Mathematical Modelling and Analysis
Volume 21 Number 6, November 2016, 752-761
http://dx.doi.org/10.3846/13926292.2016.1241191

A Joint Elliott Type Theorem for Twists of L-Functions of Elliptic Curves

Virginija Garbaliauskiené ${ }^{a}$ and Antanas Laurinčikas ${ }^{b}$

${ }^{a}$ Faculty of Technology, Physical and Biomedical Sciences, Šiauliai University Vilniaus str. 141, LT-76353 Šiauliai, Lithuania
${ }^{b}$ Faculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
E-mail(corresp.): virginija@fm.su.lt
E-mail: antanas.laurincikas@mif.vu.lt
Received June 4, 2016; revised September 20, 2016; published online November 15, 2016

Abstract

We consider a collection of L-functions of elliptic curves twisted by a Dirichlet character modulo q (q is a prime number), and prove for this collection a joint limit theorem for weakly convergent probability measures in the space of analytic functions as $q \rightarrow \infty$. The limit measure is given explicitly. Keywords: Dirichlet character, elliptic curve, L-function of elliptic curve, probability measure, weak convergence.

AMS Subject Classification: 11M41; 60F15.

1 Introduction

Let E be an elliptic curve over the field of rational numbers given by the Weierstrass equation

$$
y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Z}
$$

with discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$. For each prime number p, denote by E_{p} the reduction modulo p of the curve E which is a curve over the finite field \mathbb{F}_{p}, and define the integer $\lambda(p)$ by the equality

$$
\left|E\left(\mathbb{F}_{p}\right)\right|=p+1-\lambda(p),
$$

where $\left|E\left(\mathbb{F}_{p}\right)\right|$ is the number of points of curve E_{p}. The L-function $L_{E}(s)$, $s=\sigma+i t$, of the curve E is defined by the Euler product

$$
L_{E}(s)=\prod_{p \mid \Delta}\left(1-\frac{\lambda(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta}\left(1-\frac{\lambda(p)}{p^{s}}+\frac{1}{p^{2 s-1}}\right)^{-1}
$$

which, in virtue of the estimate

$$
|\lambda(p)| \leqslant 2 \sqrt{p}
$$

is absolutely convergent for $\sigma>3 / 2$. Moreover, the function $L_{E}(s)$ is analytically continued to an entire function, see, for example, [12].

Now let χ be a Dirichlet character modulo q. Then the twist $L_{E}(s, \chi)$ of the function $L_{E}(s)$ is defined, for $\sigma>\frac{3}{2}$, by the Euler product

$$
L_{E}(s, \chi)=\prod_{p \mid \Delta}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}+\frac{\chi^{2}(p)}{p^{2 s-1}}\right)^{-1}
$$

and can be expanded in the Dirichlet series

$$
\sum_{m=1}^{\infty} \frac{\lambda(m) \chi(m)}{m^{s}}
$$

In the sequel, we assume that q is a prime number. Then it was observed in [12] that the function $L_{E}(s, \chi)$, as $L_{E}(s)$, is also entire one.

Limit theorems for $L_{E}(s, \chi)$ with increasing q were began to study in [6], [7], [8], [9], however, only in the half-plane of absolute convergence $\sigma>\frac{3}{2}$. In [12], a limit theorem in the space of analytic functions $H(D), D=\{s \in \mathbb{C}: \sigma>1\}$, for the function $L_{E}(s, \chi)$ has been obtained. For its statement, we need some notation and definitions. For $Q \geqslant 2$, let

$$
M_{Q}=\sum_{q \leqslant Q} \sum_{\substack{\chi=\chi(\bmod q) \\ \chi \neq \chi_{0}}} 1,
$$

where, as usual, χ_{0} denotes the principal character modulo q. It is well known that

$$
M_{Q}=\frac{Q^{2}}{2 \log Q}+\mathcal{O}\left(\frac{Q^{2}}{\log ^{2} Q}\right)
$$

Denote by γ the unite circle $\{s \in \mathbb{C}:|s|=1\}$, and define $\Omega=\prod_{p} \gamma_{p}$, where $\gamma_{p}=\gamma$ for all primes p. The infinite-dimensional torus Ω with the product topology and operation of pointwise multiplication is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, where $\mathcal{B}(X)$ is the Borel σ-field of the space X, the probability Haar measure m_{H} exists, and this gives the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(p)$ the projection of an element $\omega \in \Omega$ to the coordinate space γ_{p}, and, on $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$, define the $H(D)$-valued random element $L_{E}(s, \omega)$ by the formula

$$
L_{E}(s, \omega)=\prod_{p \mid \Delta}\left(1-\frac{\lambda(p) \omega(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta}\left(1-\frac{\lambda(p) \omega(p)}{p^{s}}+\frac{\omega^{2}(p)}{p^{2 s-1}}\right)^{-1}
$$

Let $P_{L_{E}}$ be the distribution of $L_{E}(s, \omega)$, i. e.,

$$
P_{L_{E}}(A)=m_{H}\left\{\omega \in \Omega: L_{E}(s, \omega) \in A\right\}, \quad A \in \mathcal{B}(H(D))
$$

Then the main result of [12] is the following limit theorem.

Theorem 1. Suppose that $Q \rightarrow \infty$. Then

$$
\frac{1}{M_{Q}} \#\left\{\chi(\bmod q), q \leqslant Q, \chi \neq \chi_{0}: L_{E}(s, \chi) \in A\right\}, \quad A \in \mathcal{B}(H(D))
$$

converges weakly to $P_{L_{E}}$.
Here $\# A$ stands for the cardinality of the set A.
In [8], a joint limit theorem of type of Theorem 1 has been obtained for a collection of moduli of twists of L-functions of elliptic curves, however, in the region $\sigma>\frac{3}{2}$, only. We note that P. D. T. A. Elliott was the first who began to study limit theorems with increasing modulus for Dirichlet L-functions [4], [5].

The aim of this paper is a multidimensional analogue of Theorem 1. For $j=1, \ldots, r$, let E_{j} be an elliptic curve over the field of rational numbers given by the equation

$$
y^{2}=x^{3}+a_{j} x+b_{j}, \quad a_{j}, b_{j} \in \mathbb{Z}
$$

with discriminant $\Delta_{j}=-16\left(4 a_{j}^{3}+27 b_{j}^{2}\right) \neq 0$. Consider the corresponding L-function

$$
L_{E_{j}}(s)=\prod_{p \mid \Delta_{j}}\left(1-\frac{\lambda_{j}(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta_{j}}\left(1-\frac{\lambda_{j}(p)}{p^{s}}+\frac{1}{p^{2 s-1}}\right)^{-1} .
$$

Suppose that N_{j} is the conductor of the curve E_{j}. Then, by the Weil-ShimuraTaniyama conjecture proved in [3], see also Theorem 14.6 of [10], the function $L_{E_{j}}(s)$ coincides with L-function of a new cusp form of weight 2 and level N_{j}. This shows that $L_{E_{j}}(s)$ is an entire function.

By Theorem 14.20 of [10], the twist $L_{E_{j}}(s, \chi)$ of $L_{E_{j}}(s)$ with a character χ modulo q is again a new cusp form of weight 2 and level $N_{j} q^{2}$. Therefore, the function $L_{E_{j}}(s, \chi)$ is also an entire function.

Let, for brevity, $\underline{E}=\left(E_{1}, \ldots, E_{r}\right), \underline{L}_{\underline{E}}(s, \chi)=\left(L_{E_{1}}(s, \chi), \ldots, L_{E_{r}}(s, \chi)\right)$ and $A_{Q}=\left\{\chi(\bmod q): q \leqslant Q, \chi \neq \chi_{0}\right\}$. Moreover, define

$$
\underline{L}_{\underline{E}}(s, \omega)=\left(L_{E_{1}}(s, \omega), \ldots, L_{E_{r}}(s, \omega)\right)
$$

where, for $j=1, \ldots, r$,

$$
L_{E_{j}}(s, \omega)=\prod_{p \mid \Delta_{j}}\left(1-\frac{\lambda_{j}(p) \omega(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta_{j}}\left(1-\frac{\lambda_{j}(p) \omega(p)}{p^{s}}+\frac{\omega^{2}(p)}{p^{2 s-1}}\right)^{-1} .
$$

Denote by $P_{\underline{L}_{\underline{E}}}$ the distribution of the $H^{r}(D)$-valued random element $\underline{L}_{\underline{E}}(s, \omega)$, i. e.,

$$
P_{\underline{L}_{\underline{E}}}(A)=m_{H}\left\{\omega \in \Omega: \underline{L}_{\underline{E}}(s, \omega) \in A\right\}, \quad A \in \mathcal{B}\left(H^{r}(D)\right)
$$

Then we have the following statement.
Theorem 2. Suppose that $Q \rightarrow \infty$. Then

$$
P_{Q, \underline{E}}(A) \stackrel{\text { def }}{=} \frac{1}{M_{Q}} \#\left\{\chi \in A_{Q}: \underline{L}_{\underline{E}}(s, \chi) \in A\right\}, \quad A \in \mathcal{B}\left(H^{r}(D)\right)
$$

converges weakly to $P_{\underline{L}_{\underline{E}}}$.

2 Auxiliary results

We start with a joint limit theorem which is a generalization of Lemma 1 from [12]. We extend the function $\omega(p)$ to the set \mathbb{N} by the formula

$$
\omega(m)=\sum_{p^{l} \mid m, p^{l+1} \nmid m} \omega^{l}(p), \quad m \in \mathbb{N} .
$$

Lemma 1. For $j=1, \ldots, r$, let $\left\{a_{m j}: m \in \mathbb{N}\right\}$ be a sequence of complex numbers such that

$$
\sum_{m \leqslant n}\left|a_{m j}\right|^{2}=\mathcal{O}\left(n^{2 \alpha}\right), \quad \alpha>0
$$

as $n \rightarrow \infty$, and, for $\omega \in \Omega$ and $\sigma>\alpha+\frac{1}{2}$, let $X_{j}(s, \omega)=\sum_{m=1}^{\infty} \frac{a_{m j} \omega(m)}{m^{s}}$. Suppose that $\left\{A_{m}: m \in \mathbb{N}\right\}$ is a sequence of finite subsets of the torus Ω such that, for each $\omega \in \bigcup_{m=1}^{\infty} A_{m}, X_{j}(s, \omega)$ has an analytic continuation to the half plane $D_{\alpha}=\{s \in \mathbb{C}: \sigma>\alpha\}$ satisfying the following conditions:
$1^{0} A s|t| \rightarrow \infty$,

$$
\frac{1}{\# A_{m}} \sum_{\omega \in A_{m}}\left|X_{j}(\sigma+i t, \omega)\right|^{2}=\mathcal{O}\left(|t|^{A}\right), \quad A>0
$$

uniformly for $m \in \mathbb{N}$ and σ in compact subsets of the interval (α, ∞);
2^{0}

$$
\sum_{\omega \in A_{m}}\left|X_{j}(\sigma, \omega)\right|^{2}=\mathcal{O}\left(\# A_{m}\right)
$$

as $m \rightarrow \infty$, uniformly for s on compact subsets of D_{α};
Moreover, suppose that

$$
\frac{\#\left\{A \cap A_{m}\right\}}{\# A_{m}}, \quad A \in \mathcal{B}(\Omega)
$$

converges weakly to the Haar measure m_{H}. Then

$$
\frac{1}{\# A_{m}} \#\left\{\omega \in A_{m}:\left(X_{1}(s, \omega), \ldots, X_{r}(s, \omega)\right) \in A\right\}
$$

where $A \in H^{r}\left(D_{\alpha}\right)$, converges weakly to the distribution of the random element $\left(X_{1}(s, \omega), \ldots, X_{r}(s, \omega)\right)$ as $m \rightarrow \infty$.

Proof. A way of the proof is completely analogical to that in one-dimensional case presented in [2], Proposition 4.4.1. In our case, the metric in $H^{r}\left(D_{\alpha}\right)$ inducing its topology of uniform convergence on compacta is applied, and the joint case is reduced to the one-dimensional case.

The next lemma is devoted to checking the hypotheses of Lemma 1, and contains an approximate functional equation of L-functions of cusp forms of weight 2 and level N. Let $F(z)$ be a new form of weight 2 and level N with

Fourier coefficients $c(m)$. Moreover, let $\Gamma(s)$, as usual, denote the gammafunction, and let $\Gamma(s, z)$ be the incomplete gamma-function,

$$
\Gamma(s, z)=\int_{z}^{\infty} \mathrm{e}^{-t} t^{s-1} \mathrm{~d} t, \quad \sigma>0, z \in \mathbb{R}
$$

Lemma 2. [1]. Suppose that $L(s, F), s=\sigma+i t$, is the L-function associated to the form $F, \frac{1}{2} \leqslant \sigma \leqslant \frac{3}{2}, M>\frac{t \sqrt{N}}{4}, r=\mathrm{e}^{i\left(\frac{\pi}{2}-\delta(t)\right)}$ with $0<\delta(t) \leqslant \frac{\pi}{2}$. Then

$$
\begin{aligned}
L(s, F) & =\frac{1}{\Gamma(s)} \sum_{m \leqslant M} \frac{c(m)}{m^{s}} \Gamma\left(s, \frac{2 \pi m r}{\sqrt{N}}\right) \\
& -\frac{\mu N^{1-s}(2 \pi)^{2(s-1)}}{\Gamma(s)} \sum_{m \leqslant M} \frac{c(m)}{m^{2-s}} \Gamma\left(2-s, \frac{2 \pi m}{\sqrt{N} r}\right)+\frac{(2 \pi)^{s}}{\Gamma(s)} R,
\end{aligned}
$$

where

$$
\begin{aligned}
|R|< & \mathrm{e}^{-\frac{\pi t}{2}} \mathrm{e}^{\delta(t)\left(t-\frac{4 M}{\sqrt{N}}\right)} N^{\frac{1-\sigma}{2}} \sqrt{M} \delta^{-1}(t) \\
& \times\left(1+\frac{\log M+\sigma+1}{2 t \delta(t)}+\frac{(\sigma-1)(\log M+2)}{4(t \delta(t))^{2}}\right)
\end{aligned}
$$

Let G be a compact Abelian group. Then, on $(G, \mathcal{B}(G))$, the probability Haar measure μ can be defined. We recall that a sequence $\left\{x_{m}: m \in \mathbb{N}\right\} \subset G$ is said to be uniformly distributed if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} f\left(x_{m}\right)=\int_{G} f \mathrm{~d} \mu
$$

for any real bounded Borel measurable function f.
The next lemma is a criterion of uniform distribution for sequences in G.
Lemma 3. The sequence $\left\{x_{m}: m \in \mathbb{N}\right\} \subset G$ is uniformly distributed in G if and only if, for any nontrivial character χ_{G}, the equality

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \chi_{G}\left(x_{m}\right)=0
$$

holds.
The proof of the lemma can be found in [11], Chapter 4, Corollary 1.2.

3 Proof of Theorem 2

In the notation of Lemma 1, we have that $a_{m j}=\lambda_{j}(m) \chi(m)$. Since $\lambda_{j}(m)$ coincides with Fourier coefficients of a new cusp form, we have, by the estimate (14.53) from [10], that

$$
\sum_{m \leqslant n}\left|a_{m j}\right|^{2}=\mathrm{O}\left(n^{2}\right) .
$$

Therefore, $\alpha=1$ in Lemma 1.
Denote by \mathbb{P} the set of all prime numbers. Let χ be a Dirichlet character modulo $q \in \mathbb{P}$, and

$$
\hat{\chi}(p)= \begin{cases}\chi(p), & \text { if } p \in \mathbb{P} \backslash\{q\} \\ 1, & \text { if } p=q\end{cases}
$$

Then $\{\hat{\chi}(p): p \in \mathbb{P}\}$ is an element of the torus Ω. Putting

$$
l_{E_{j}, q}(s)= \begin{cases}1-\frac{\lambda_{j}(q)}{q^{s}}, & \text { if } q \mid \Delta, \\ 1-\frac{\lambda_{j}^{(q)}}{q^{s}}+\frac{1}{q^{2 s-1}}, & \text { if } q \nmid \Delta,\end{cases}
$$

we have that

$$
\begin{equation*}
L_{E_{j}}(s, \chi)=l_{E_{j}, q}(s) L_{E_{j}}(s, \hat{\chi}) \tag{3.1}
\end{equation*}
$$

Denote by p_{m} the m th prime number, and define $A_{m}=\left\{\chi\left(\bmod p_{m}\right): \chi \neq \chi_{0}\right\}$. Obviously, $\# A_{m}=p_{m}-2$. Define one more set $\hat{A}_{m}=\left\{\hat{\chi}: \chi \in A_{m}\right\}$. On a certain probability space $(\hat{\Omega}, \mathcal{A}, P)$, define the $H^{r}(D)$-valued random elements $\underline{X}_{m}(s)$ and $\underline{\hat{X}}_{m}(s)$ by the formulae

$$
\begin{aligned}
& P\left(\underline{X}_{m}(s)=L_{\underline{E}}(s, \chi)\right)=\frac{1}{p_{m}-2}, \quad \chi \in A_{m}, \\
& P\left(\underline{\hat{X}}_{m}(s)=L_{\underline{E}}(s, \hat{\chi})\right)=\frac{1}{p_{m}-2}, \quad \hat{\chi} \in \hat{A}_{m} .
\end{aligned}
$$

By the definition of $l_{E_{j}, p_{m}}(s)$, we see that

$$
\begin{equation*}
l_{E_{j}, p_{m}}(s) \rightarrow 1 \tag{3.2}
\end{equation*}
$$

in the space $H(D)$ as $m \rightarrow \infty$. Hence, $\underline{X}_{m}(s)$ converges in distribution to \hat{X}_{m} as $m \rightarrow \infty$. Therefore, for the proof that

$$
Q_{q}(A) \stackrel{\text { def }}{=} \frac{1}{q-2} \#\left\{\chi(\bmod q), \chi \neq \chi_{0}: \underline{L}(s, \chi) \in A\right\}, \quad A \in \mathcal{B}\left(H^{r}(D)\right)
$$

converges weakly to $P_{\underline{L}}$ as $q \rightarrow \infty$ it suffices to obtain that the random element $\underline{\hat{X}}_{m}$ converges in distribution to $P_{\underline{L}_{E}}$. Thus, the sequence $\left\{\hat{A}_{m}: m \in \mathbb{N}\right\}$ corresponds the sequence $\left\{A_{m}: m \in \overline{\mathbb{N}}\right\}$ in Lemma 1 , and $\underline{X}(s, \omega)=\underline{L}_{E}(s, \hat{\chi})$. Moreover, in virtue of (3.1) and (3.2), $\underline{L}_{\underline{E}}(s, \hat{\chi})$ can be replaced by $\underline{L}_{\underline{E}}(s, \chi)$.

It remains to check other hypotheses of Lemma 1 . Let K be a compact subset of $(1, \infty)$. We continue with estimate for

$$
D_{q}(\sigma, t) \stackrel{\text { def }}{=} \frac{1}{q-2} \sum_{\chi(\bmod q)}\left|L_{E_{j}}(\sigma+i t, \chi)\right|^{2}, \quad t>0
$$

when q runs prime numbers. For this, we apply Lemma 2 with $M=c t \sqrt{N_{j}}$ $\times q \log ^{2} q, c>0$, and $\delta=t^{-1}$. We have

$$
\begin{equation*}
D_{q}(\sigma, t)<_{K} D_{1, q}(\sigma, t)+D_{2, q}(\sigma, t)+D_{3, q}(\sigma, t), \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{1, q}(\sigma, t)=\frac{1}{q} \sum_{\chi(\bmod q)} \frac{1}{|\Gamma(s)|^{2}}\left|\sum_{m \leqslant M} \frac{\lambda(m) \chi(m)}{m^{\sigma+i t}} \Gamma\left(\sigma+i t, \frac{2 \pi m r}{\sqrt{N_{j}} q}\right)\right|^{2} \\
& \ll \frac{1}{|\Gamma(s)|^{2}} \sum_{m \leqslant M} \frac{|\lambda(m)|^{2}}{m^{2 \sigma}}\left|\Gamma\left(\sigma+i t, \frac{2 \pi m r}{\sqrt{N_{j}} q}\right)\right|^{2} \frac{1}{q} \sum_{\chi(\bmod q)}|\chi(m)|^{2} \\
& +\frac{1}{|\Gamma(s)|^{2}} \sum_{\substack{m \leqslant M \\
m \neq n}} \sum_{\substack{n \leqslant M}} \frac{|\lambda(m)||\lambda(n)|}{m^{\sigma} n^{\sigma}}\left|\Gamma\left(\sigma+i t, \frac{2 \pi m r}{\sqrt{N_{j}} q}\right)\right| \\
& \times\left|\Gamma\left(\sigma+i t, \frac{2 \pi n r}{\sqrt{N_{j}} q}\right)\right|\left|\frac{1}{q} \sum_{\chi(\bmod q)} \chi(m) \overline{\chi(n)}\right|, \tag{3.4}\\
& D_{2, q}(\sigma, t)=\frac{1}{q} \sum_{\chi(\bmod q)} \frac{N_{j}^{2-2 \sigma} q^{4-4 \sigma}}{|\Gamma(s)|^{2}}\left|\sum_{m \leqslant M} \frac{\lambda(m) \chi(m)}{m^{2-\sigma-i t}} \Gamma\left(2-\sigma-i t, \frac{2 \pi m}{\sqrt{N_{j}} q r}\right)\right|^{2} \\
& =\frac{N_{j}^{2-2 \sigma} q^{4-4 \sigma}}{|\Gamma(s)|^{2}} \sum_{m \leqslant M} \frac{|\lambda(m)|^{2}}{m^{4-2 \sigma}}\left|\Gamma\left(2-\sigma-i t, \frac{2 \pi m}{\sqrt{N_{j} q}}\right)\right|^{2} \frac{1}{q} \sum_{\chi(\bmod q)}|\chi(m)|^{2} \\
& +\frac{N_{j}^{2-2 \sigma} q^{4-4 \sigma}}{|\Gamma(s)|^{2}} \sum_{\substack{m \leqslant M \leqslant M \\
m \neq n}} \sum_{\substack{n \leqslant M}} \frac{|\lambda(m)||\lambda(n)|}{m^{2-\sigma} n^{2-\sigma}}\left|\Gamma\left(2-\sigma-i t, \frac{2 \pi m}{\sqrt{N_{j}} q r}\right)\right| \\
& \times\left|\Gamma\left(2-\sigma-i t, \frac{2 \pi n}{\sqrt{N_{j} q r}}\right)\right|\left|\frac{1}{q} \sum_{\chi(\bmod q)} \chi(m) \overline{\chi(n)}\right|, \tag{3.5}\\
& D_{3, q}(\sigma, t)=\frac{1}{|\Gamma(s)|^{2}} R^{2} \text {. } \tag{3.6}
\end{align*}
$$

Let $d(m)=\sum_{k \mid m} 1$ be the divisor function. Using the well - known bounds

$$
|\lambda(m)| \leqslant \sqrt{m} d(m), \quad \sum_{m \leqslant x} d^{2}(m) \ll x \log ^{4} x
$$

as well as [1]

$$
|\Gamma(\sigma+i t, A r)| \ll A^{\sigma} \mathrm{e}^{-\left(\frac{\pi}{2}-\delta(t)\right) t}
$$

and the properties of the gamma-function, we find that the first term in the right-hand side of (3.4) is estimated as

$$
\begin{equation*}
<_{K} q^{2-2 \sigma}(\log q)^{c_{1}} t^{A_{1}} \ll K_{K} t^{A_{1}}, c_{1}>0, A_{1}>0 \tag{3.7}
\end{equation*}
$$

uniformly in $\sigma \in K$ and q. Moreover, in view of the equalities

$$
\sum_{\chi(\bmod q)} \chi(m) \overline{\chi(n)}= \begin{cases}q-1, & \text { if } m \equiv n(\bmod q), \tag{3.8}\\ 0, & \text { if } m \neq n(\bmod q)\end{cases}
$$

and the bound $d(m) \ll m^{\varepsilon}, \varepsilon>0$, we obtain that the second term in the right-hand side of (3.4) has a bound

$$
\begin{aligned}
& \ll \sum_{\substack{m \leqslant M \\
m \equiv n(\bmod q)}} \sum_{n \leqslant M} \frac{|\lambda(m)||\lambda(n)|}{m^{\sigma} n^{\sigma}}\left(\frac{m}{q}\right)^{\sigma}\left(\frac{n}{q}\right)^{\sigma} \\
& \ll \frac{1}{q^{2 \sigma}} \sum_{k \leqslant M / q} \sum_{m \leqslant M} \sqrt{m} d(m) \sqrt{m+k q} d(m+k q) \\
& \ll q^{2-2 \sigma+\varepsilon} t^{A_{2}} \ll{ }_{K} t^{A_{2}}, \quad A_{2}>0
\end{aligned}
$$

uniformly in $\sigma \in K$ and q. This together with (3.7) shows that

$$
\begin{equation*}
D_{1, q}(\sigma, t) \lll{ }_{K} t^{A_{3}}, \quad A_{3}>0 \tag{3.9}
\end{equation*}
$$

uniformly in $\sigma \in K$ and q.
In a similar way, we obtain that

$$
\begin{equation*}
D_{2, q}(\sigma, t) \lll{ }_{K} t^{A_{4}}, \quad A_{4}>0 \tag{3.10}
\end{equation*}
$$

uniformly in $\sigma \in K$ and q. The definition of R and the choice of M and $\delta(t)$ imply the estimate

$$
D_{3, q}(\sigma, t) \ll_{K} \mathrm{e}^{8 c \log ^{2} q} q^{1-\sigma} \sqrt{q}(\log q)^{c_{3}} t^{A_{5}} \ll_{K} t^{A_{5}}, \quad A_{5}>0
$$

uniformly in $\sigma \in K$ and q. From this, (3.9), (3.10), and (3.3) we have that

$$
D_{q}(\sigma, t) \ll_{K} t^{A}, \quad A>0
$$

uniformly in $\sigma \in K$ and q. Obviously, then

$$
\frac{1}{q-2} \sum_{\substack{\chi(\bmod q) \\ \chi \neq \chi_{0}}}\left|L_{E_{j}}(\sigma+i t, \chi)\right|^{2} \ll_{K}|t|^{A}
$$

uniformly in $\sigma \in K$ and q.
In a similar manner, we obtain that

$$
\sum_{\substack{\chi(\bmod q) \\ \chi \neq \chi_{0}}}\left|L_{E_{j}}(\sigma, \chi)\right|^{2}=\mathcal{O}(q)
$$

as $q \rightarrow \infty$, uniformly for s on compact subsets of the half-plane D.
Next we will consider the sequence $\left\{\hat{A}_{m}: m \in \mathbb{N}\right\}$, and will prove that it is uniformly distributed. Let χ_{Ω} be a character of the group Ω. Then it is well known that

$$
\chi_{\Omega}(\omega)=\prod_{p} \omega^{k_{p}}(p), \quad \omega \in \Omega
$$

where only a finite number of integers k_{p} are distinct from zero. Hence,

$$
\chi_{\Omega}(\omega)=\omega\left(m_{1}\right) \overline{\omega\left(m_{2}\right)}
$$

with $\left(m_{1}, m_{2}\right)=1$. Then we have

$$
\begin{align*}
\frac{1}{\# \hat{A}_{m}} \sum_{\omega \in \hat{A}_{m}} \chi_{\Omega}(\omega) & =\frac{1}{p_{m}-2} \sum_{\omega \in \hat{A}_{m}} \omega\left(m_{1}\right) \overline{\omega\left(m_{2}\right)} \\
& =\frac{1}{p_{m}-2} \sum_{\chi\left(\bmod p_{m}\right), \chi \neq \chi_{0}} \hat{\chi}\left(m_{1}\right) \overline{\hat{\chi}\left(m_{2}\right)} . \tag{3.11}
\end{align*}
$$

The numbers $m_{1}, m_{2} \in \mathbb{N}$ are fixed. Therefore, for sufficiently large m,

$$
p_{m} \nmid m_{1}, p_{m} \nmid m_{2}, \text { and } p_{m} \nmid\left(m_{1}-m_{2}\right)
$$

Thus, taking into account (3.11) and (3.8), we find that

$$
\begin{aligned}
\frac{1}{\# \hat{A}_{m}} \sum_{\omega \in \hat{A}_{m}} \chi_{\Omega}(\omega) & =-\frac{1}{p_{m}-2}+\frac{1}{p_{m}-2} \sum_{\chi\left(\bmod p_{m}\right)} \chi\left(m_{1}\right) \overline{\chi\left(m_{2}\right)} \\
& =-1 /\left(p_{m}-2\right) \rightarrow 0
\end{aligned}
$$

as $m \rightarrow \infty$. Therefore, by Lemma 3 , the sequence $\left\{\hat{A}_{m}: m \in \mathbb{N}\right\}$ is uniformly distributed. Thus, all hypotheses of Lemma 1 are fulfilled, and we have that

$$
\frac{1}{q-2} \#\left\{\chi(\bmod q), \chi \neq \chi_{0}: \underline{L}(s, \hat{\chi}) \in A\right\}, \quad A \in \mathcal{B}\left(H^{r}(D)\right)
$$

converges weakly to $P_{\underline{L}_{\underline{E}}}$ as $q \rightarrow \infty$, and this is true for Q_{q} as well.
From the weak convergence of Q_{q} to $P_{\underline{L}_{\underline{E}}}$ as $q \rightarrow \infty$, it follows that of $P_{Q, \underline{E}}$ as $Q \rightarrow \infty$, see [12].

References

[1] Sh. Akiyama and Y. Tanigawa. Calculation of values of L-functions associated to elliptic curves. Mathematics of Computation, 68(227):1201-1231, 1999. http://dx.doi.org/10.1090/S0025-5718-99-01051-0.
[2] B. Bagchi. The statistical Behaviour and Universality Properties of the Riemann Zeta-function and other allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1981.
[3] C. Breuil, B. Conrad, F. Diamond and R. Taylor. On the modularity of elliptic curves over \mathbb{Q} : wild 3-adic exercises. Journal of the American Mathematical Society, 14(4):843-939, 2001. http://dx.doi.org/10.1090/S0894-0347-01-003708.
[4] P.D.T.A. Elliott. On the distribution of the values of Dirichlet L-series in the half-plane $\sigma>\frac{1}{2}$. Indagationes Mathematicae (Proceedings), 74:222-234, 1971. http://dx.doi.org/10.1016/S1385-7258(71)80030-6.
[5] P.D.T.A. Elliott. On the distribution of $\arg L(s, \chi)$ in the half-plane $\sigma>\frac{1}{2}$. Acta Arithmetica, 20:155-169, 1972.
[6] V. Garbaliauskienė and A. Laurinčikas. Limit theorems for twist of L-functions of elliptic curves. II. Mathematical Modelling and Analysis, 17(1):90-99, 2012. http://dx.doi.org/10.3846/13926292.2012.645170.
[7] V. Garbaliauskienė and A. Laurinčikas. A limit theorems for twists of L-functions of elliptic curves. Mathematical Modelling and Analysis, 19(5):696-705, 2014. http://dx.doi.org/10.3846/13926292.2014.980866.
[8] V. Garbaliauskienė and A. Laurinčikas. Limit theorems for twists of L-functions of elliptic curves. IV. Mathematical Modelling and Analysis, 19(1):66-74, 2014. http://dx.doi.org/10.3846/13926292.2014.893262.
[9] V. Garbaliauskiené, A. Laurinčikas and E. Stankus. Limit theorems for twists of L-functions of elliptic curves. Lithuanian Mathematical Journal, 50(2):187-197, 2010. http://dx.doi.org/10.1007/s10986-010-9079-z.
[10] H. Iwaniec and E. Kowalski. Analytic Number Theory. American Mathematical Society, Colloquium Publications, vol.53, Providence, Rhode Island, 2004. http://dx.doi.org/10.1090/coll/053.
[11] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Pure and Applied Mathematics, John Wiley \& Sons, New York, 1974.
[12] A. Laurinčikas. An Elliott - type theorem for twists of L functions of elliptic curves. Mathematical Notes, 99(1):82-90, 2016. http://dx.doi.org/10.1134/S0001434616010089.

