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Abstract. The present study is concerned with the numerical solution, using finite
difference method on a piecewise uniform mesh (Shishkin type mesh) for a singularly
perturbed semilinear boundary value problem with integral boundary condition. First
we discuss the nature of the continuous solution of singularly perturbed differential
problem before presenting method for its numerical solution. The numerical method
is constructed on piecewise uniform Shishkin type mesh. We show that the method
is first-order convergent in the discrete maximum norm, independently of singular
perturbation parameter except for a logarithmic factor. We give effective iterative al-
gorithm for solving the nonlinear difference problem. Numerical results which support
the given estimates are presented.
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1 Introduction

Differential equations to a class in which the highest derivative is multiplied
by a small parameter are called singularly perturbed differential equations.
The solutions of such equations typically contain layers which occur in narrow
layer regions of the domain. This kind of problems arise very frequently in the
fields of applied mathematics and physics which include fluid dynamics, quan-
tum mechanics, elasticity, chemical reactions, gas porous electrodes theory, the
Navier-Stokes equations of fluid flow at high Reynolds number, oceanography,
meteorology, reaction-diffusion processes etc. It is well known that these prob-
lems depend on a small positive parameter ε in such a way that the solution
exhibits a multiscale character, i.e., there are thin transition layers where the
solutions varies very rapidly for small values of ε, while away from layers it
behaves regularly and varies slowly. Hence, the presence of small parameter
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in singularly perturbed problems presents severe difficulties that have to be
addressed to ensure accurate numerical solutions [5, 17,22,23,24,30].

It is well known that singularly perturbed problems cannot be solved nu-
merically by classical numerical methods with satisfactory results. Therefore
it is important to develop suitable numerical methods for solving these prob-
lems, whose accuracy does not depend on the value of parameter ε, that is,
methods that are convergent ε-uniformly. To solve these type of problems,
mainly there are three approaches namely, fitted finite difference methods,
finite element methods using special elements such as exponential elements,
and fitted mesh methods which use a priori refined or special piecewise uni-
form grids which condense in the boundary layers in a special manner. One
of the simplest ways to derive parameter-uniform methods consists of using
a class of special piecewise uniform meshes, such as Shishkin type meshes
(see [12, 13, 18, 19, 20] for the motivation for this type of mesh), which are
constructed a priori and depend on the parameter ε, the problem data, and
the number of corresponding mesh points. For the past two decades extensive
researches have been made on numerical methods for solving singularly per-
turbed problems, see [10,11,12,13,14,15,18,19,20,21,25,26,27,28,29] and the
references therein.

Differential equations with conditions which connect the values of the un-
known solution at the boundary with values in the interior are known as nonlo-
cal boundary value problems. Such problems arise in problems of semiconduc-
tors [15], in problems of hydromechanics [25], and some other physical phenom-
ena. The problems with integral nonlocal conditions can be met in studying
heat transfer problems [15, 25]. It have been studied extensively in the litera-
ture (see [10, 11, 14, 15, 21, 25, 27, 28, 29] and the references therein). Existence
and uniqueness of the solutions of such problems can be found in [1,4,6,16]. A
linear version of the problem (1.1)-(1.2) has been studied in [8], where a finite
difference scheme on an uniform mesh for solving singularly perturbed problem
with integral nonlocal condition has been presented. It is well known that the
difference schemes on a uniform mesh are not generally suitable to nonlinear
singularly perturbed problems as a special fine mesh is required in boundary
layer region and comparatively much coarser mesh elsewhere. Ideally, the mesh
should be adapted to the features of the exact solution using an adaptive grid
generation technique. This approach is now widely used for numerical solution
of differential equations with steep, continuous solutions. Some approaches
for the numerical solutions of three-point singularly perturbed boundary value
problems have been proposed in [3, 7, 9].

We consider the following singularly perturbed semilinear boundary value
problem with integral boundary condition:

Lu := ε2u′′(x) + εa(x)u′(x)− f(x, u (x)) = 0, 0 < x < `, (1.1)

u(0) = A,

L0u := u (`)−
∫ `1

`0

g (x)u (x) dx = B, 0 ≤ `0 < `1 ≤ `, (1.2)

Math. Model. Anal., 21(5):644–658, 2016.



646 M. Cakir

where 0 < ε << 1 is the perturbation parameter, A and B are given constants,
the functions a(x) > 0 and f(x, u) are sufficiently smooth on [0, `] and [0, `]×R,
respectively, and g (x) is a continuous function on [`0, `1] , moreover

0 < β∗ ≤
∂f

∂u
≤ β∗ <∞.

The solution u generally has boundary layers near x = 0 and x = `.
This paper is concerned with ε-uniform numerical methods for a singularly

perturbed semilinear boundary value problem with integral boundary condi-
tion. The difference schemes are constructed by the method of integral iden-
tities with the use of exponential basis functions and interpolating quadrature
rules with the weight and remainder terms in integral form [2, 3, 7, 8, 9]. This
method of approximation has the advantage that the schemes can be effectively
applied also in the case when the original problem has a solution with certain
singularities (presence of boundary layer, nonsmooth solutions, etc.). The plan
of the paper is as follows: Some important properties of the exact solution of
singularly perturbed semilinear nonlocal boundary value problem (1.1)–(1.2)
are presented in Section 2. Finite difference schemes on a piecewise uniform
Shishkin type mesh for problem (1.1)–(1.2) are described in Section 3. Conver-
gence properties of the scheme are analyzed in Section 4. Uniform convergence
is proved in the discrete maximum norm.The iterative algorithm for solving the
discrete problem is formulated, and numerical results are given in Section 5.
The paper ends in Section 6 with conclusion.

Notations: Throughout the paper, C will denote a generic positive con-
stant independent of ε and the mesh parameter. For any continuous func-
tion g (x) defined on the corresponding interval, we use the maximum norm
‖g‖∞ = max

[0,`]
|g (x)|.

2 Some properties of the continuous problem

Here we give useful asymptotic estimates of the exact solution of the problem
(1.1)–(1.2) that are needed in later sections.

Lemma 1. Let u(x) be the solution of the problem(1.1)–(1.2), a ∈ C1[0, l] and

γ =
∫ `1
`0
|g (x)| dx < 1. Then the inequalities

‖u‖∞ 6 C0, (2.1)

where C0 = (1− γ)
−1 (|A|+ |B|+ β−1 ‖F‖∞

)
, F (x) = f (x, 0),

‖u‖∞ = max
[0,`]
|u (x)| and

∣∣∣u′(x)
∣∣∣ 6 C

{
1 +

1

ε

(
exp(−c0x

ε
) + exp(−c1 (`− x)

ε
)

)}
, 0 6 x 6 ` (2.2)

hold for the solution u (x) provided that ∂f/∂u−εa′ (x) ≥ β∗ and |∂f/∂x| 6 C
for x∈ [0, `] and |u| 6 C0, where

c0 =
1

2

(√
a2 (0) + 4β∗ + a (0)

)
, c1 =

1

2

(√
a2 (`) + 4β∗ − a (`)

)
.
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Proof. We rewrite the problem (1.1)–(1.2) in the form

Lu := ε2u′′(x) + εa(x)u′(x)− b (x)u (x) = F (x) , 0 < x < `, (2.3)

u(0) = A, L0u := u (`)−
∫ `1

`0

g (x)u (x) dx = B, (2.4)

where

b (x) =
∂f

∂u
(x, ξu (x)) , 0 < ξ < 1.

Here we use the maximum principle: Let L and L0 be the differential op-
erators in (2.3)–(2.4) and v ∈ C2 [0, `] . If v (0) ≥ 0, L0v ≥ 0 and Lv ≤ 0 for all
0 < x < `, then v (x) ≥ 0 for all 0 ≤ x ≤ `. Then from (2.3)–(2.4), using the
maximum principle, we have the inequality

|u (x)| ≤ |A|+ |u (`)|+ β−1 ‖F‖∞ , x ∈ [0, `] . (2.5)

Next, from boundary condition (2.4), we have

|u (`)| ≤ |B|+
∫ `1

`0

|g (x)| |u (x)| dx. (2.6)

By setting (2.6) in inequality (2.5), we obtain

|u (x)| ≤ |A|+ |B|+
∫ `1

`0

|g (x)| |u (x)| dx+ β−1 ‖F‖∞

≤ |A|+ |B|+ max
[`0,`1]

|u (x)|
∫ `1

`0

|g (x)| dx+ β−1 ‖F‖∞

≤ |A|+ |B|+ ‖u‖∞
∫ `1

`0

|g (x)| dx+ β−1 ‖F‖∞ ,

which proves (2.1). The proof of (2.2) is almost identical to that of [9]. ut

3 Discretization and layer - adapted mesh

In this section, we discretize problem (1.1)–(1.2) using a finite difference method
on a piecewise uniform mesh of Shishkin type. The Shishkin mesh appropriate
to this problem is introduced as follows.

3.1 Construction of the mesh

The approximation to the solution u of problem (1.1)–(1.2) will be computed
on a Shishkin mesh. This mesh is a piecewise uniform mesh, which is con-
densed in the boundary layer regions at x = 0 and x = `. For a divisible by
4 positive integer N , we divide the interval [0, `] into the three subintervals
[0, σ1], [σ1, `− σ2] and [`− σ2, `], where transition points σ1 and σ2 are chosen
such that

σ1= min
{
`/4, c−1

0 ε lnN
}
, σ2 = min

{
`/4, c−1

1 ε lnN
}
,

Math. Model. Anal., 21(5):644–658, 2016.
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where c0 and c1 are given in Lemma 2.1 and N is the number of discretization
points.

We divide each of the subinterval [0, σ1] and [`− σ2, `] into N
4 equidistant

subinterval, while we divide the subinterval [σ1, `− σ2] into N
2 equidistant

subinterval. In practice, one usually has σi << ` (i = 1, 2) , so the mesh is
fine on [0, σ1], [`− σ2, `] and coarse on [σ1, `− σ2] . We introduce the following
notation for the three step-sizes:

h1 =
4σ1

N
, h2 =

2 (`− σ2 − σ1)

N
, h3 =

4σ2

N
,

h2 +
1

2
(h1 + h3) =

2`

N
, hk ≤ `N−1, k = 1, 3, `N−1 ≤ h2 ≤ 2`N−1.

We specify a set of mesh points ω̄N = {xi}Ni=0 ,

xi =

 ih1, for i = 0, 1, 2, ..., N/4;
σ1 + (i−N/4)h2, for i = N/4 + 1, ..., 3N/4;

`− σ2 + (i− 3N/4)h3, fori = 3N/4 + 1, ..., N.

3.2 Construction of the difference scheme

We introduce an arbitrary nonuniform mesh on the interval [0, `]

ωN = {0 < x1 < x2 < ... < xN−1 < `} , ω̄N = ωN ∪ {x0 = 0, xN = `} .

We set the step-size hi = xi − xi−1, i = 1, 2, ..., N . Before describing our
numerical method, we introduce some notations for the mesh functions. We
define the following finite difference for any mesh function vi = v(xi) given on
ω̄N :

vi = v(xi), vx̄,i =
vi − vi−1

hi
, vx,i =

vi+1 − vi
hi+1

, v0
x,i

=
vx,i + vx̄,i

2
,

vx̂,i =
vi+1 − vi

~i
, vx̄x̂,i =

vx,i − vx̄,i
~i

, ~i =
hi + hi+1

2
,

‖v‖∞ ≡ ‖v‖∞,ω̄N
:= max

06i6N
|vi| .

Our discretization for Eq. (1.1) will begin with the identity

χ−1
i ~−1

i

∫ xi+1

xi−1

Lu(x)ϕi(x)dx = 0, 1 6 i 6 N − 1 (3.1)

with the basis functions {ϕi(x)}N−1
i=1 having the from

ϕi(x) =


ϕ

(1)
i (x), xi−1 < x < xi,

ϕ
(2)
i (x), xi < x < xi+1,

0, otherwise,

where ϕ
(1)
i (x) and ϕ

(2)
i (x), respectively, are the solutions of the following prob-

lems:

εϕ
′′
− aiϕ

′
= 0, xi−1 < x < xi,

ϕ (xi−1) = 0, ϕ (xi) = 1,
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εϕ
′′
− aiϕ

′
= 0, xi < x < xi+1,

ϕ (xi) = 1, ϕ (xi+1) = 0.

The functions ϕ
(1)
i (x) and ϕ

(2)
i (x) can be explicitly expressed as following:

ϕ
(1)
i (x) =

e
ai(x−xi−1)

ε − 1

e
aihi

ε − 1
, ϕ

(2)
i (x) =

1− e−
ai(xi+1−x)

ε

1− e−
aihi+1

ε

for ai 6= 0,

ϕ
(1)
i (x) =

x− xi−1

hi
, ϕ

(2)
i (x) =

xi+1 − x
hi+1

for ai = 0.

The coefficient χi in (3.1) is given by

χi = ~−1
i

xi+1∫
xi−1

ϕi(x)dx =

 ~−1
i

(
hi

1−e
aihi

ε

+ hi+1

1−e−
aihi+1

ε

)
, ai 6= 0,

1, ai = 0.

Rearranging (3.1) gives

− ε2χ−1
i ~−1

i

∫ xi+1

xi−1

ϕ
′

i(x)u
′
(x) dx+εaiχ

−1
i ~−1

i

∫ xi+1

xi−1

ϕi(x)u
′
(x) dx

−f (xi, ui) +Ri = 0, i = 1, 2, ..., N − 1 (3.2)

with

Ri = εχ−1
i ~−1

i

∫ xi+1

xi−1

[a (x)− a (xi)]ϕi(x)u
′
(x) dx

− χ−1
i ~−1

i

∫ xi+1

xi−1

dxϕi(x)

∫ xi+1

xi−1

d

dx
f(ξ, u (ξ) )K

∗
0,i (x, ξ) dξ, (3.3)

K∗0,i (x, ξ) = T0 (x− ξ)− T0 (xi − ξ) , i = 1, 2, ..., N − 1,

T0(λ) = 1, λ > 0, T0(λ) = 0, λ < 0.

Using the interpolating quadrature rules (2.1) and (2.2) from [2] with weight
functions ϕi(x) on subintervals (xi−1, xi+1) from (3.2), we obtain the following
precise relation:

− ε2χ−1
i ~−1

i

∫ xi+1

xi−1

ϕ
′

i(x)u
′
(x) dx+εaiχ

−1
i ~−1

i

∫ xi+1

xi−1

ϕi(x)u
′
(x) dx

= ε2
{
χ−1
i

(
1 + 0.5ε−1~iai (χ2,i − χ1,i)

)}
ux̄x̂,i + εaiu0

x,i
,

where

χ1,i = ~−1
i

xi∫
xi−1

ϕ
(1)
i (x)dx =

{
~−1
i

(
ε
ai

+ hi

1−eaihi/ε

)
, ai 6= 0,

~−1
i hi/2, ai = 0,

χ2,i = ~−1
i

xi+1∫
xi

ϕ
(2)
i (x)dx =

{
~−1
i

(
hi+1

1−eaihi+1/ε − ε
ai

)
, ai 6= 0,

~−1
i hi+1/2, ai = 0.

Math. Model. Anal., 21(5):644–658, 2016.
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It then follows from this that

lui +Ri := εθiux̄x̂,i + εaiu0
x,i
−f (xi, ui) +Ri = 0, 1 6 i 6 N − 1, (3.4)

where
θi = χ−1

i

(
1 + 0.5ε−1~iai (χ2,i − χ1,i)

)
. (3.5)

After a simple calculation of (3.5), we obtain

θi =


ai~i

2ε

hi+1

(
e
aihi

ε −1

)
+hi

(
1−e−

aihi+1
ε

)
hi+1

(
e
aihi

ε −1

)
−hi

(
1−e−

aihi+1
ε

)
 , ai 6= 0,

1, ai = 0.

(3.6)

Now, it remains to define an approximation for the boundary condition (1.2).
Let xN0

and xN1
be the mesh points nearest to `0 and `1, respectively. Here

we start with relations∫ `1

`0

g (x)u (x) dx =

∫ xN0

`0

g (x)u (x) dx+

∫ xN1

xN0

g (x)u (x) dx

+

∫ `1

xN1

g (x)u (x) dx

∫ xN1

xN0

g (x)u (x) dx =

N1∑
i=N0

(∫ xi

xi−1

g (x) dx

)
u (xi) + r̄i

= S (u) + r̄i,

where

S (u) =

N1∑
i=N0

(∫ xi

xi−1

g (x) dx

)
u (xi) , (3.7)

r̄i =

N1∑
i=N0

∫ xi

xi−1

dxg (x)

∫ xi

xi−1

u′ (ξ) (T0 (x− ξ)− 1) dξ,

T0(λ) = 1, λ > 0; T0(λ) = 0, λ < 0.

Consequently
l0u := u (`)− S (u) = B + r, (3.8)

where

r =

∫ xN0

`0

g (x)u (x) dx+

∫ `1

xN1

g (x)u (x) dx+ r̄i. (3.9)

Neglecting Ri and r in (3.4) and (3.8), we propose the following difference
scheme for approximating the problem (1.1)–(1.2):

lui := ε2θiyx̄x̂,i + εaiy0
x,i
−f (xi, yi) = 0, 1 6 i 6 N − 1, (3.10)

y0 = A, l0y := y (`)− S (y) = B, (3.11)

where θi and S (y) are given by (3.6) and (3.7).
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4 Analysis of the method

To investigate the convergence of this method, note that the error function
z = y − u, x ∈ ω̄N is the solution of the discrete problem

ε2θizx̄x̂,i + εaiz0
x,i
− [f (xi, yi)− f (xi, ui)] = Ri, 1 < i < N, (4.1)

z0 = 0, zN − S (z) = r, (4.2)

where Ri and r are defined by (3.3) and (3.9), respectively.

Lemma 2. Let zi be the solution (4.1)–(4.2). Then the estimate

‖z‖∞,ω̄N
≤ C

(
‖R‖∞,ωN

+ |r|
)

(4.3)

holds.

Proof. The problem (4.1)–(4.2) can be rewritten as

lzi := ε2θizx̄x̂,i + εaiz0
x,i
−bizi= Ri, 1 < i < N, (4.4)

z0 = 0, l0z := zN − S (z) = r, (4.5)

where bi = ∂f
∂u (xi, ỹi) and ỹi is intermediate point called for by the mean value

theorem.
Here we use the discrete maximum principle: Let l and l0 be the finite-

difference operators in (4.4)–(4.5). If v is any mesh function defined on ω̄N
such that v0 ≥ 0, l0v ≥ 0 and lvi ≤ 0 for all i = 1, 2, ..., N − 1, then vi ≥ 0 for
all i = 0, 1, ..., N.

According to the discrete maximum principle, we have the inequality

‖z‖∞,ω̄N
≤ β−1 ‖R‖∞,ωN

+ |zN | . (4.6)

Next, from boundary condition (4.5), we get

|zN | ≤ |r|+
N1∑
i=N0

(∫ xi

xi−1

|g (x)| dx

)
|zi| . (4.7)

By setting the inequality (4.7) in (4.6), we obtain

‖z‖∞,ω̄N
≤ β−1 ‖R‖∞,ωN

+ |r|+
N1∑
i=N0

(∫ xi

xi−1

|g (x)| dx

)
|zi|

≤ β−1 ‖R‖∞,ωN
+ |r|+ max

N0≤i≤N1

|zi|
N1∑
i=N0

∫ xi

xi−1

|g (x)| dx

≤ β−1 ‖R‖∞,ωN
+ |r|+ ‖z‖∞,ω̄N

∫ `1

`0

|g (x)| dx. (4.8)

From (4.8), we have

‖z‖∞,ω̄N
≤ (1− γ)

−1
(
‖R‖∞,ωN

+ |r|
)
.

Thus, since γ < 1, the estimate (4.3) follows. ut

Math. Model. Anal., 21(5):644–658, 2016.
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Lemma 3. Under the assumptions of Section 1 and Lemma 1, the following
estimates hold for the error functions Ri and r :

‖R‖∞,ωN
≤ CN−1 lnN, |r| ≤ CN−1 lnN, (4.9)

where Ri and r are defined by (3.3) and (3.9), respectively.

Proof. From the explicit expression (3.3) for Ri, on an arbitrary mesh we get

|Ri| ≤ C

{
hi + hi+1 +

∫ xi+1

xi−1

(1 + |u′ (ξ)|) dξ

}
, 1 ≤ i ≤ N.

This inequality, together with (2.2), enables us to write

|Ri| ≤ C

{
hi+hi+1+

1

ε

∫ xi+1

xi−1

(
exp(−c0x

ε
) + exp(−c1 (`−x)

ε

)
dx

}
. (4.10)

In the first case we consider that c−1
0 ε lnN ≥ `

4 and c−1
1 ε lnN ≥ `

4 , and the
mesh is uniform with h1 = h2 = h3 = h = `N−1 for 1 ≤ i ≤ N. Therefore,
from (4.10) we obtain

|Ri| ≤ C
{
N−1 + ε−1h

}
≤ C

{
N−1 + 4c−1

0 N−1 lnN
}

≤ CN−1 lnN, 1 ≤ i ≤ N.

In the second case we consider that c−1
0 ε lnN < `

4 and c−1
1 ε lnN < `

4 , and the

mesh is piecewise uniform with the mesh spacing 4σ1

N and 4σ2

N in the subin-

tervals [0, σ1] and[`− σ2, `] , respectively, and 2(`−σ1−σ2)
N in the subinterval

[σ1, `− σ2] . We estimate Ri on the subintervals [0, σ1] , [σ1, `− σ2] , and
[`− σ2, `] separately. In the layer region [0, σ1] the inequality (4.10) reduces
to

|Ri| ≤ C
(
1 + ε−1

)
h1 ≤ C

(
1 + ε−1

) 4c−1
0 ε lnN

N
, 1 ≤ i ≤ N

4
− 1.

Hence

|Ri| ≤ CN−1 lnN, 1 ≤ i ≤ N

4
− 1.

The same estimate is obtained in the layer region [`− σ2, `] in a similar manner.
We now have to estimate Ri for N

4 + 1 ≤ i ≤ 3N
4 − 1. In this case we are able

to rewrite (4.10) as

|Ri| ≤ C
{
h2 + c−1

0 (exp (−c0xi−1/ε)− exp (−c0xi+1/ε))

+c−1
1 (exp (−c1 (`− xi+1)/ε)− exp (−c1 (`− xi−1)/ε))

}
, (4.11)

N/4 + 1 ≤ i ≤ 3N/4− 1.

Since xi = c−1
0 ε lnN + (i−N/4)h2 it follows that

exp (−c0xi−1/ε)− exp (−c0xi+1/ε)

=
1

N
exp

(
−c0

(
i− 1− N

4

)
h2/ε

)
(1− exp (−2c0h2/ε)) < N−1.
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Also, if we rewrite the mesh points in the form xi = ` − σ2 −
(

3N
4 − i

)
h2,

evidently

exp (−c1 (`− xi+1)/ε)− exp (−c1 (`− xi−1)/ε)

=
1

N
exp

(
−c1

(
3N

4
− i− 1

)
h2/ε

)
(1− exp (−2c1h2/ε)) < N−1.

The last two inequalities together with (4.11) give the bound

|Ri| ≤ CN−1.

Finally, we estimate Ri for the mesh points xN
4

and x 3N
4
. For the mesh point

xN
4
, inequality (4.10) reduces to

∣∣∣RN
4

∣∣∣ ≤ C{(1 + ε−1
)
h1 + h2 +

1

ε

∫ xN
4

+1

xN
4

(
e−c0x/ε + e−c1(`−x)/ε

)
dx

}
.

Since

exp

(
−
c0xN

4

ε

)
− exp

(
−
c0xN

4 +1

ε

)
=

1

N

(
1− exp

(
−c0h2

ε

))
< N−1

and

exp
(
−c1

(
`− xN

4 +1

)
/ε
)
− exp

(
−c1

(
`− xN

4

)
/ε
)

=
1

N
exp (−c1h1/ε) (1− exp (−c1h1/ε)) < N−1,

it then follows that ∣∣∣RN
4

∣∣∣ ≤ CN−1 lnN.

The same estimate is obtained for the mesh point x 3N
4

in a similar manner.

This estimate is valid when only one of the values of σ1 and σ2 is equal to `
4 .

Thus the first inequality of estimate (4.9) is proved.
Next we estimate the remainder term r. From the explicit expression (3.9),

we obtain

|r| ≤
N1∑
i=N0

∫ xi

xi−1

dx |g (x)|
∫ xi

xi−1

|u′ (ξx)| |T0 (x− ξ)− 1| dξ

+

∫ xN0

`0

|g (x)| |u (x)| dx+

∫ `1

xN1

|g (x)| |u (x)| dx

≤ hi max
[xi−1, xi]

|g (x)|
N1∑
i=N0

∫ xi

xi−1

|u′ (ξ)| |T0 (x− ξ)− 1| dξ +O (hi)

≤ 2hi max
[xi−1, xi]

|g (x)|
∫ `

0

|u′ (x)| dx+O (hi) ≤ Chi.
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If [xN0
, xN1

] is inside the interval [σ1, `− σ2] , we obtain from the inequality
(4.6)

|r| ≤ CN−1.

If [xN0 , xN1 ] is inside the interval [0, σ1] , we deduce from the inequality (4.6)
that

|r| ≤ Ch(1) ≤ C 4c−1
0 ε lnN

N
≤ CN−1 lnN.

The same estimate is obtained for the interval [`− σ2, `] in a similar manner.
This completes the proof of Lemma. ut

We now can statement the convergence result of this paper.

Theorem 1. Assume that a, f ∈ C1 [0, `]. Let u be the solution of (1.1)–(1.2)
and y be the solution of (3.10)–(3.11). Then, the following ε-uniform estimate
satisfies

‖y − u‖∞,ω̄N
≤ CN−1 lnN.

5 Algorithm and numerical result

In this section we present some numerical results for the difference scheme
(3.10)–(3.11) applied to the problem (1.1)–(1.2) on the piecewise uniform mesh
of Shishkin type.

We solve the nonlinear problem (3.10)–(3.11) using the following quasilin-
earization technique:

ε2θiy
(n)
x̄x̂,i + εaiy

(n)
0
x,i
−f
(
xi, y

(n−1)
i

)
− ∂f

∂y

(
xi, y

(n−1)
i

)(
y

(n)
i − y(n−1)

i

)
= 0,

y
(n)
0 = A, y

(n)
N =

N1∑
i=N0

higiy
(n−1)
i +B,

for n ≥ 1 and y
(0)
i given for 1 ≤ i ≤ N .

Example 1. First we study the following test problem:

ε2u′′ + ε sin(
πx

2
)u′ + e−u − x2 = 0, 0 < x < 1,

u (0) = 1, u (1) =

∫ 1

0.5

cos(x)u (x) dx+ 1.

For this problem the exact solution is unknown. Therefore we use the double-
mesh principle to estimate the errors and compute solutions, that is, we com-
pare the computed solution with the solution on a mesh that is twice as fine
(see [9, 12, 13]. The Table 1 shows our numerical results for the first problem.
We measure the accuracy in the discrete maximum norm

eNε = max
i

∣∣∣yε,Ni − ỹε,2Ni

∣∣∣ ,
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Table 1. Approximate errors eNε and the computed rates of convergence PN on ωN for
various values of ε and N (a(0) = 0)

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

2−2 0.056424 0.030112 0.001555 0.007963 0.004024 0.002068
0.84 0.89 0.95 0.97 0.98

2−4 0.058452 0.030321 0.001554 0.007951 0.004016 0.002035
0.85 0.88 0.94 0.96 0.99

2−6 0.059024 0.030213 0.001550 0.007864 0.004013 0.001996
0.85 0.87 0.94 0.96 0.99

2−8 0.059015 0.030124 0.001551 0.007834 0.004008 0.001996
0.85 0.87 0.94 0.96 0.99

2−10 0.059016 0.030985 0.001549 0.007829 0.004005 0.001995
0.85 0.87 0.94 0.96 0.99

2−12 0.059013 0.030988 0.001549 0.007827 0.004005 0.001996
0.85 0.87 0.94 0.96 0.99

2−14 0.059014 0.030986 0.001550 0.007827 0.004006 0.001996
0.85 0.87 0.94 0.96 0.99

2−16 0.059014 0.030987 0.001550 0.007828 0.004006 0.001996
0.85 0.87 0.94 0.96 0.99

eN 0.059024 0.030988 0.001555 0.007963 0.004024 0.002035
pN 0.85 0.89 0.95 0.97 0.99

where ỹε,2Ni is the approximate solution of the respective method on the mesh

ω̃2N =
{
x i

2
: i = 0, 1, 2, ..., 2N

}
with

xi+ 1
2

=
xi + xi+1

2
for i = 0, 1, 2, ..., N − 1.

The rates of convergence are defined as

PNε =
ln
(
eNε /e

2N
ε

)
ln 2

.

The ε−uniform errors eN are estimated from

eN = max
ε
eNε .

The corresponding ε−uniform the rates of convergence are computed using the
formula

PN =
ln
(
eN/e2N

)
ln 2

.

Example 2. We consider the following our second test problem:

ε2u′′ + ε (1 + x)u′ − 2u+ arctan (x+ u) = 0, 0 < x < 1,

u (0) = 0, u (1) +

∫ 1

0.5

cos(2x)u (x) dx = 1.

The exact solution of this problem is unknown. We therefore use the double-
mesh principle in a similar way to the first example. The Table 2 shows our
numerical results for the second problem.
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Table 2. Approximate errors eNε and the computed rates of convergence PN on ωN for
various values of ε and N (a(0) 6= 0)

ε N = 16 N = 32 N = 64 N = 128 N = 256

2−2 0.0350188 0.0169087 0.0081966 0.0040208 0.0020104
1.05 1.04 1.03 1.00

2−4 0.0445136 0.0226725 0.0107762 0.0050468 0.0024715
0.97 1.07 1.09 1.03

2−6 0.0606108 0.0306246 0.0146222 0.0069817 0.0034190
0.98 1.07 1.07 1.03

2−8 0.0660523 0.0339593 0.0163933 0.0079434 0.0039443
0.96 1.05 1.05 1.01

2−10 0.0674129 0.0347566 0.0167837 0.0081368 0.0040403
0.96 1.05 1.04 1.01

2−12 0.0677529 0.0349534 0.0168777 0.0081819 0.0040626
0.95 1.05 1.04 1.01

2−14 0.0678379 0.0350025 0.0169009 0.0081929 0.0040681
0.95 1.05 1.04 1.01

2−16 0.0678592 0.0350147 0.0169067 0.0081957 0.0040695
0.95 1.05 1.04 1.01

eN 0.0678592 0.0350147 0.0169067 0.0081957 0.0040695
pN 0.95 1.04 1.03 1.01

Conclusions

We have presented a fitted finite difference method on the piecewise uniform
mesh for solving singularly perturbed semilinear boundary value problem with
integral nonlocal condition. The difference scheme is based on the method of
integral identities with the use of exponential basis functions and interpolating
quadrature rules with the weight and remainder terms in integral form. Our
method has the advantage that the scheme can be effectively applied also in
the case when the original problem has a solution with certain singularities.
It is shown that the method is ε-uniform convergence with respect to the per-
turbation parameter in the discrete maximum norm. We have implemented
the present method on two standard test problems. Using the double mesh,
the computed maximum pointwise errors eNε and e2N

ε , and the rates of uniform
convergence PNε for different values of ε and N are presented in Tables 1 and 2.
The rates of convergence PNε are monotonically increasing towards one. It is
observed from the results that numerical experiments are in agreement with the
theoretical results. The main lines for the analysis of the uniform convergence
carried out here can be used for the study of more complicated linear differ-
ential problems as well as nonlinear differential problems with mixed nonlocal
boundary conditions.
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