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Abstract. This paper presents a numerical method for solving systems of partial
differential equations describing flow in porous media with an embedded and inclined
conduit pipe. This work considers a coupled continuum pipe-flow/Darcy model. The
numerical schemes presented are based on combinations of the quasi-Wilson element
on anisotropic mesh and the conforming finite element on regular mesh. The existence
and uniqueness of the approximation solution are obtained. Optimal error estimates
in both L2 and H1 norms are obtained independent of the regularity condition on the
mesh. Numerical examples show the accuracy and efficiency of the proposed scheme.
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1 Introduction

Managing the quality of groundwater resources is imperative today with the
risks of environmental and industrial contamination. Therefore the develop-
ment and study of numerical models of groundwater flow in Karst aquifers,
which are very vulnerable sources of groundwater, is a most practical ap-
plication. One of the most popular models is the coupled continuum pipe-
flow/Darcy (CCPF) model in which the conduits embedded in the continuum
matrix are simplified into a network of one-dimensional pipes, see [2,3,4,5,11,
19]. As shown in Figure 1, the conduit Ωc in the model of a Karst aquifer is a
one-dimensional curve with sinkhole boundary Γsi and Γsp, which are the end
points of the curve.
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Figure 1. Two-dimensional figure of a Karst aquifer.

The continuum Ωm denotes the domain occupied by the porous media
around the curve. Γg represents the ground surface boundary, and Γ0 shows a
bounding surface that is presumably far removed from the region of interest.

In general, the flow in the porous matrix is modeled by a continuum ap-
proach using the Darcy equation [5, 14], and one-dimensional pipe-flow equa-
tion [5] is applied to the conduit flow in the tube. In order to preserve the
conservation of mass, the matrix flow and conduit flow are coupled at the in-
terface by the exchange flux, which is determined linearly by the difference of
hydraulic heads between the matrix system and the conduit system. See, e.g.,
Cao et al. [5], Lei [10], Chen [9] and Wu [20].

A simplified sketch is shown in Figure 2.
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Figure 2. A simplified sketch of a Karst aquifer.

We consider the two-dimensional porous domain Ωm = (0, L)×(−Hm, Hm),
and the inclined conduit pipe Ωc = {y = kx+ b, x ∈ (0, L)} with real numbers
k and b, where 2Hm is the height of the matrix, L is the horizontal length
of the matrix. We assume kL + b < Hm and b > −Hm, so that the inclined
conduit is embedded in the porous media. In conclusion, the steady-state
coupled continuum pipe-flow/Darcy (CCPF) model in Karst aquifers is given
as follows.{

−∇ · (K∇hm) = −αex(hm − hc)δΩc + fm, in Ωm,

− ∂
∂τ (D ∂hc

∂τ ) = αex(hm|Ωc − hc) + f c, in Ωc,
(1.1)

where hm and hc denote the unknown hydraulic heads in the porous matrix
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Ωm and conduit pipe Ωc, respectively.
Under the homogeneous isotropic media assumption, the hydraulic conduc-

tivity tensor K takes the form of K = KI. Here K is a constant, K = k̃g
µ , where

k̃ is the constant matrix permeability, µ the kinematic viscosity of water, and
g the gravitational acceleration constant. We use τ to express the unit tangen-
tial direction along one-dimensional inclined pipe conduit. The conductivity

constant D depends on the width of the conduit d such that D = d3g
12µ ; fm and

f c represent the external source or sink terms; δΩc is the Dirac delta function
focused on Ωc. The nonnegative constant αex represents the coefficient of flux
exchange at the intersection between the matrix and conduit flow. Physical
experimental results in Chen et al. [6] show that the CCPF model is valid for
flows in Karst aquifers when a suitable fluid exchange coefficient αex is taken.

A suitable boundary condition is needed to solve the coupled model (1.1).
We suppose hc is specified at the end points of the conduit, Γsi and Γsp, and
hm is specified on the boundary of Ωm given by Γg ∪ Γ0.

The time-dependent case of (1.1) first appeared in [2, 3, 4], where Karst
aquifer genesis is studied. Combining the idea of dual porosity, the model
(1.1) has been discussed by the Carbonate Aquifer Void Evolution (CAVE)
code, which solved the flow model in the porous matrix by a finite difference
scheme using MODFLOW and the flow model in conduit by a nonlinear finite
difference discretization. Wang [19] demonstrated that the coupled continuum
pipe-flow/Darcy model (1.1) is well-posed in two spatial dimensions. Cao et al.
[5] applied conforming finite element approximation to solve the CCPF model
with a horizontal pipe cube Ωc = {y = 0}, and obtained optimal convergence
rates in the L2 and H1 norms based on regular grid. Liu et al. used anisotropic
finite element method and coupled finite element method to solve the same
model as in [5] based on the horizontal pipe domain in [12] and [13], respectively.

The objective of this paper is to study CCPF model with the inclined pipe
cube embedded in the porous media. Considering the large angle of inclination
of the conduit pipe, the rectangular grid and even the regular mesh can not be
employed on the solved two-dimensional region. Therefore, we shall choose the
arbitrary quadrilateral grids as the regional division to approximate the Darcy
equation of CCPF model. In order to avoid the limits on the subdivision, the
anisotropic quadrilateral mesh is considered without the regularity condition.
The second goal of this paper is to introduce the quasi-Wilson element to
approximate the two-dimensional Darcy equation of CCPF model (1.1) and
conforming finite element to solve the pipe-flow equation. As is known to all,
the quasi-Wilson element is a nonconforming element on quadrilateral mesh.
The element comes from Shi-Chen [17, 18] which simply adds a term of high
order to the nonconforming part of the shape basis functions. In recent years,
there have been many research papers such as [7, 8, 15, 16] with respect to
numerical analysis of quasi-Wilson element.

Herein, the existence and uniqueness of the solution are obtained for the
coupled approximation scheme based on the quasi-Wilson nonconforming finite
element method for Darcy equation with conforming finite element method for
pipe-flow equation. The optimal error estimates in both L2 and H1 norms are
established independent of the regularity condition on the mesh. Numerical
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results, based on two different anisotropic subdivisions, show the efficiency and
accuracy of our scheme.

The outline of the paper is as follows. The anisotropic mesh of Ωm and
the regular mesh on the domain Ωc are presented in Section 2. The approxi-
mation scheme using quasi-Wilson nonconforming element on anisotropic grid
combined with conforming finite element method is carried out for the coupled
CCPF model. Existence and uniqueness of approximation solution are also
deduced in Section 2. Section 3 gives the error estimates of the approximation
scheme based on the anisotropic interpolation properties. Numerical exam-
ples are given to show the efficiency of the scheme in Section 4, followed by
conclusions.

Throughout this paper, we use C, C1 and C2 to denote generic positive con-
stants independent of the discretization parameters, which may have different
values in different appearances.

The Sobolev space Hm(⊗) = Wm,2(⊗) is defined in the usual ways with
the usual norm ‖ · ‖m,⊗ and semi-norm | · |m,⊗, where ⊗ is Ωc or Ωm or some
other domains.

2 Quasi-Wilson nonconforming element with conforming
finite element method

In this section we present the finite element scheme for the coupled problem.
We use the quasi-Wilson element based on anisotropic mesh for hm. We also
present the existence and uniqueness of the approximation solution.

It follows from property of Dirac delta function and a technique of coordi-
nate transformation that∫ L

0

∫ Hm

−Hm
f(x, y)δ(y − (kx+ b))dxdy =

∫
Ωc
f(x, kx+ b)ds.

Then, the weak form of the simplified CCPF model (1.1) with zero Dirichlet
boundary condition is to find h = (hm, hc) ∈ H1

0 (Ωm)×H1
0 (Ωc) such that

a(h,v) = (f ,v), ∀ v = (vm, vc) ∈ H1
0 (Ωm)×H1

0 (Ωc), (2.1)

where the bilinear form

a(h,v) =

∫
Ωm

K∇hm∇vmdxdy +

∫
Ωc
D
∂hc

∂τ

∂vc

∂τ
ds

+αex

∫
Ωc

(hm|Ωc − hc)vm|Ωcds− αex
∫
Ωc

(hm|Ωc − hc)vcds

and

(f ,v) =

∫
Ωm

fmvmdxdy +

∫
Ωc
f cvcds,

with f = (fm, f c).
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Lemma 1. The weak solution h of simplified CCPF model (1.1) exists and is
unique.

Proof. According to [5], this is a straight application of Lax-Milgram Theorem
on the fact that the bilinear form a(h,v) on (H1

0 (Ωm)×H1
0 (Ωc))× (H1

0 (Ωm)×
H1

0 (Ωc)) satisfies the continuity and coercivity conditions. ut

The domain Ωm is subdivided into convex quadrilateral triangulation Th =
{K}, where K is a quadrilateral element. Since the solution hm varies signif-
icantly near the pipe region Ωc = {y = kx + b, x ∈ (0, L)}, we consider to
use anisotropic meshes with a small mesh size near the conduit region and a
larger mesh size elsewhere. For example, we shall employ one subdivision way
with nonuniform grid along the changes of position of Ωc and uniform grid on
x-direction. The subdivision of Ωc is obtained by Th restriction on the inclined
conduit pipe. Therefore, the domain Ωm is occupied by anisotropic mesh and
the domain Ωc = {I} is covered with regular cells.

Suppose K is a convex quadrilateral element with four vertices p1(x1, y1),
p2(x2, y2), p3(x2, y3) and p4(x1, y4). Denote

hx,K =
1

2
max{|p1p2|, |p3p4|}, hy,K =

1

2
max{|p2p3|, |p4p1|}.

Define hK = max{hx,K , hy,K} and h = max
K∈Th

{hK}. Let ρK be the supre-

mum of the diameters of all circles contained in element K. It’s well known
that the classical finite element theory relies on the regular condition

hK
ρK
≤ C, for any an element K, (2.2)

where C is a positive constant independent of K.
At present we do not use the condition (2.2) on the anisotropic meshes Th.

We apply the nonconforming quasi-Wilson element based on the anisotropic
meshes Th to solve the first equation of CCPF model (1.1). For this purpose first

we present the quasi-Wilson element (K̂, P̂ ,
∑̂

) on the reference rectangular
K̂ defined on (x̂, ŷ)-plane with four vertices p̂1(−1,−1), p̂2(1,−1), p̂3(1, 1),
p̂4(−1, 1), and

P̂ = span{N̂i(x̂, ŷ), i = 1, · · · , 6},∑̂
=
{
v̂i, i = 1, · · · , 4;

∂2v̂

∂x̂2
(0, 0),

∂2v̂

∂ŷ2
(0, 0)

}
,

where

N̂1 =
(1− x̂)(1− ŷ)

4
, N̂2 =

(1 + x̂)(1− ŷ)

4
, N̂3 =

(1 + x̂)(1 + ŷ)

4
,

N̂4 =
(1−x̂)(1+ŷ)

4
, N̂5 =

1

2
(x̂2−1)− 5

12
(x̂4−1), N̂6 =

1

2
(ŷ2−1)− 5

12
(ŷ4−1),

and v̂i = v̂(p̂i), (i = 1, · · · , 4). Then, any v̂ ∈ P̂ can be rewritten as follows

v̂(x̂, ŷ) =

4∑
i=1

N̂i(x̂, ŷ)v̂i + N̂5(x̂, ŷ)
∂2v̂

∂x̂2
(0, 0) + N̂6(x̂, ŷ)

∂2v̂

∂ŷ2
(0, 0).

Math. Model. Anal., 21(4):431–449, 2016.
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Note that there are other choices for N̂5(x̂, ŷ) and N̂6(x̂, ŷ), for details see
[7, 8, 15,16].

Let FK be the affine mapping from K̂ to K as follows,{
x = x1(N̂1 + N̂4) + x2(N̂2 + N̂3),

y = y1N̂1 + y2N̂2 + y3N̂3 + y4N̂4.
(2.3)

Then,

∂x

∂x̂
=
x2 − x1

2
,

∂y

∂x̂
=
y3 − y4 + y2 − y1

4
+

(y1 − y2 + y3 − y4)ŷ

4
,

∂x

∂ŷ
= 0,

∂y

∂ŷ
=
y3 + y4 − y2 − y1

4
+

(y1 − y2 + y3 − y4)x̂

4
.

Denote JK be the Jacobi matrix of FK . According to simple calculations [8],
we obtain that

|∂x
∂x̂
| ≤ Chx,K , |∂y

∂x̂
| ≤ Chy,K |∂y

∂ŷ
| ≤ Chy,K , (2.4)

|∂x̂
∂x
| ≤ Ch−1x,K , |∂x̂

∂y
| ≤ Ch−1x,K |∂ŷ

∂y
| ≤ Ch−1y,K

Chx,Khy,K ≤ |JK | ≤ hx,Khy,K .

Based on the anisotropic subdivision Th, the finite element space Vh is
defined by

Vh = {vh ∈ L2(Ωm) : vh|K has the form of v̂(x̂, ŷ) ◦ F−1K , ∀K ∈ Th;

vh vanishing at the vertices on the boundary of Ωm}.

For the second equation of CCPF model (1.1), we use conforming finite
element approximation based on the partition of Ωc, where the finite element
space Wh ⊂ H1

0 (Ωc) consists of continuous piecewise linear polynomials. The
approximation scheme of (2.1) based on quasi-Wilson nonconforming element
combining with conforming finite element method is in the following form. Find
hh = (hmh , h

c
h) ∈ Vh ×Wh such that

ah(hh,vh) = (f ,vh), ∀vh = (vmh , v
c
h) ∈ Vh ×Wh, (2.5)

where the bilinear form

ah(hh,vh) =
∑
K∈Th

∫
K

K∇hmh ∇vmh dxdy +

∫
Ωc
D
∂hch
∂τ

∂vch
∂τ

ds

+ αex

∫
Ωc

({hmh }|Ωc − hch){vmh }|Ωcds− αex
∫
Ωc

({hmh }|Ωc − hch)vchds. (2.6)

Here {hmh }|Ωc =
hmh |Ωc++hmh |Ωc−

2 with

hmh |Ωc+ = lim
y→(kx+b)+

hmh (x, y), and hmh |Ωc− = lim
y→(kx+b)−

hmh (x, y).
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For any vh = (vmh , v
c
h) ∈ Vh ×Wh, we introduce a norm given by

‖vh‖1,h = ‖vmh ‖1,h + ‖vch‖1,Ωc = (
∑
K∈Th

|vmh |21,K)1/2 + ‖vch‖1,Ωc . (2.7)

Dividing an element vmh ∈ Vh into two parts, we have vmh = ṽmh +vmh , where

ṽmh is the conforming part defined by

ṽmh |K = ˜̂vmh ◦ F−1K = (

4∑
i=1

N̂i(x̂, ŷ)v̂mh (p̂i)) ◦ F−1K , ∀K ∈ Th.

And, vmh is the nonconforming part given by

vmh |K = v̂mh ◦ F
−1
K = (N̂5(x̂, ŷ)f1 + N̂6(x̂, ŷ)f2) ◦ F−1K , (2.8)

where f1 =
∂2v̂

∂x̂2
(0, 0), f2 =

∂2v̂

∂ŷ2
(0, 0).

By the definition (2.8), we see that
∂v̂mh
∂x̂

is odd function about x̂ and
∂v̂mh
∂ŷ

is odd function about ŷ. Combining with the bilinear properties of N̂i(i =
1, · · · , 4), we obtain the following properties.∫

K̂

∂ ˜̂vmh
∂x̂

∂v̂mh
∂x̂

dx̂dŷ =

∫
K̂

∂ ˜̂vmh
∂ŷ

∂v̂mh
∂ŷ

dx̂dŷ = 0.

Thus,

|v̂mh |21,K̂ = ‖
∂v̂mh
∂x̂
‖2
0,K̂

+ ‖
∂v̂mh
∂ŷ
‖2
0,K̂

+ ‖
∂ ˜̂vmh
∂x̂
‖2
0,K̂

+ ‖
∂ ˜̂vmh
∂ŷ
‖2
0,K̂

= |v̂mh |
2
1,K̂

+ |˜̂vmh |21,K̂ . (2.9)

Moreover, we have, by the definition of v̂mh in (2.8), that,

|v̂mh |
2
1,K̂

=
16(f21 + f22 )

65
and ‖v̂mh ‖

2
0,K̂

=
32(f21 + f22 )

2835
,

then,
‖v̂mh ‖0,K̂ ≤ |v̂mh |1,K̂ . (2.10)

Theorem 1. There exists a unique solution hh = (hmh , h
c
h) ∈ Vh×Wh satisfying

the approximation scheme (2.5).

Proof. Noticing Wh ⊂ H1
0 (Ωc), the assumptions on hydraulic conductivity

tensor K and the constant D, we get for any vh = (vmh , v
c
h) ∈ Vh ×Wh,

ah(vh,vh) =
∑
K∈Th

∫
K

K∇vmh ∇vmh dxdy +

∫
Ωc
D
∂vch
∂τ

∂vch
∂τ

ds

Math. Model. Anal., 21(4):431–449, 2016.
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+ αex

∫
Ωc

({vmh }|Ωc − vch)2ds ≥ C(
∑
K∈Th

|vmh |21,K + |vch|21,Ωc)

≥ C(
∑
K∈Th

|vmh |21,K + ‖vch‖21,Ωc) ≥ C1‖vh‖21,h.

Therefore, the approximation bilinear form (2.6) is uniformly Vh×Wh elliptic.
By (2.10) and technique of coordinate transformation (2.3)–(2.4),∑
e∈∂K

∫
e

|vmh |
2ds =

∫ 1

−1
|v̂mh (x̂,−1)|2 dx

dx̂
dx̂+

∫ 1

−1
|v̂mh (1, ŷ)|2 dy

dŷ
dŷ

+

∫ 1

−1
|v̂mh (x̂, 1)|2 dx

dx̂
dx̂+

∫ 1

−1
|v̂mh (−1, ŷ)|2 dy

dŷ
dŷ

≤ ChK‖v̂mh ‖
2
0,K̂
≤ ChK |v̂mh |

2
1,K̂

= ChK
∑
|β|=1

||D̂β v̂mh ||
2
0,K̂

≤ C
∑
|β|=1

||Dβvmh ||
2
0,K = C|vmh |

2
1,K .

Then, with the trace theorem and definition of ṽmh , we have∫
Ωc

({vmh (x, y)}|Ωc)2ds ≤
∑
K∈Th

∫
∂K

(vmh )2ds =
∑
K∈Th

∫
∂K

(ṽmh + vmh )2ds

≤ C(‖ṽmh ‖
2
1,Ωm +

∑
K∈Th

∫
∂K

|vmh |
2ds) ≤ C(|ṽmh |

2
1,Ωm +

∑
K∈Th

|vmh |
2
1,K)

≤ C
∑
K∈Th

(|ṽmh |
2
1,K + |vmh |

2
1,K) ≤ C

∑
K∈Th

|vmh |21,K . (2.11)

Therefore, for all uh = (umh , u
c
h) ∈ Vh ×Wh, it follows from (2.11) that

|ah(uh,vh)| = |
∑
K∈Th

∫
K

K∇umh ∇vmh dxdy +

∫
Ωc
D
∂uch
∂τ

∂vch
∂τ

ds

+αex

∫
Ωc

({umh }|Ωc − uch)({vmh }|Ωc − vch)ds|

≤ C(
∑
K∈Th

|umh |1,K |vmh |1,K + ‖uch‖1,Ωc‖vch‖1,Ωc

+
∑
K∈Th

|umh |1,K‖vch‖1,Ωc + ‖uch‖1,Ωc
∑
K∈Th

|vmh |1,K)

≤ C(
∑
K∈Th

|umh |1,K + ‖uch‖1,Ωc)(
∑
K∈Th

|vmh |1,K + ‖vch‖1,Ωc)

= C‖uh‖1,h‖vh‖1,h.

By the Lax-Milgram theorem, we know (2.5) exists a unique solution hh.
ut
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3 Error estimates

In this section, we shall present the optimal error estimates in L2 norm and
H1 norm for the approximation to the CCPF model.

Firstly, we introduce some interpolation operators of quasi-Wilson noncon-
forming element on the domain Ωm as follows. On the reference element,
denote the bilinear interpolation operator Π̂m

K : H2(K̂)→ P2(K̂) by

Π̂m
K v̂

m =

4∑
i=1

N̂i(x̂, ŷ)v̂mi . (3.1)

Then, it follows from Lemma 3 in [1] and Theorem 2.2 in [8] that the given in-
terpolation operator (3.1) satisfies the following estimate without the regularity
assumption (2.2)

‖D̂α(v̂m − Π̂m
K v̂

m)‖0,K̂ ≤ C(K̂)|D̂αv̂m|1,K̂ , (3.2)

where α is a multi-index and |α| = 1.
And on the physical element, the interpolation operators are defined as

Πm
K : H2(K)→ P2(K) with Πm

K v
m = (Π̂m

K v̂
m) ◦ F−1K .

Then define
Πm : H2(Ωm)→ Vh with Πm|K = Πm

K .

Due to the definition (2.7) we have that

‖vm −Πmvm‖1,h =

( ∑
K∈Th

|vm −Πm
K v

m|21,K

)1/2

=

( ∑
K∈Th

∑
|α|=1

‖Dα(vm −Πm
K v

m)‖20,K
)1/2

,

from the property (3.2),

‖vm−Πmvm‖1,h ≤C
( ∑
K∈Th

∑
|α|=1

h−2αK ‖D̂α(v̂m−Π̂m
K v̂

m)‖2
0,K̂

(hx,Khy,K)

)1/2

≤ C
( ∑
K∈Th

∑
|α|=1

h−2αK |D̂αv̂m|2
1,K̂

(hx,Khy,K)

)1/2

≤ C
( ∑
K∈Th

∑
|α|=1

h−2αK

∑
|β|=1

‖D̂α+β v̂m‖2
0,K̂

(hx,Khy,K)

)1/2

≤ C
( ∑
K∈Th

∑
|α|=1

∑
|β|=1

h2β
K ‖D

α+βvm‖20,K
)1/2

≤ C
∑
K∈Th

∑
|α|=1

hαK |Dαvm|1,K , (3.3)

Math. Model. Anal., 21(4):431–449, 2016.
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where hαK = hα1

x,Kh
α2

y,K with α = (α1, α2).
For the pipe domain Ωc, the piecewise linear interpolation operator Πc :

H2(Ωc)→Wh has the property

‖vc −Πcvc‖1,Ωc ≤ Chx,K‖vc‖2,Ωc , (3.4)

where hx,K is maximum mesh step of the subdivision of pipe region obtained
by Th restriction on Ωc.

Thus, a valuable lemma is given as basis of error derivation.

Lemma 2. For any wmh ∈ Vh, wmh = wmh +w̃mh , where wmh is the nonconforming

part and w̃mh is the conforming part, there exists a positive constant C such that

‖∇wmh ‖0,K ≤ C|w
m
h |1,K , ‖wmh ‖0,K ≤ ChK |w

m
h |1,K .

Proof. From the definition (2.7) and the property of affine transformation

‖∇wmh ‖20,K = |wmh |21,K ≤ Chx,Khy,K
∑
|β|=1

h−2βK ‖D̂βŵmh ‖
2
0,K̂

≤ Chx,Khy,K
∑
|β|=1

h−2βK ‖D̂βŵmh ‖20,K̂

≤ C
∑
|β|=1

‖Dβwmh ‖20,K ≤ C|wmh |21,K .

(3.5)

Using (2.9) and (2.10), and with the same techniques as (3.5), we have

‖wmh ‖20,K ≤ Chx,Khy,K‖ŵmh ‖20,K̂ ≤ Chx,Khy,K |ŵ
m
h |21,K̂

≤ Chx,Khy,K |ŵmh |21,K̂ ≤ Ch
2
K |wmh |21,K .

ut

Lemma 3. Assume h = (hm, hc) and hh = (hmh , h
c
h) are defined by (2.1) and

(2.5), respectively. Then, we have the following error estimate

‖h− hh‖1,h ≤ C( inf
vh=(vmh ,v

c
h)∈Vh×Wh

‖h− vh‖1,h

+ sup
wh=(wmh ,w

c
h)∈Vh×Wh\{0}

|ah(h,wh)− (f ,wh)|
‖wh‖1,h

). (3.6)

Proof. Since

‖h− hh‖1,h ≤ ‖h− vh‖1,h + ‖vh − hh‖1,h, ∀vh = (vmh , v
c
h) ∈ Vh. (3.7)

Then, we need to estimate the right hand side of (3.7). In view of the continuity,
coercivity of ah(·, ·) in Theorem 1 and definition of (2.5), we have

C1‖vh − hh‖21,h ≤ ah(vh − hh,vh − hh)

≤ ah(vh − h,vh − hh) + ah(h− hh,vh − hh)

≤ C2‖h−vh‖1,h‖vh−hh‖1,h+ah(h,vh−hh)−(f ,vh−hh).



Anisotropic Quasi-Wilson Element with Conforming Finite Element 441

If vh 6= hh, then

‖vh − hh‖1,h ≤ C
(
‖h− vh‖1,h +

|ah(h,vh − hh)− (f ,vh − hh)|
‖vh − hh‖1,h

)
≤ C

(
‖h− vh‖1,h + sup

wh∈(Vh×Wh)\{0}

|ah(h,wh)− (f ,wh)|
‖wh‖1,h

)
. (3.8)

Furthermore, because wh = (wmh , w
c
h) = (wmh + w̃mh , w

c
h) and w̃mh , w

c
h are con-

forming parts, then

ah(h,wh)− (f ,wh) =
∑
K∈Th

∫
K

K∇hm∇wmh dxdy

+ αex

∫
Ωc

({hm}|Ωc − hc){wmh }|Ωcds−
∫
K

fmwmh dxdy. (3.9)

In conclusion, the error estimate (3.6) is obtained by combining (3.8), (3.9) and
(3.7). ut

Denote the whole domain Ωm∪Ωc by Ω and ‖v‖0,Ω = ‖vm‖0,Ωm+‖vc‖0,Ωc .
According to Cao et al. [5], in the case of homogeneous isotropic matrix, one
can easily check via separation of variable that we have higher order piecewise
regularity in the sense that hm|Ωm∩{y>kx+b} ∈ H2(Ωm ∩ {y > kx + b}) and
hm|Ωm∩{y<kx+b} ∈ H2(Ωm ∩ {y < kx + b}). Then, we derive the following
convergence theorem.

Theorem 2. Assume h = (hm, hc) and hh = (hmh , h
c
h) defined by (2.1) and

(2.5), respectively. We get

‖h− hh‖1,h ≤ C
( ∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K

+ h(‖hc‖2,Ωc + ‖f c‖0,Ωc + ‖fm‖0,Ωm)

)
, (3.10)

‖h− hh‖0,Ω ≤ Ch
( ∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K

+ h(‖hc‖2,Ωc + ‖f c‖0,Ωc + ‖fm‖0,Ωm)

)
. (3.11)

Proof. By Lemma 3, we need to estimate the right hand of (3.6). The first
term on the right hand side, which is interpolation error, can be obtained from
the interpolation properties (3.3) and (3.4),

inf
vh∈Vh×Wh

‖h− vh‖1,h ≤ ‖h−Πvh‖1,h

≤ ‖hm −Πmhm‖1,h + ‖hc −Πchc‖1,Ωc

≤ C
( ∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K + h‖hc‖2,Ωc
)
, (3.12)
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where Π = (Πm, Πc) and C is independent of hK/ρK .
From the definition (2.8) and affine transformation (2.3)–(2.4), we have∫

K

∇vmh dxdy =

∫
K̂

∇v̂mh |JK |dx̂dŷ = 0. (3.13)

Hence, for the second term on the right hand side, we can obtain based on
Lemma 3 and Hölder inequality that

|ah(h,wh)− (f ,wh)| =
∣∣∣ ∑
K∈Th

∫
K

K∇hm∇wmh dxdy

+ αex

∫
Ωc

(hm|Ωc − hc){wmh }|Ωcds−
∫
K

fmwmh dxdy
∣∣∣

≤ C
(∣∣∣ ∑

K∈Th

∫
K

K(∇hm −M(∇hm))∇wmh dxdy
∣∣∣

+
∣∣∣ ∫
Ωc

(hm|Ωc − hc){wmh }|Ωcds
∣∣∣+
∣∣∣ ∫
K

fmwmh dxdy
∣∣∣),

where M(∇ϕm) =
1

meas(K)

∫
K

∇ϕmdxdy.

Then, from the trace theorem and (2.11),

|ah(h,wh)− (f ,wh)| ≤ C(
∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K + h(‖hc‖2,Ωc

+ ‖f c‖0,Ωc + ‖fm‖0,Ωm))|wmh |1,K
≤ C(

∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K + h(‖hc‖2,Ωc

+ ‖f c‖0,Ωc + ‖fm‖0,Ωm))|wh|1,K . (3.14)

Therefore, (3.10) is established from (3.12) and (3.14).
In order to derive the errors in L2 norm, the adjoint problem is considered

for a duality argument. Let u = (um, uc) ∈ L2(Ωm) × L2(Ωc) and Ψ =
(ϕm, ϕc) ∈ H1

0 (Ωm)×H1
0 (Ωc) satisfy{

−∇ · (K∇ϕm) = −αex(ϕm − ϕc)δΩc + um, in Ωm,

− ∂
∂τ (D ∂ϕc

∂τ ) = αex(ϕm|Ωc − ϕc) + uc, in Ωc,
(3.15)

with the regularity [5]

‖ϕm‖2,Ωm∩{y<kx+b} + ‖ϕm‖2,Ωm∩{y>kx+b} + ‖hc‖2,Ωc
≤ C(‖um‖0,Ωm + ‖uc‖0,Ωc).

Since

‖h− hh‖0,Ω = sup
u∈L2(Ω)

(u,h− hh)

‖u‖0,Ω
, (3.16)
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we estimate (u,h− hh).

By Green’s formula and noticing that hm, h̃mh ∈ C0(Ωm),

(u,h− hh) = −
∑
K∈Th

∫
K

∇ · (K∇ϕm)(hm − hmh )dxdy

+

∫
Ωc
D
∂ϕc

∂τ

∂(hc − hch)

∂τ
ds+ αex

∫
Ωc

(ϕm|Ωc − ϕc)(hm|Ωc − {hmh }|Ωc)ds

− αex
∫
Ωc

(ϕm|Ωc − ϕc)(hc − hch)ds

=
∑
K∈Th

∫
K

K∇ϕm∇(hm − hmh )dxdy +

∫
Ωc
D
∂ϕc

∂τ

∂(hc − hch)

∂τ
ds

+ αex

∫
Ωc

(ϕm|Ωc − ϕc)(hm|Ωc − {hmh }|Ωc)ds

− αex
∫
Ωc

(ϕm|Ωc − ϕc)(hc − hch)ds−
∑
K∈Th

∫
∂K

K
∂ϕm

∂n
(hm − hmh )ds

= ah(Ψ,h− hh)−
∑
K∈Th

∫
∂K

K
∂ϕm

∂n
(hm − hmh )ds. (3.17)

Then, we need to estimate the following two terms.
Due to the properties (3.3), (3.4), the continuity of interpolation operators

Πm and Πc and the elliptic regularity of this problem (3.15), we know

|ah(Ψ,h− hh)| ≤ C‖Ψ−ΠΨ‖1,h‖h− hh‖1,h
≤ Ch(‖ϕm‖2,Ωm∩{y<kx+b} + ‖ϕm‖2,Ωm∩{y>kx+b} + ‖ϕc‖2,Ωc)‖h−hh‖1,h
≤ Ch‖u‖0,Ω(

∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K + h‖hc‖2,Ωc). (3.18)

Assume φmh = hmh − Πmhm, then φ̃mh = h̃mh − Πmhm and φmh = hmh . We
obtain from Lemma 2,∣∣∣ ∑
K∈Th

∫
∂K

K
∂ϕm

∂n
(hm − hmh )ds

∣∣∣ =
∑
K∈Th

∣∣∣ ∫
K

∇ · (K∇ϕm)hmh dxdy

−
∫
K

K∇ϕm∇hmh dxdy
∣∣∣ ≤ C ∑

K∈Th

(
‖ϕm‖2,Ωm∩{y<kx+b}

+ ‖ϕm‖2,Ωm∩{y>kx+b}
)
‖hmh ‖0,K+C

∑
K∈Th

∣∣∣ ∫
K

(∇ϕm−M(∇ϕm))∇hmh dxdy
∣∣∣,

then,

|
∑
K∈Th

∫
∂K

K
∂ϕm

∂n
(hm − hmh )ds|

≤ Ch(‖ϕm‖2,Ωm∩{y<kx+b} + ‖ϕm‖2,Ωm∩{y>kx+b})‖φmh ‖1,h
≤ Ch(‖ϕm‖2,Ωm∩{y<kx+b} + ‖ϕm‖2,Ωm∩{y>kx+b})
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(‖hm − hmh ‖1,h + ‖hm −Πmhmh ‖1,h)

≤ Ch‖um‖0,Ωm(
∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K + h‖hc‖2,Ωc)

≤ Ch‖u‖0,Ω(
∑
K∈Th

∑
|α|=1

hαK |Dαhm|1,K + h‖hc‖2,Ωc). (3.19)

Consequently, (3.11) follows from (3.16)–(3.19). ut

4 Numerical examples

In this section, we give some numerical examples using the quasi-Wilson el-
ement for Darcy model in porous media and conforming finite element for
pipe-flow model in the pipe cube region. In order to verify the rates of conver-
gence, we carry out two examples using two different quadrilateral meshes in
two-dimensional domain, respectively. For the sake of simplicity, the domain
Ωm is defined as (0, 1) × (−0.5, 0.5) and the pipe Ωc as {y = x/4, x ∈ [0, 1]}.
Here, we take K = I and D = 1.

We define two different anisotropic meshes with m×n quadrilateral elements
for porous media Ωm. On mesh 1, based on two parts of Ωm dividing by Ωc,
we divide each edge along y-direction into equal segments. On mesh 2, when
x = 0, on y-direction, divide [−0.5, 0.5] into m segments with m + 1 points
{yi}, where

yi = −0.5 + 0.5sin(iπ/m), i = 0, 1, · · · ,m/2,
yi = 0.5− 0.5cos(iπ/m− π/2), i = m/2 + 1, · · · ,m.

When x = 1, on y-direction, divide [−0.5, 0.5] into m segments with m + 1
points {yj}, too, and

yj = −0.5 + (0.5 + 1/4)sin(jπ/m), j = 0, 1, · · · ,m/2,
yj = 0.5− 0.25cos(jπ/m− π/2), j = m/2 + 1, · · · ,m.

For all cases, along x-direction, we divide [0, 1] into n equal cells with n + 1
points, see Figure 3.

Example 1. The analytic solution is chosen as
hc = ( 3

√
17
2 + 1)sin(4πx), in Ωc,

hm = e3y−
3x
4 sin(4πx), in (0, 1)× (−1/2, 0] ∈ Ωm,

hm = e−3y+
3x
4 sin(4πx), in (0, 1)× [0, 1/2) ∈ Ωm,

with αex = 4 + sin(4πx).

Example 2. The analytic solution is chosen as hc = (
√

17/4 + 1− 0.25x)sin(2πx), in Ωc,
hm = (1− 0.25x)sin(2πx), in (0, 1)× (−1/2, 0] ∈ Ωm,
hm = (1− y)sin(2πx), in (0, 1)× [0, 1/2) ∈ Ωm,
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Figure 3. The anisotropic meshes with m = n = 32. Right: anisotropic mesh 1; left:
anisotropic mesh 2.

with αex = 2 + sin(2πx).
Let (Em1 , E

c
1) and (Em2 , E

c
2) denote the relative errors by applying the quasi-

Wilson nonconforming element to solve Darcy equation with the 1-D conform-
ing element to solve pipe-flow equation on anisotropic mesh 1 and mesh 2,
respectively. In reality different mesh sizes with different values of n = m are
used. The errors are listed in the following Figure 4 – Figure 7 and Table 1 –
Table 2.
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Figure 4. Errors of hm on mesh 1 in L2 norm and H1 norm. Right: errors in L2 norm;
left: errors in H1 norm.

From the above figures and Table 1 – Table 2, we can see the almost 2-nd
order convergence rate in L2 norm and the 1-st order convergence rate in H1

norm for hm and hc by quasi-Wilson element and conforming finite element
method, respectively, which are consistent with our theoretical results. More-
over, the optimal error estimates are independent of the value of {hKρK }, which
means that we can get the same order of errors rates whether the subdivisions
satisfy the regularity condition or not.

By comparison anisotropic mesh 1 with anisotropic mesh 2 the computa-
tional errors in L2 norm on the former mesh are better than on the latter
mesh, but the errors in H1 norm on the former mesh are worse than on the
latter mesh. Therefore, both anisotropic meshes have their advantages and
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Figure 5. Errors of hc on mesh 1 in L2 norm and H1 norm. Right: errors in L2 norm;
left: errors in H1 norm.

Table 1. Errors on anisotropic mesh 1.

n h ‖Em1 ‖0,Ωm ‖Em1 ‖1,h ‖Ec1‖0,Ωc ‖Ec1‖1,Ωc max {hK
ρK
}

Ex1 8 2.4519e-1 2.2059e-1 4.1561e-1 2.1273e-1 4.3524e-1 1.0078
16 1.2428e-1 5.8023e-2 2.4298e-1 5.5331e-2 2.2441e-1 2.0308
32 6.2563e-2 1.4692e-2 1.2613e-1 1.3969e-2 1.1307e-1 4.1780
64 3.1387e-2 3.6849e-3 6.3655e-2 3.5009e-3 5.6645e-2 5.1519
128 1.5720e-2 9.2196e-4 3.1901e-2 8.7577e-4 2.8336e-2 8.8957

rate 1.9958 0.9424 2.0007 0.9956

Ex2 8 2.4519e-1 5.5955e-2 2.4942e-1 5.5071e-2 2.2466e-1 1.0078
16 1.2428e-1 1.4136e-2 1.2988e-1 1.3898e-2 1.1319e-1 2.0308
32 6.2563e-2 3.5427e-3 6.5596e-2 3.4827e-3 5.6706e-2 4.1780
64 3.1387e-2 8.8583e-4 3.2880e-2 8.7116e-4 2.8367e-2 5.1519
128 1.5720e-2 2.2106e-4 1.6450e-2 2.1781e-4 1.4185e-2 8.8957

rate 2.0141 0.9914 2.0137 1.0056

Table 2. Errors on anisotropic mesh 2.

n h ‖Em1 ‖0,Ωm ‖Em1 ‖1,h ‖Ec1‖0,Ωc ‖Ec1‖1,Ωc max {hK
ρK
}

Ex1 8 3.1305e-1 2.1753e-1 4.2671e-1 2.1273e-1 4.3524e-1 6.7707
16 1.5911e-1 6.2777e-2 2.1887e-1 5.5330e-2 2.2441e-1 13.4113
32 7.9932e-2 1.6334e-2 1.1013e-1 1.3969e-2 1.1307e-1 26.7580
64 4.0088e-2 4.1250e-3 5.5150e-2 3.5009e-3 5.6645e-2 53.4838
128 2.0070e-2 1.0339e-3 2.7586e-2 8.7576e-4 2.8336e-2 106.9495

rate 1.9528 0.9976 2.0000 0.9953

Ex2 8 3.1305e-1 6.1155e-2 2.2364e-1 5.5071e-2 2.2466e-1 6.7707
16 1.5911e-1 1.5947e-2 1.1266e-1 1.3898e-2 1.1319e-1 13.4113
32 7.9932e-2 4.0294e-3 5.6436e-2 3.4827e-3 5.6706e-2 26.7580
64 4.0088e-2 1.0097e-3 2.8231e-2 8.7116e-4 2.8367e-2 53.4838
128 2.0070e-2 2.5222e-4 1.4117e-2 2.1781e-4 1.4185e-2 106.9495

rate 1.9994 1.0053 2.0130 1.0052

disadvantages.
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Figure 6. Errors of hm on mesh 2 in L2 norm and H1 norm. Right: errors in L2 norm;
left: errors in H1 norm.
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Figure 7. Errors of hc on mesh 2 in L2 norm and H1 norm. Right: errors in L2 norm;
left: errors in H1 norm.

In order to report the features of the approach introduced in this paper,
we present the following Figure 8 – Figure 9 of exact solution h = (hm, hc)
and numerical solution hh = (hmh , h

c
h) based on the space with the mesh size

h = 2−7, respectively.
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Figure 8. Figures of solution of Darcy model in the porous matrix and pipe-flow model
in the conduit region for Example 1. Left: Exact solution; middle: Numerical solution on

anisotropic mesh 1; right: Numerical solution on anisotropic mesh 2.

From the figures of exact solution and those of computed solution, it is
clear that the approach introduced in this paper is effective to approximate the
coupled continuum pipe-flow/Darcy model.

Conclusions

In this paper, we have presented a numerical method for solving the coupled
continuum pipe-flow/Darcy (CCPF) model that is suitable for the study of
groundwater flow in Karst aquifers. The two-dimensional and steady-state case
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Figure 9. Figures of solution of Darcy model in the porous matrix and pipe-flow model
in the conduit region for Example 2. Left: Exact solution; middle: Numerical solution on

anisotropic mesh 1; right: Numerical solution on anisotropic mesh 2.

in which the conduit is embedded in the porous media domain at a large angle
of inclination is examined, so that one cannot use a traditional regular mesh
and finite element method for the Darcy region. Instead, we have employed
an anisotropic mesh without a regularity condition and use nonconforming,
quasi-Wilson elements to solve the Darcy problem, along with conforming finite
element method for the conduit flow problem. On basis of this paper, our future
work is to analyze and test the cases of curved pipes and intersect pipes.
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[20] X. Wu, P. Kügler and S. Lu. Identification of the exchange coefficient from in-
direct data for a coupled continuum pipe-flow model. Chinese Annals of Math-
ematics, Series B, 35(3):483–500, 2014. http://dx.doi.org/10.1007/s11401-014-
0830-3.

Math. Model. Anal., 21(4):431–449, 2016.

http://dx.doi.org/10.1016/j.jhydrol.2011.11.001
http://dx.doi.org/10.1093/imanum/24.1.77
http://dx.doi.org/10.1007/s11401-014-0837-9
http://dx.doi.org/10.1111/j.1745-6584.1999.tb00953.x
http://dx.doi.org/10.1029/2001WR001206
http://dx.doi.org/10.1016/j.camwa.2014.05.009
http://dx.doi.org/10.1002/mma.3341
http://dx.doi.org/10.1137/S1064827503429363
http://dx.doi.org/10.1007/s002110050312
http://dx.doi.org/10.3934/dcdsb.2010.13.489
http://dx.doi.org/10.1007/s11401-014-0830-3
http://dx.doi.org/10.1007/s11401-014-0830-3



