in the above estimation is a geometric series with common ratio
βh. If βh < 1 (we have βh > 0), then under comparison criterion the considered
series converges uniformly in the interval [a, b].

Let us see whether it is possible to take parameter h such that βh < 1, i.e.

|1 + h|+ |h|MK ‖R‖ (b− a) < 1.

Since h 6= 0 the last inequality is equivalent to condition

MK ‖R‖ (b− a) <
1− |1 + h|
|h|

. (2.8)

The function on the right side of this inequality takes the following values

1− |1 + h|
|h|

=

 −1− 2
h for h < −1,

1 for h ∈ [−1, 0),
−1 for h > 0.

So, if condition (2.7) is satisfied then we take the value of parameter h such
that the inequality (2.8) is satisfied (in order to do this it is sufficient to take
any h ∈ [−1, 0)) and then βh < 1. ut

Remark 1. Theorems from above imply that if condition (2.7) is satisfied then
the considered system of integral equations has exactly one solution.

Remark 2. In special case for h = −1 and the Volterra equation of the second
kind (it means if f(x) = a and g(x) = x for x ∈ [a, b]) the series in (1.4) is
always convergent (even if inequality (2.7) is not fulfilled). It results from the
fact that in this case we obtain the following estimation (see also [12]):

‖Um(x)‖ 6 α

(
MK ‖R‖ (x− a)

)m−1
(m− 1)!

, x ∈ [a, b], m > 1.

Let us move to the proof of theorem giving the estimation of error of the
approximate solution.

Theorem 4. If inequality (2.7) is fulfilled and n ∈ N, then we get the following
estimation of error of the approximate solution

‖U(x)− Ûn(x)‖ 6 βnh
1− βh

α (2.9)

for every x ∈ [a, b], where α = |h|
(
M0 + MF + M0MK ‖R‖ (b − a)

)
and βh =

|1 + h|+ |h|MK ‖R‖ (b− a).

Math. Model. Anal., 21(3):350–370, 2016.
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Proof. Let n ∈ N. Then for every x ∈ [a, b] we get

‖U(x)− Ûn(x)‖ =
∥∥∥ ∞∑
m=n+1

Um(x)
∥∥∥

6
∞∑

m=n+1

∥∥Um(x)
∥∥ 6 α

∞∑
m=n+1

βm−1h =
βnh

1− βh
α.

ut

Remark 3. If in the considered method we take h = −1 and U0(x) = 0 or
U0(x) = F(x) then it will be equivalent to the method of successive approxi-
mations and the Adomian decomposition method (when U0(x) = 0 after skip-
ping the first element which is identically equal to zero; see also [1, 25]). For
h = −1 the considered method agrees with the homotopy perturbation method
(see [9, 12]).

Remark 4. We can also find some other expressions for the homotopy opera-
tor [14,17], i.e.

H(Φ, p) ≡ (1− p)L
(
Φ(x; p)− u0(x)

)
− p hH(x)N

(
Φ(x; p)

)
,

where H is the auxiliary function. In this case all results obtained in this paper
remain true as well. Only the formulas for constants α and βh change.

3 System of nonlinear integral equations

Now we will consider a system of nonlinear integral equations

U(x)−
∫ g(x)

f(x)

K(x, t)R(U(t)) dt = F(x), (3.1)

where x ∈ [a, b], functions K, F and U are defined in the same way as in
the previous section, R : (C[a, b])n → (C[a, b])n is the nonlinear operator,
f, g ∈ C[a, b], a 6 f(x) 6 g(x) 6 b. Similarly as before we define the constants
MK and MF (see formula (2.2)). We assume that R is an operator satisfying
the Lipschitz condition

‖R(V1)−R(V2)‖ 6 s ‖V1 −V2‖ for every V1,V2 ∈ (C[a, b])n

and some s > 0.
Operators L and N are defined by relation (2.3). Taking U0 ∈ (C[a, b])n,

after using the homotopy analysis method we get the following formula for
function Um:

Um(x) = χmUm−1(x) + hRm
(
Um−1, x

)
,

where Um(x) = [um,1(x), . . . , um,n(x)]T , Um−1 = {U0(x), . . . ,Um−1(x)}, χm
and Rm are specified by formulas (1.6).
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Now we obtain the formulas for functions Um in the following form

U1(x) = h
(
U0(x)− F(x)−

∫ g(x)

f(x)

K(x, t)R(U0(t)) dt
)

(3.2)

and for m > 2

Um(x) = (1 + h)Um−1(x)

− h

(m− 1)!

∫ g(x)

f(x)

K(x, t)
( ∂m−1
∂pm−1

R
( ∞∑
i=0

Ui(t) p
i
))
p=0

dt. (3.3)

One can find in some literature the expression
(
∂m−1

∂pm−1R(
∑∞
i=0 Ui(t) p

i)
)
p=0

computed for various nonlinear operators R (see for example [17]).
Similarly as in the linear case we can prove the theorem stating the unique-

ness of solution of considered equation.

Theorem 5. If the following condition is fulfilled

sMK (b− a) < 1, (3.4)

then the system of equations (3.1) has at most one solution.

Proof. Proof of this theorem runs analogically as the proof of Theorem 1. ut

The following theorem is equivalent to Theorem 2 for the case of nonlinear
equations.

Theorem 6. Let the vector-valued functions Um, m > 1, be defined by formu-
las (3.2) and (3.3). Therefore if s < 1 and the series in (1.4) is convergent then
the sum of this series is the solution of the system of integral equations (3.1).

Proof. Let series in (1.4) be convergent. From the necessary condition for
convergence of the series we get that for any x ∈ [a, b]:

lim
m→∞

Um(x) = 0.

Let us designate

Hm(x) =
1

m!

(
∂m

∂pm
R
(+∞∑
i=0

Ui(x) pi
))∣∣∣∣

p=0

.

If R is the contraction mapping (s < 1) and series in (1.4) is convergent to
U(x), then series

∑∞
m=0 Hm(x) is convergent to R(U(x)) (it results from [7]).

Using definition of operator L we have

n∑
m=1

L
(
Um(x)− χmUm−1(x)

)
= Un(x).

Math. Model. Anal., 21(3):350–370, 2016.
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Hence
∞∑
m=1

L
(
Um(x)− χmUm−1(x)

)
= lim
n→∞

Un(x) = 0.

From equation (1.5) we get

h

∞∑
m=1

Rm
(
Um−1, x

)
=

∞∑
m=1

L
(
Um(x)− χmUm−1(x)

)
and since h 6= 0 we have

∞∑
m=1

Rm
(
Um−1, x

)
= 0.

After some transformation we get

0 =

∞∑
m=1

Rm
(
Um−1, x

)
=

∞∑
m=1

(
1

(m− 1)!

∂m−1

∂pm−1

[ ∞∑
i=1

Ui(x) pi − F(x)

−
∫ g(x)

f(x)

K(x, t)R
( ∞∑
i=1

Ui(t) p
i
)
dt

]
p=0

)

=

∞∑
m=1

(
Um−1(x)− 1− χm

(m− 1)!
F(x)

−
∫ g(x)

f(x)

K(x, t)

[
1

(m− 1)!

∂m−1

∂pm−1
R
( ∞∑
i=1

Ui(t) p
i
)]

p=0

dt

)

=

∞∑
m=1

(
Um−1(x)− 1− χm

(m− 1)!
F(x)−

∫ g(x)

f(x)

K(x, t)Hm−1(t) dt

)

=

∞∑
m=1

Um−1(x)− F(x)−
∫ g(x)

f(x)

K(x, t)

∞∑
m=1

Hm−1(t) dt

= U(x)− F(x)−
∫ g(x)

f(x)

K(x, t)R(U(t)) dt.

ut

We intend now to formulate the sufficient condition for convergence of the
discussed series.

Theorem 7. If we select parameter h in such a way that the constants γh ∈
(0, 1) and k0 ∈ N exist such that for each k > k0 the following inequality

‖Uk+1‖ 6 γh ‖Uk‖,

holds true, then the series in (1.4) is uniformly convergent in the interval [a, b].
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Proof. Let Sn denote the partial sum of investigated series

Sn =

n∑
m=0

Um(x).

Our aim is to reveal that sequence {Sn} is the Cauchy sequence. Let us begin
by estimating the following norm

‖Sn − Sn−1‖ = ‖Un‖ 6 γh ‖Un−1‖ 6 . . . 6 γn−k0h ‖Uk0‖.

Now for any n, k ∈ N, n > k > k0, we get

‖Sn − Sk‖ 6 ‖Sn − Sn−1‖+ . . .+ ‖Sk+1 − Sk‖
6 γn−k0h ‖Uk0‖+ . . .+ γk+1−k0

h ‖Uk0‖

= γk+1−k0
h

(
γn−k−1h + . . .+ γh + 1

)
‖Uk0‖ = γk+1−k0

h

1− γn−kh

1− γh
‖Uk0‖.

Since γh ∈ (0, 1), we conclude that sequence {Sn} is the Cauchy sequence.
From the completeness of space R we deduce the convergence of this sequence,
which implies in turn the convergence of the investigated series. ut

In the next theorem we present the estimation of error of approximate
solution Ûn.

Theorem 8. If the assumptions of Theorem 7 are fulfilled and, in addition,
n ∈ N and n > k0 then we derive the following estimation of error of the
approximate solution

‖U− Ûn‖ 6
γn+1−k0
h

1− γh
‖Uk0‖.

Proof. Let n ∈ N and n > k0. Then we receive for every x ∈ [a, b]:

‖U(x)− Ûn(x)‖ =
∥∥∥ ∞∑
m=n+1

Um(x)
∥∥∥

6
∞∑

m=n+1

∥∥Um(x)
∥∥ 6

∞∑
m=n+1

γm−k0h ‖Uk0‖ =
γn+1−k0
h

1− γh
‖Uk0‖.

ut

4 Examples

Example 1. In the first example we apply the investigated method for solving
the following system of Fredholm integral equations of the second kind

u1(x) = −x
3

12
+

9x2

8
− x

20
+ +

1

4

(∫ 1

0

(x− t)3 u1(t) dt+

∫ 1

0

(x− t)2 u2(t) dt

)
,

u2(x) =
15x3

16
+
x2

15
− 1

70
+

1

4

(∫ 1

0

(x− t)2 u1(t) dt+

∫ 1

0

(x− t)3 u2(t) dt

)
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for x ∈ [0, 1]. Solution of the considered system is given by functions

ud1(x) = x2, ud2(x) = x3.

In this example we have MK = 1
2 and ‖R‖ = 1. It means that for the discussed

system of integral equations the condition (2.7) is satisfied which implies the
convergence of homotopy analysis method.

As the initial approximation we take U0(x) = [0, 0]T . Thus we obtain

V1(x) =
[
h
( x

20
− 9x2

8
+
x3

12

)
, h
( 1

70
− x2

15
− 15x3

16

)]T
,

V2(x) =
[
h
( x

20
− 9x2

8
+
x3

12

)
+ h2

(
− 13

67200
+

45x

448
− 100829x2

80640
+

53x3

320

)
,

h
( 1

70
− x2

15
− 15x3

16

)
+ h2

( 1

35
− 23x

67200
− 37x2

280
− 14143x3

16128

)]T
, . . .

In Figure 1 the plot of logarithm of squared residual E3 is shown. In this case
optimum value of the convergence control parameter is equal to −1 (h = −1).
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E
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Figure 1. Logarithm of squared residual E3(h)

Displayed results show that in the discussed case the approximated effec-
tive region of the convergence control parameter, determined on the basis of
square residual, is the interval Rh = (−1.9, 0) (see Figure 2b). Whereas the
approximation of this region determined on the basis of h-curve is the smaller
interval (see Figure 2a).

As the approximate solution Ûn =
[
û1,n, û2,n

]T
defined by sum (1.7) for

h = −1 and n = 2 we receive

û1,2(x) = −0.000193452 + 0.000446429x+ 0.99964x2 − 0.00104167x3,

û2,2(x) = −0.000342262x+ 0.00119048x2 + 0.998078x3,

for n = 5 we obtain

û1,5(x) = −8.67362 · 10−19 − 4.88943 · 10−8 x+ x2 − 9.77859 · 10−8 x3,

û2,5(x) = −1.42822 · 10−8 + 4.38272 · 10−10 x+ 5.8059 · 10−8 x2 + x3,

whereas for n = 10 we get

û1,10(x) = −6.10623 · 10−16 + 1.42109 · 10−14 x+ x2 + 1.42109 · 10−14 x3,

û2,10(x) = −1.55431 · 10−15 x− 2.84217 · 10−14 x2 + x3.
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Figure 2. The h-curve (a) and squared residual En(h) (b) for n = 3, 5, 8, 10 (the
successive curves from the top)

All calculations were executed with the aid of computational software Mathe-
matica.

In Table 1 there are presented the errors (‖udi− ûi,n‖ = supx∈[0,1] |udi(x)−
ûi,n(x)|) which occur in approximating the exact solution by the successive
approximate solutions. Whereas, distributions of error in the entire interval
[0, 1] for n = 3 and n = 9 are displayed in Figure 3 and Figure 4. Presented
results indicate that the method is fast convergent and computing just a few
(a dozen or so) first terms of the series ensures a very good approximation of
the exact solution.

Table 1. Errors of approximations of the exact solution

n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖ n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖

1 8.3333 10−3 1.4286 10−2 6 1.2497 10−9 1.1555 10−9

2 1.1483 10−3 1.0739 10−3 7 2.8951 10−11 3.1733 10−11

3 1.5088 10−5 1.6908 10−5 8 1.3730 10−12 1.2666 10−12

4 1.1760 10−6 1.0915 10−6 9 3.5929 10−14 3.9305 10−14

5 2.2092 10−8 2.4365 10−8 10 1.5349 10−15 3.2290 10−15
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Figure 3. Distribution of error of the exact solution approximation for n = 3

In general, the convergence is much more faster than the one expected in
Theorem 4, in the sense that the error of determined approximate solution is

Math. Model. Anal., 21(3):350–370, 2016.
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Figure 4. Distribution of error of the exact solution approximation for n = 9

much lower than its estimation resulting from inequality (2.9). In considered
example we have Mk = 1

2 , M0 = 0, MF = 119
120 , ‖R‖ = 1, a = 0, b = 1. Thereby

for the optimal value of convergence control parameter h = −1 we obtain

βh = |1 + h|+ |h|MK ‖R‖ (b− a) =
1

2
,

α = |h|
(
M0 +MF +M0MK ‖R‖ (b− a)

)
=

119

120
,

and

‖U(x)− Ûn(x)‖ 6 βnh
1− βh

α =
119

120

(1

2

)n−1
=: ∆n.

The estimations of error of the successive approximate solutions, resulting from
the above relation, are presented in Table 2.

Table 2. Estimation (∆n) of the error resulting from relation (2.9)

n ∆n n ∆n

1 0.9917 6 3.0990 10−2

2 0.4958 7 1.5495 10−2

3 0.2479 8 7.7474 10−3

4 0.1240 9 3.8737 10−3

5 6.1979 10−2 10 1.9368 10−3

Example 2. In the next example we consider the following system of equations

u1(x) = x2 − 10x3

3
+
x4

6
+ 2

(∫ x

0

(t− x)u1(t) dt+

∫ x

0

(t+ x)u2(t) dt

)
,

u2(x) = 2x+
2x3

3
− 7x4

6
+ 2

(∫ x

0

(t+ x)u1(t) dt+

∫ x

0

(t− x)u2(t) dt

)
for x ∈ [0, 1]. Solution of the above system is given by functions

ud1(x) = x2, ud2(x) = 2x.
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In this case we have MK = 5 and ‖R‖ = 1. It means that this time condi-
tion (2.7) is not satisfied. Theorem 3 gives only the sufficient condition for the
convergence of created series. Presented example illustrates this fact. We have
here an example of the system for which the condition (2.7) is not fulfilled but
still, by choosing properly the value of the convergence control parameter h,
we can assure convergence of the method.

In this example the approximate location of the effective region of the con-
vergence control parameter is equal to Rh = (−1.3, 0) (see Figure 5b). This
time the h-curve gives the interval (−1.8,−0.2) (see Figure 5a).
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Figure 5. The h-curve (a) and squared residual En(h) (b) for n = 3, 5, 8, 10 (the
successive curves from the top)

Taking the optimum value of the convergence control parameter equal to
−1 (h = −1) and the initial approximation in form U0(x) = [0, 0]T we obtain,
successively

u1,1(x) = x2 − 10x3

3
+
x4

6
, u2,1(x) = 2x+

2x3

3
− 7x4

6
,

u1,2(x) =
10x3

3
− x4

6
+

14x5

15
− 13x6

15
,

u2,2(x) = −2x3

3
+

7x4

6
− 46x5

15
+
x6

5
,

u1,3(x) = −14x5

15
+

13x6

15
− 68x7

35
+

29x8

210
,

u2,3(x) =
46x5

15
− x6

5
+

76x7

105
− 33x8

70
,

u1,4(x) =
68x7

35
− 29x8

210
+

374x9

945
− 191x10

945
,

u2,4(x) = −76x7

105
+

33x8

70
− 886x9

945
+

13x10

189
, . . .

Hence we receive the following approximate solution

û1,n(x) = x2 + an x
2n+1 + bn x

2n+2,

û2,n(x) = 2x+ cn x
2n+1 + dn x

2n+2,
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where (an), (bn), (cn) and (dn) are sequences converging to zero. In Table 3
there are presented the errors (‖udi − ûi,n‖ = supx∈[0,1] |udi(x) − ûi,n(x)|) oc-
curing in the approximations of exact solution by the successive approximate
solutions for h = −1. Whereas, distributions of error in the entire interval [0, 1]
for n = 20 are displayed in Figure 6.

Table 3. Errors of approximations of the exact solution

n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖ n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖

1 3.1667 0.5000 11 6.0076 10−5 2.9274 10−5

2 9.0553 10−2 2.8667 12 5.0390 10−6 9.9411 10−6

3 1.8048 0.2524 13 1.5197 10−6 7.9699 10−7

4 0.1937 0.8688 14 1.1663 10−7 2.1588 10−7

5 0.3381 9.6681 10−2 15 2.8639 10−8 1.5882 10−8

6 3.7074 10−2 0.1104 16 2.0228 10−9 3.5635 10−9

7 3.1026 10−2 1.1685 10−2 17 4.1750 10−10 2.4200 10−10

8 3.1437 10−3 7.6529 10−3 18 2.7298 10−11 4.6212 10−11

9 1.6817 10−3 7.3981 10−4 19 4.8475 10−12 2.9131 10−12

10 1.5496 10−4 3.3315 10−4 20 2.9496 10−13 4.8318 10−13
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Figure 6. Distribution of error of the exact solution approximation for n = 20

In this example the errors are monotonically decreasing from n = 7. There-
fore to achieve a similar approximation, just like in the previous example, we
need to do a few more iterations. By selecting the convergence control parame-
ter h from the effective region Rh we always receive a convergent series, however
for h 6= −1 the rate of convergence is smaller. For h = −1.25 the approxima-
tion error ûi,20 is equal to 1.86268 ·10−3, for h = −1.1 the same approximation
error is 1.9188 · 10−7 and for h = −0.75 it is equal to 7.6025 · 10−6, however for
h = −0.2 it is equal to 0.3380. For the value outside of the effective region the
errors increase together with the increasing number of iterations. According
to Remark 2, for h = −1 in case of the Volterra equation we have certainly
that the series will be convergent. These calculations show that for other value
of the convergence control parameter from the effective region Rh the series is
convergent even though the condition (2.7) is not satisfied.
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Example 3. In the last example we discuss the following system of equations

u1(x) = x− 6 + 16 e−1 +

∫ 1

0

e−t u1(t)u2(t) dt,

u2(x) = x2 − 24 + 65 e−1 +

∫ 1

0

e−t
(
u1(t)

)2
u2(t) dt

for x ∈ [0, 1], solution of which is given by functions

ud1(x) = x, ud2(x) = x2.

In this case the condition (3.4) is not satisfied, therefore we cannot conclude
on this ground that the system possesses exactly one solution (see Theorem 5).
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Figure 7. The h-curve (a) and squared residual En(h) (b) for n = 5, 8, 10 (the successive
curves from the top)

Now the optimum value of the convergence control parameter h is equal
to −0.47. The h-curve and square residual are presented in Figure 7. As the
initial approximation we take U0(x) = [0, 0]T . For n = 2 we receive

û1,2(x) = −0.0819263 + 0.7191x, û2,2(x) = −0.0631631 + 0.7191x2,

for n = 10 we obtain

û1,10(x) = −0.033142 + 0.998251x, û2,10(x) = −0.0408886 + 0.998251x2,

whereas for n = 20 we get

û1,20(x) = −0.0078125 + 0.999997x, û2,20(x) = −0.015625 + 0.999997x2.

Table 4 presents the errors (‖udi − ûi,n‖ = supx∈[0,1] |udi(x) − ûi,n(x)|)
which occur in approximating the exact solution by the successive approximate
solutions.

Table 5 presents several values of the norm of functions Um for the optimal
value of the convergence control parameter. It can be noticed that they form
a strictly decreasing sequences. That, according to Theorem 7, can be treated
as the indicator of convergence of the series in (1.4).
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Table 4. Errors of approximations of the exact solution

n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖ n ‖ud1 − û1,n‖ ‖ud2 − û2,n‖

1 0.583547 0.571283 11 0.029441 0.036087
2 0.362826 0.344063 12 0.025160 0.030755
3 0.237669 0.223637 13 0.021704 0.026376
4 0.162669 0.157155 14 0.018853 0.022752
5 0.115839 0.117697 15 0.016461 0.019730
6 0.085636 0.092175 16 0.014431 0.017195
7 0.065566 0.074310 17 0.012696 0.015059
8 0.051809 0.061036 18 0.011220 0.013192
9 0.042055 0.050772 19 0.009903 0.011376
10 0.034891 0.042637 20 0.008925 0.010033

Table 5. Values of the norm of functions Um for the optimal value of the convergence
control parameter

m ‖Um‖ m ‖Um‖ m ‖Um‖ m ‖Um‖

1 0.428717 6 0.030203 11 0.006550 16 0.002537
2 0.227220 7 0.020070 12 0.005332 17 0.002139
3 0.125158 8 0.013757 13 0.004379 18 0.001817
4 0.075000 9 0.010263 14 0.003624 19 0.001307
5 0.046829 10 0.008135 15 0.003022 20 0.001247

5 Conclusions

Discussion on the systems of integral equations, the linear as well as the non-
linear ones, presented in Sections 2 and 3 can be transferred “almost” without
changes onto the more general case in which the interval [a, b] is replaced, for
example, by a compact metric and simultaneously measurable space Ω (or in
more general cases by a metric space and by a measurable space). The inte-
gral is taken then over the sets with common bounded measure and so on. In
this case some convergence aspects, like for instance the uniqueness of solu-
tion, would need the application of, for example, the Schauder theorem and
the Schauder modified theorem [8,22]. Considerations of that kind will be the
subject of our future papers.
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