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Abstract. In this paper, we consider an inverse problem of coefficient identification
for the Schrödinger equation from the observation data on the exterior boundary. Our
aim is to detect the number, the location, the size and the shape of the coefficient
with piecewise constant within a body. This problem is nonlinear and ill-posed, thus
we should apply stable and elegant reconstruction algorithms in order to improve the
corresponding approximation. We give several examples to show the viability of our
proposed methods.
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1 Introduction

We consider an inverse problem of coefficient identification for the Schrödinger
equation which arises from the problem of detecting the contact resistance of
the electronic device [11], such as metal oxide semiconductor field-effect tran-
sistors. Inverse coefficient identification problems for the Schrödinger equation
have been researched extensively [14, 16, 17, 18, 28, 30]. Uniqueness of this in-
verse problem was resolved. Kohn and Vogelius [19,20] proved the uniqueness
when the coefficient q is piecewise real analytic. Sylvester and Uhlmann [31]
proved global uniqueness of the problem when the coefficient q is smooth. Nach-
man [26] obtained a formula to recover the coefficient q and proved the unique-
ness for bounded q. Kang [5, 18] obtained the uniqueness result for rough
potential q. In terms of references [11,14,18,27,30], we know that this inverse
coefficient problem is similar to the recovery problem of the conductivity from
measurements [3, 6, 10, 14, 22, 31]. In a practical situation, it is impossible to
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directly measure the contact resistivity to a satisfactory accuracy due to the
device miniaturization. So we want to detect the contact resistivity by certain
accessible boundary measurements.

To our knowledge, there are many research papers to solve the uniqueness
of the inverse coefficient identification problem for the Schrödinger equation.
However, there are few papers to care much about how to detect the salient
features of the coefficient within a body for the Schrödinger equation. In this
paper, we are interested in the numerical algorithms to detect the number of
the coefficient with piecewise constant, to determine the location and the size
of the coefficient, and to recover the shape of the coefficient for the Schrödinger
equation. This inverse problem is nonlinear and ill-posed. That is, the solution,
if exists, does not depend continuously on the given Cauchy data. Any small
perturbation in the given Cauchy data may cause dramatically large errors to
the location, the size and the shape of the coefficient with piecewise constant.
To overcome the ill-posedness of an inverse coefficient identification problem,
some regularization methods should be employed. Gebauer and Hyvönen [12]
applied factorization method to recover the conductivity inside a physical body
from boundary measurements of current and voltage for electrical impedance
tomography. Ammari et al. [2] proposed boundary element methods to recover
the interior shape of a domain that consists of regions of constant conductivity.
Duraiswami et al. [9] gave a new algorithm for conductivity imaging to extract
more information about the conductivity distribution from data that have been
enriched by coupling impedance electrical measurements to localized elastic
perturbations. Kress et al. [10, 22] proposed regularized Newton iterations
algorithm to determine the shape of a perfectly conducting inclusion within a
conducting medium.

In this paper, we restrict ourselves to the problem where the coefficient to
be imaged consists of sub-domains with constant. Our proposed reconstruction
algorithms view this inverse problem as an optimization problem. We can ap-
ply iterative techniques to solve this optimization problem. Then this inverse
coefficient identification problem is transformed into a transmission problem.
Based on the fundamental solution of Laplace equation and helmholtz equa-
tion, we can obtain the expression of solution for the transmission problem
with boundary integral equations. This inverse problem is nonlinear and ill-
posed. Thus we propose Levenberg-Marquardt algorithm (LMA) and Trust-
Region-Reflective optimization algorithm (TRA) to solve this inverse coefficient
identification problem.

In order to determine the salient features of the coefficient for the Schrödinger
equation, we follow a three-step process: Firstly, we detect the number of the
coefficient with piecewise constant. To our knowledge, there are few works to
detect the number of the coefficient with piecewise constant [4]. In many prac-
tical applications, the number of the coefficient with piecewise constant is given
as an input parameter. This is an innovation of our paper. Secondly, we deter-
mine the location and the size of the coefficient with piecewise constant along
with the number as a priori. From our experiments, we know that our proposed
iterative algorithms do not need the starting guess located sufficiently close to
the exact solution. Thirdly, we reconstruct the shape of the coefficient with
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piecewise constant along with the number, the location and the size given. Nu-
merical experiments show that the proposed algorithms are feasible and stable
to determine the salient features of the coefficient from noise data.

The outline of the paper is as follows. In Section 2, we introduce the inverse
coefficient identification problem. In Section 3, we present the parameterization
of boundary and the discretization of integral equations. We propose recon-
struction algorithms to solve the inverse coefficient identification problem in
Section 4. Numerical examples are presented in Section 5 to illustrate the ef-
ficiency of the proposed algorithms. Finally, we give some concluding remarks
in Section 6.

2 Formulation of the inverse coefficient identification
problem

In this paper, we consider an inverse coefficient identification problem from the
Cauchy data on the exterior boundary of the solution domain. Let Ω be a
smooth bounded domain in R2. Our objective is to identify the coefficient q
entering the Schrödinger equation

−∆u+ qu = 0, in Ω (2.1)

from the Cauchy data

u = f,
∂u

∂ν
= g, on ∂Ω, (2.2)

where ∆ is the Laplacian and ν is the outward unit normal to the boundary
∂Ω.

We will consider an important case of the coefficient, i.e., q = σχ(D), where
σ is known which is the value of the contact resistance of the electronic device,
D is a sub-domain in Ω and χ(D) is the characteristic function of D. Our
goal is to seek effective and stable algorithms to determine the number, the
location, the size and the shape of sub-domains with constant coefficient.

In terms of the boundary measurements, the Dirichlet-to-Neumann map Λq
corresponding to the coefficient q is defined by

Λq(f) := g, on ∂Ω.

Assume that q ∈ Lp(Ω) for some p > 2 and zero is not an eigenvalue of the
Dirichlet operator −∆+ q in Ω. The question of uniqueness for identifying the
coefficient q has been extensively studied [16, 18, 30, 31, 32]. For the boundary
inverse problem (2.1) and (2.2), we have the following uniqueness theorem,
refer to [16,18].

Theorem 1. Let q1, q2 ∈ Lp(Ω) with p > 2. If Λq1 = Λq2 , then q1 = q2.

Because of the piecewise constant coefficient q, the inverse coefficient iden-
tification problem simplifies into an inverse transmission problem. In the fol-
lowing, we begin to introduce the transmission problem in detail.
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We denote the boundary of Ω by Γ0 := ∂Ω. Assume that Ω1, . . . , ΩN are
N simply connected sub-domains contained in Ω, the closures of which are
pairwise disjoint, set D =

⋃N
k=1Ωk, Ω0 = Ω \D. We denote by ν the outward

unit normal to each of the curves Γk for k = 1, . . . , N . Furthermore, we set
Γ :=

⋃N
k=1 Γk. Figure 1 shows an example with N = 2.
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Figure 1. Example of a configuration Ω

According to the choice of the coefficient q, the problem (2.1) and (2.2) is
equivalent to find piecewise function u satisfying

−∆uout = 0, in Ω0, (2.3)

−∆uin + σuin = 0, in D (2.4)

and the interface conditions

uout = uin,
∂uout

∂ν
=
∂uin

∂ν
, on Γk (2.5)

and the Cauchy data

uout = f,
∂uout

∂ν
= g, on Γ0. (2.6)

We denote the fundamental solution to the Laplace equation (2.3) by

Φout(x, y) = − 1

2π
ln|x− y|, x 6= y

and the Helmholtz equation (2.4) by

Φin(x, y) =
i

4
H

(1)
0 (i
√
σ|x− y|), x 6= y,
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where H
(1)
0 is a Hankel function of the first kind of order zero. In terms of the

fundamental solution, we have

uout(x) =

∫
Γ0

Φout(x, y)ϕ0(y)dy +

N∑
k=1

∫
Γk

Φout(x, y)ϕk(y)dy, x ∈ Ω0, (2.7)

uin(x) =

N∑
k=1

∫
Γk

Φin(x, y)ϕN+k(y)dy, x ∈ D, (2.8)

where ϕ˜̀(y) (˜̀= 0, . . . , 2N) are the unknown density on the boundary.
This inverse coefficient identification problem is to determine the number,

the location and the size of the coefficient q with piecewise constant, and then
try to reconstruct the shape of the coefficient. In practical problems, we can
only get the measurement data gδ which is an approximate function of g, and
satisfying

‖ gδ − g ‖L2(Γ0)≤ δ,

where ‖ · ‖L2(Γ0) denotes the L2-norm on the boundary Γ0 and the constant
δ > 0 represents a noisy level.

3 Parameterization and discretization

For numerical computations, a parametrization is required. In order to deter-
mine the number, the location, the size and the shape of the coefficient with
piecewise constant within a body, two methods are introduced to parameterize
the boundary Γk of Ωk. Firstly, we parameterize the boundary Γk of Ωk using
polar coordinates as

Γk : Ok + ρk(cos t, sin t), 0 ≤ t ≤ 2π

for determining the number, the location and the size of the coefficient with
piecewise constant along with assumptions, where Ok = (Ok,1, Ok,2) is the
center of the domain Ωk and the ρk is radius.

Let xk(t) = (xk,1, xk,2) = ρk(cos t, sin t) +Ok, we have

x
′

k,1 =
dxk,1
dt

= −ρk sin t, x
′

k,2 =
dxk,2
dt

= ρk cos t.

Then we can obtain the outward unit normal

ν(xk(t)) =
(x′k,2,−x′k,1)√

(x′k,1)2 + (x′k,2)2
= (cos t, sin t).

We can use βk = (Ok,1, Ok,2, ρk) to describe the location and the size of the
piecewise constant coefficient for an inverse coefficient problem.

Secondly, in order to reconstruct the shape of the coefficient with piecewise
constant, we can parameterize the boundary Γk of Ωk as

Γk : Ok + rk(t)(cos t, sin t), 0 ≤ t ≤ 2π
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in terms of a 2π periodic smooth function rk(t) : [0, 2π]→ (0,∞), where Ok is
the centroid of the domain Ωk. In our numerical computations, we approximate
rk(t) by a trigonometric polynomial of degree less than or equal to lk, refer
to [1, 22,29], i.e.

rk(t) = ck,0 +

lk∑
j=1

[ck,j cos(jt) + ck,j+lk sin(jt)],

where ck,j ∈ R, lk ∈ N .

Similarly, let xk(t) = (xk,1, xk,2) = rk(t)(cos t, sin t) +Ok, we know

x
′

k,1 =
dxk,1
dt

= r
′

k(t) cos t− rk(t) sin t,

x
′

k,2 =
dxk,2
dt

= r
′

k(t) sin t+ rk(t) cos t.

Thus we can get the outward unit normal vector

ν(xk(t)) =
(x′k,2,−x′k,1)√

(x′k,1)2 + (x′k,2)2
.

We can use βk = (ck,0, ck,1, . . . , ck,2l) to describe the shape of the piecewise
constant coefficient for an inverse coefficient problem.

We proceed by describing the discretization of integral equations (2.7) and
(2.8). For simplification, we assume the boundary Γ0 is unit circle that the
center is the origin and set ϕk(τ) = ϕk(xk(τ)) for k = 0, . . . , 2N . Then we get

uout(xj1(t)) =

∫ 2π

0

Φout(xj1(t), x0(τ))ϕ0(τ)dτ

+

N∑
k=1

∫ 2π

0

Φout(xj1(t), xk(τ))ϕk(τ)|x
′

k(τ)|dτ, j1 = 0, . . . , N, (3.1)

uin(xj2(t)) =

N∑
k=1

∫ 2π

0

Φin(xj2(t), xk(τ))ϕN+k(τ)|x
′

k(τ)|dτ, j2 = 1, . . . , N,

where ϕ˜̀(τ) (˜̀= 0, . . . , 2N) are the unknown density on the boundary.

In terms of boundary conditions (2.5) and (2.6), we know that the density

ϕ˜̀(τ) (˜̀ = 0, . . . , 2N) are the solutions of the following system of integral
equations ∫ 2π

0

Φout(x0(t), x0(τ))ϕ0(τ) dτ

+

N∑
k=1

∫ 2π

0

Φout(x0(t), xk(τ))ϕk(τ)|x
′

k(τ)|dτ = f, (3.2)
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0

Φout(xj1(t), x0(τ))ϕ0(τ)dτ +

N∑
k=1

∫ 2π

0

Φout(xj1(t), xk(τ))ϕk(τ)|x
′

k(τ)|dτ

−
N∑
k=1

∫ 2π

0

Φin(xj1(t), xk(τ))ϕN+k(τ)|x
′

k(τ)|dτ = 0, j1 = 1, . . . , N. (3.3)

∫ 2π

0

∂Φout(xj2(t), x0(τ))

∂ν(xj2(t))
ϕ0(τ)dτ +

N∑
k=1

∫ 2π

0

∂Φout(xj2(t), xk(τ))

∂ν(xj2(t))
ϕk(τ)

× |x
′

k(τ)|dτ +
1

2
ϕj2(t)−

( N∑
k=1

∫ 2π

0

∂Φin(xj2(t), xk(τ))

∂ν(xj2(t))
ϕN+k(τ)|x

′

k(τ)|dτ

+
1

2
ϕN+j2(t)

)
= 0, j2 = 1, . . . , N. (3.4)

For the discretization of the integral equations, we note that the second
term on the left hand side of (3.2) and the first term on the left hand side of
(3.3) are smooth that the trapezoidal rule can be employed for the numerical
approximation. However, the first term on the left hand side of (3.2), the
second term on the left hand side of (3.3) have a logarithmic singularity, thus
we deal with the logarithmic singularity as follows

2πΦout(xj1(t), xj1(τ)) = − ln|sin t−τ
2
|+ ln

|sin t−τ
2 |

|xj1(t)−xj1(τ)|
, j1 = 0, . . . , N.

(3.5)
The second term on the right hand side of (3.5) is smooth with diagonal values

lim
τ→t

ln
|sin t−τ

2 |
|xj1(t)− xj1(τ)|

= − ln 2|x
′

j1(t)|, j1 = 0, . . . , N.

Therefore, the well-estimated quadrature rules for logarithmic singularities are
available. We can use the Nyström method to approximate the integral equa-
tions with weakly singular kernels in [21]. For (3.4), we know that the second
term and the fourth term on the left hand side are smooth with the diagonal
values given through the limit

lim
τ→t

2π
∂Φout(xj2(t), xj2(τ))

∂ν(xj2(t))
= − lim

τ→t

ν(xj2(t)) · [xj2(t)− xj2(τ)]

|xj2(t)− xj2(τ)|2

= −
ν(xj2(t)) · x′′

j2(t)

2|x′
j2(t)|2

, j2 = 1, . . . , N.

For the discretization of the integral equations, we should deal the third term
and the fourth term on the left hand side of (3.3) and (3.4) using an appropriate
method, respectively. Let

M(t, τ) := Φin(xj1(t), xj1(τ)) =
i

4
H

(1)
0 (i
√
σ|xj1(t)− xj1(τ)|)

for t 6= τ , we split it into

M(t, τ) = M1(t, τ) ln

(
4 sin2 t− τ

2

)
+M2(t, τ),
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where

M1(t, τ) := − 1

4π
J0(i
√
σ|z(t)− z(τ)|)

and the diagonal term for M2 is given by

M2(t, t) =
i

4
− E

2π
− 1

2π
ln

(
i
√
σ

2
|z′(t)|

)
,

where E denotes the Euler’s constant. Let

L(t, τ) : =
∂Φin(xj2(t), xj2(τ))

∂ν(xj2(t))

=

√
σ

4
H

(1)
1 (i
√
σ|xj2(t)− xj2(τ)|)

[x
′

j2(t)]⊥ · [xj2(t)− xj2(τ)]

|xj2(t)− xj2(τ)|
,

which can be decomposed in the form

L(t, τ) = L1(t, τ) ln

(
4 sin2 t− τ

2

)
+ L2(t, τ),

where

L1(t, τ) =
i
√
σ

4π
J1(i
√
σ|xj2(t)− xj2(τ)|)

[x
′

j2(t)]⊥ · [xj2(t)− xj2(τ)]

|xj2(t)− xj2(τ)|

and note that the diagonal term L2(t, t) is given by

L2(t, t) =
[x

′

j2(t)]⊥ · x′′

j2(t)

4π|x′
j2(t)|2

.

The interval [0, 2π] is partitioned as 0 = τ0 < τ1 < · · · < τm = 2π and
0 = t0 < t1 < · · · < tn = 2π where τi = ihτ (i = 0, 1, · · · ,m), tj = jht
(j = 0, 1, . . . , n) and hτ = 2π

m , ht = 2π
n are the step sizes. We denote the discrete

vector of ϕk(τ) (k = 0, . . . , 2N) as Ψk = [ϕk(τ0), ϕk(τ1), . . . , ϕk(τm−1)]T and
the discrete vectors of f(t) as follows F = [f(t0), f(t1), . . . , f(tn−1)]T .

Therefore, we can use the well-estimated quadrature rules and the trape-
zoidal rule to obtain the system of algebraic equations from the system of
integral equations (3.2)-(3.4)

AΨ = b, (3.6)

where

A =


A00 A01 · · · A0N 0 · · · 0
A10 A11 · · · A1N A1N+1 · · · A12N

. . .
. . .

. . .
. . .

A2N0 A2N1 · · · A2NN A2NN+1 · · · A2N2N

 .
Based on the discretization of the interval [0, 2π], the element Aj1j2(j1, j2 =
0, . . . , 2N) in the matrix A is an m× n matrix corresponding to an integral in
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the system of integral equations (3.2)-(3.4). We take m = n in our numerical
computations for simplicity, thus (Aj1j2)n×n is a square matrix. For example,

(A01)n×n = hτ (Φout(x0(tj), x1(τi))ϕ1(τi)|x
′

1(τi)|)n×n in the second term on the
left hand side of (3.2). Ψ = [Ψ0, Ψ1, . . . , ΨN , ΨN+1, . . . , Ψ2N ]T , b = [F, 0, . . . , 0]T .

According to (3.1), we can get the flux g on the outer boundary Γ0

g(t) =

∫ 2π

0

Φout(x0(t), x0(τ))

∂ν(x0(t))
ϕ0(τ)dτ

+
1

2
ϕ0(t) +

N∑
k=1

∫ 2π

0

∂Φout(x0(t), xk(τ))

∂ν(x0(t))
ϕk(τ)|x

′

k(τ)|dτ. (3.7)

We denote the discrete vector of g(t) as follows

G = [g(t0), g(t1), . . . , g(tn−1)]T .

According to the solution Ψ from (3.6), then we can compute the flux

G = BΨ,

where B = [B00, B01, . . . , B0N , 0, . . . , 0]. Based on the discretization of the in-
terval [0, 2π], the element B0j1(j1 = 0, . . . , N) in the matrix B is an m × n
matrix corresponding to an integral in integral equation (3.7).

4 Reconstruction algorithms for the inverse coefficient
identification problem

Our interest is to seek effective reconstruction algorithms to determine the co-
efficient q with piecewise constant. We know the inverse problem of coefficient
identification is severely nonlinear and ill-posed in the sense that quite substan-
tial changes in the coefficient may only result in extremely small changes in the
measured data. Therefore, we employ regularization techniques to the proposed
reconstruction algorithms for the inverse coefficient identification problem of
the Schrödinger equation.

We consider the objective functional

J(β) =
1

2
|F (β)− gδ|2L2(Γ0)

, F (β) =
∂uout(·, β)

∂ν
,

where gδ are the measured data and

β = (O1,1, O1,2, ρ1, . . . , ON,1, ON,2, ρN ) ∈ R3N ,

or
β = (c1,0, . . . , c1,2l1 , . . . , cN,0, . . . , cN,2lN ) ∈ R2(l1+...+lN )+N .

The inverse coefficient identification problem is a nonlinear least squares
optimization problem. To our knowledge, there are many iterative methods
to solve this nonlinear least squares optimization problem. Nonlinear least
squares methods involve an iterative improvement to parameter values in order
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to reduce the sum of the squares of the errors between the measured data
points and the function. Starting with an initial guess β(0), our proposed
reconstruction algorithms proceed by the iterations

β(s+1) = β(s) +4,

where 4 is the increment vector.

4.1 Levenberg-Marquardt algorithm (LMA)

LMA [23, 24] is used to solve nonlinear least squares problems which is also
known as the damped least-squares method. LMA interpolates between the
Gauss-Newton algorithm and the method of gradient descent. LMA is more
robust than the Gauss-Newton algorithm, which means that in many cases it
finds a solution even if it starts very far off the final minimum. LMA can also
be viewed as Gauss-Newton using a trust region approach. LMA is a very
popular curve-fitting algorithm used in many software applications for solving
generic curve-fitting problems.

The derivative of F (β) with respect to the parameters β is given by

F ′(β) =
∂∇βuout(·, β)

∂ν
.

Therefore, the increment vector 4 that updates the parameters given by

4 = (F ′(β)TF ′(β) + αdiag(F ′(β)TF ′(β)))−1F ′(β)T (F (β)− gδ),

where α is a regularization parameter. So we can get the final iteration rela-
tionship

β(s+1) = β(s) +4(s). (4.1)

For LMA, a key issue is to choose the regularization parameter α. A wise
choice of regularization parameter is obviously crucial to obtaining useful ap-
proximate solutions to ill-posed problems, there are well-studied techniques for
computing a good regularization parameter, such as the discrepancy princi-
ple [25], the generalized cross-validation (GCV) [13], the L-curve [15] and so
on. In this paper, we are interested in a-posteriori rules α for choosing the
regularization parameter when minimizing J(β). Based on the iteration rela-
tionship (4.1), this algorithm for choosing the regularization parameter α is
shown in the following.

(1) If F ′(β)TF ′(β) is nonsingular, the iteration process is convergent, then
α = 0.

(2) If F ′(β)TF ′(β) is singular, we take the maximum singular value as λmax
and the minimum singular value as λmin by the singular value decomposition.
Let the initial regularization parameter α(0) = (λmax + λmin)/2, to start the
iterative process.

(3) In the iterative process, if the value of J(β) increases with the number of
iterations, iteration stops and returns the modified value of the regularization
parameter. In general, we take the half of the the maximum singular value λmax

Math. Model. Anal., 22(3):352–372, 2017.
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and the current regularization parameter as a new regularization parameter,
i.e., α(s+1) = (λmax + α(s))/2. If the value of J(β) decreases with the number
of iterations, we take α(s+1) = α(s).

(4) When J(β) meets the requirement of computation, for instance, J(β) <
ε for a threshold value ε, then the current regularization parameter is optimal.

4.2 Trust-Region-Reflective optimization algorithm (TRA)

TRA is a trust region approach for minimizing a nonlinear function subject to
simple bounds. TRA does not require that a quadratic programming subprob-
lem, with inequality constraints, be solved in each iteration. Instead, a solution
to a trust region subproblem is defined by minimizing a quadratic function sub-
ject only to an ellipsoidal constraint which is based on the interior-reflective
Newton method described in [7, 8]. TRA use the method of preconditioned
conjugate gradient to solve a large linear system each iteration. The derivative
of F (β) with respect to the parameters β is given as follows

F ′(β) =
∂∇βuout(·, β)

∂ν
.

Let the increment 4 be the solution of the quadratic subproblem

min
4∈Rn

{ψ(∆) = F ′(β)T4+
1

2
4TM4 : |B4| ≤ Λ},

where B is a positive diagonal scaling matrix, see [7, 8], and Λ is a positive
scalar representing the trust region size, and

M(β) = F ′(β)TF ′(β) +Bdiag(F ′(β))diag(sign(F ′(β)))B.

We can get the piecewise linear reflective path p(α) in terms of the initial
descent direction 4. In order to obtain an acceptable step-size α, we should
minimize the functional J(β(s) + p(α)) with respect to α, see [7] for detail.
Therefore, we have the final iteration relationship

β(s+1) = β(s) + p(α(s)). (4.2)

5 Examples

In this section, we want to examine the applicability of our proposed recon-
struction algorithms through some numerical examples. The noisy measured
data are generated by

gδ = g(1 + δ rand(size(g)),

where g is the exact data, rand(size(g)) is a random number uniformly dis-
tributed in [−1, 1] and the magnitude δ indicates a relative noise level. In
practical applications, the value of the contact resistance of the electronic de-
vice is less than 0.1 Ohm. In our examples, we take σ = 0.01 Ohm.
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5.1 Determining the number of the coefficient with piecewise con-
stant

In order to estimate the number of sub-domains with constant coefficients when
N is bounded by a known integer M , then we parameterize the boundary Γk
of Ωk as Γk : Ok + ρk(cos t, sin t), 0 ≤ t ≤ 2π, along with βk = (Ok,1, Ok,2, ρk),
that is, we use the circle to approximate sub-domains with constant coefficients
for every iteration.

We propose two criteria to determine the number of sub-domains with con-
stant coefficients. For a given estimate of the level of noise in gδ, we estimate a
threshold value of lower bound εδ. Assume a set of circles {Ok},k ∈ Z+, if for
every k1 ∈ Z+, there exists a k2 ∈ Z+ such that the Hausdorff distance between
the two circles satisfies d(Ok1 , Ok2) < εδ, we call the set {Ok} is connected.
Our proposed two criteria are the following:

Criterion 1: on the one hand, the circle, whose radius is less than εδ, does
not take as a sub-domain with piecewise constant coefficient. On the other
hand, the circle, whose radius is bigger than εδ, is viewed as a sub-domain with
piecewise constant coefficient.

Criterion 2: the set of circles, which is connected, can be viewed as a sub-
domain with piecewise constant coefficient.

Based on the above criteria, we can determine the number N of sub-domians
with piecewise constant coefficients according to the threshold value εδ.

Example 1. In this case, we suppose the coefficient is a peanut whose polar
radius is parameterized by

r(t) =
8

25

√
(cos t)2 + (

sin t

2
)2, 0 ≤ t ≤ 2π.

Assume the upper bound is M = 2 as the possible number of the coefficient
with piecewise constant. The results are shown in Figure 2

Table 1. The reconstructed radius ρ of different cases with two circles in Figure 2 for
Example 1

ρ ρ1 ρ2

ρ(0) 0.02 0.02
(a) 0.0244 0.2457
(b) 0.1830 0.1445
(c) 0.0000 0.2933
(d) 0.2511 0.0001

TRA is employed to detect the number of the coefficient with piecewise
constant along with 0.01 noise level. We take the radiuses ρ(0) = 0.02 as the
starting guess for every sub-domain with constant. We can use the iteration
relationship (4.2) to update the β . From Figure 2 and Table 1, we take the
parameters threshold value εδ = 0.025, 0.0001, 0.0002, then we can obtain the

Math. Model. Anal., 22(3):352–372, 2017.
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(b) ρ(0) = 0.02
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(c) ρ(0) = 0.02
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(d) ρ(0) = 0.02

Figure 2. Apply TRA to detect the number of the coefficient with piecewise constant
along with exact solution (red), initial guess (black) and recovered solution (blue),

respectively for Example 1

number N = 1 of sub-domains with the proposed Criterion 1 for Figures 2 (a),
(c) and (d), respectively. In Figure 2 (b), two circles intersect which can be
seen as a sub-domain in terms of the proposed Criterion 2. We can obtain the
same results as TRA by LMA.

5.2 Determining the location and the size of the coefficient with
piecewise constant

We employ LMA and TRA to determine the location and the size of the
coefficient with piecewise constant. In this sub-section, we assume that the
number of sub-domains with constant coefficient is given. We parameterize
the boundary Γk of Ωk as Γk : Ok + ρk(cos t, sin t), 0 ≤ t ≤ 2π, along with
βk = (Ok,1, Ok,2, ρk). That is, we use the centre of a circle and the radius to
approximate the location and the size of sub-domains, respectively.

Example 2. The sub-domain with constant coefficient is a peanut or a peach or
a pear or a bean. The exact centroid is (0.1, 0.3). Polar radius of a peanut is
parameterized by

r(t) =
8

25

√
(cos t)2 + (

sin t

2
)2, 0 ≤ t ≤ 2π,
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polar radius of a peach is parameterized by

r(t) =
6

25
− 1

15
sin t− 1

35
sin(3t), 0 ≤ t ≤ 2π,

polar radius of a pear parameterized by

r(t) =
6

25
+

1

20
cos(3t), 0 ≤ t ≤ 2π

and polar radius of a bean is parameterized by

r(t) =

(
1

5
+

9

50
cos t+

3

100
sin(2t)

)
/

(
1 +

7

10
cos t

)
, 0 ≤ t ≤ 2π.
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(a) α = 0.2168 , ε = 10−5

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) α = 0.4566 , ε = 10−5

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) α = 0.2381 , ε = 10−5
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(d) α = 0.3556 , ε = 10−5

Figure 3. (a) Peanut; (b) peach; (c) pear; (d) bean. Apply LMA to determine the
location O and the size ρ of the coefficient along with exact solution (red), initial guess

(black) and recovered solution (blue), respectively for Example 2

We apply LMA and TRA to determine the approximate centroid location
and the size of the coefficient along with 0.01 noise data, see Figures 3 and
4, respectively. To our proposed reconstruction algorithms, the starting guess
is flexible and elegant. We take (0.4, 0.1, 0.01) as a starting guess in Figure
3 and 4. From Figures 3, 4 and Table 2, we can see that the more accurate
approximation of the location and the size is obtained for our different cases
by LMA and TRA.
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Table 2. The approximate location and the size of the coefficient with piecewise constant
using LMA and TRA with exact solution (ES) and the starting guess (SG) along with 1%
noise data for Example 2

(a) (b)

ES (0.1,0.3,ρ) (0.1,0.3,ρ)
SG (0.4,0.1,0.01) (0.4,0.1,0.01)
LMA (0.1057,0.2857,0.2689) (0.1026,0.2484,0.2241)
TRA (0.1050,0.2855,0.2686) (0.1024,0.2483,0.2241)

(c) (d)

ES (0.1,0.3,ρ) (0.1,0.3,ρ)
SG (0.4,0.1,0.01) (0.4,0.1,0.01)
LMA (0.1026,0.2846,0.2586) (0.1346,0.2829,0.1975)
TRA (0.1022,0.2844,0.2586) (0.1345,0.2828,0.1973)
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(d)

Figure 4. (a) Peanut; (b) peach; (c) pear; (d) bean. Apply TRA to determine the
location O and the size ρ of the coefficient along with exact solution (red), initial guess

(black) and recovered solution (blue), respectively for Example 2

Example 3. We consider two sub-domains with piecewise constant coefficient
which are a peanut and a pear, and take the centroid as O1(−0.2, 0.4) and
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O2(0.1,−0.4). Polar radius of a peanut is parameterized by

r(t) =
4

25

√
(cos t)2 +

(
sin t

2

)2

, 0 ≤ t ≤ 2π

and polar radius of a pear is parameterized by

r(t) =
3

25
+

1

40
cos(3t), 0 ≤ t ≤ 2π.
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(a) LMA
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(b) TRA

Figure 5. Apply LMA and TRA to determine the location and the size of the coefficient
along with exact solution (red), initial guess (black) and recovered solution (blue),

respectively for Example 3

Table 3. The approximate location and the size of sub-domains with the constant using
LMA and TRA with exact solution (ES) and the starting guess (SG) along with 1% noise
data for Example 3

ES (-0.2,0.4,ρ) (0.1,-0.4,ρ)

SG (-0.3,0.3,0.01) (0.2,-0.3,0.01)

(a) (-0.2016,0.4021,0.1184) (0.1014,-0.3956,0.1279)

(b) (-0.1997,0.3955,0.1208) (0.1028,-0.3912,0.1295)

We apply LMA and TRA to determine the location and the size with the
same starting guess. In Figure 5, we can get the more accurate approximate
centroid location and the size of sub-domains along with 0.01 noise data. From
Figure 5 and Table 3, we know that we can obtain the better results for the
location and the size of the coefficient with piecewise constant.

5.3 Reconstructing the shape of the coefficient with piecewise con-
stant

In this sub-section, we apply LMA and TRA to recover the shape of the coef-
ficient with piecewise constant. We assume that the number, the location and

Math. Model. Anal., 22(3):352–372, 2017.
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the size of sub-domains are known. The boundary Γk of Ωk is described as
Ok + rk(t)(cos t, sin t), where Ok is the centroid of the domain Ωk and rk(t) is
a real-valued function of 0 ≤ t ≤ 2π along with βk = (ck,0, ck,1, · · · , ck,2lk). We
use βk to describe the shape of the piecewise constant coefficient for an inverse
coefficient problem.

Example 4. We consider the shape of the coefficient is a peanut or a peach or
a pear or a bean.
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(a) l = 2,c
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0 = 0.2686,ε = 10−5
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(b) l = 3,c
(0)
0 = 0.2241,ε = 10−5

Figure 6. (a) Peanut; (b) peach. Apply TRA to reconstruct the shape of the coefficient
with the accurate data along with exact solution (red) and recovered solution (blue),

respectively for Example 4

In Figure 6, we take the location and the size as a starting guess in Ta-
ble 2. Then we employ TRA to reconstruct the shape of the peanut and the
peach along with the accurate data for Figure 6(a) and Figure 6(b), respec-
tively. From Figure 6, we can see that we can not accurately reconstruct the
boundary of sub-domain with constant coefficient even if we adopt the accurate
data. However, our results are reasonable. We know that we use the computed
solution to approximate the exact one, the calculation error is produced. More-
over, we discrete the system of integral equations, the discretization error also
can produce. Thus the data in the process of iterations have some errors even
if the starting input data are accurate.

In Figures 7 and 8, we take the location and the size as a starting guess in
Table 2, then we employ LMA and TRA to recover the shape of the coefficient.
For LMA, we take regularization parameters α = 0.3124, 0.7773, 0.0290, 0.0279
for Figure 7(a), 7(b), 7(c) and 7(d) along with ε = 10−5, respectively. Figures
7 and 8 show that numerical algorithms work well to reconstruct the shape of
the coefficient.

Example 5. We employ TRA to reconstruct the shape of two sub-domains with
constant coefficient.

We try to reconstruct two sub-domains with constant coefficient using TRA.
We take the location and the size from Table 3(a) as a starting guess to re-
cover the shape of two sub-domains with constant coefficient in Figure 9(a).
For Figure 9(b), we fix the exact location at (−0.1,−0.3) and (0.5, 0.1), take
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(c) l = 3,c
(0)
0 = 0.2586
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(d) l = 2,c
(0)
0 = 0.1975

Figure 7. (a) Peanut; (b) peach; (c) pear; (d) bean. Apply LMA to reconstruct the
shape of the coefficient with 1% noise data along with exact solution (red) and recovered

solution (blue), respectively for Example 4

the size 0.01 as the starting guess, and then use TRA to reconstruct the shape
of two sub-domains with constant coefficient. Figure 9 shows that our pro-
posed numerical algorithm is effective to recover the coefficient with piecewise
constant.

6 Conclusions

In this paper, we consider an inverse coefficient identification problem for the
Schrödinger equation. We want to seek stable reconstruction algorithms to
determine the number, the location, the size and the shape of the coefficient
with piecewise constant form noise data on the boundary. Our advantage is to
recover the shape of the coefficient with piecewise constant within a body along
with the number unknown. This inverse problem is nonlinear and ill-posed.
Thus we should consider regularization techniques in our proposed numerical
algorithms. We propose two iterative regularization algorithms to detect the
salient features of the coefficient with piecewise constant. Numerical examples
show that the proposed reconstruction algorithms are efficient, feasible and
stable to reconstruct sub-domains with constant coefficients.
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(c) l = 3,c
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0 = 0.2586

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) l = 2,c
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Figure 8. (a) Peanut; (b) peach; (c) pear; (d) bean. Apply TRA to reconstruct the
shape of the coefficient with 1% noise data along with exact solution (red) and recovered

solution (blue), respectively for Example 4
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(a) l1 = 3, l2 = 2
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(b) l1 = l2 = 0

Figure 9. Apply TRA to reconstruct the shape of the coefficient with piecewise constant
along with 1% noise data along with exact solution (red) and recovered solution (blue),

respectively for Example 5
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