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Abstract. The World Wide Web (WWW) has become the largest repository of information in the 
world, providing a data stream that grows at the same time as the scope of the Internet does in so-
ciety. As with most Information and Communication Technologies (ICTs), its digital nature makes 
it easy for computer programs to analyze it and discover information. This is why it is being increas-
ingly explored as a source of new indicators of technology, economics and development. Web-based 
indicators can be made available on a real-time basis, unlike delayed official data releases. In this 
paper, we examine the viability of monitoring firm export orientation from automatically retrieved 
web variables. Our focus on exports is consistent with the role of internationalization in economic 
development. To evaluate our approach, we first checked to what extent web variables are capable 
of predicting firm export orientation. Once these new variables are validated, their automated re-
trieval is assessed by comparing the predictive performance of two nowcast models: one considering 
the manually retrieved web variables, the other considering the automatically retrieved ones. Our 
results evidence that i) web-based variables are good predictors for firm export orientation, and ii) 
the process of extracting and analyzing such variables can be entirely automated with no significant 
loss of performance. This way, it is possible to nowcast not only the export orientation of a firm, but 
also of an economic sector or of a region.

Keywords: automatic indicators, Big Data, corporate websites, export, monitoring, nowcasting, 
web data mining.

JEL classification: C8, C63, F17, L60.

Introduction

New information is being published daily on the WWW, which has become the largest 
public source of real-time information in the world. This increased amount of online in-
formation is known as “Big Data”, which are transforming the economy and society. This 
data revolution is called to change, in the near future, the landscape of economic policy and 
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research (Einav, Levin 2013; Varian 2014) as it is the main driver of the process of social 
change in the ICTs era. As the scope of web technology in society grows, the data stream 
increases, which makes people even thirstier for information. This kind of loop process 
ends up with lots more information posted and updated on the net (Edelman 2012; Einav, 
Levin 2013). In fact, the WWW has changed the way people and companies interact and 
communicate. For these reasons, web technology doubtlessly opens up the possibility of 
improving economic and social policy and research, and has the potential to become the 
reference for real-time information.

The digital nature of the WWW makes it easy for computer programs to explore and 
analyze its contents, which enables automatic knowledge discovery and lowers the cost of 
the information retrieval process (Edelman 2012). Such automatic information extraction 
opens up the possibility to build up-to-date indicators, which can be useful for a wide 
range of purposes. This is especially interesting for computing real-time economic indica-
tors without waiting for official data, which are usually released after a long delay. In the 
particular context of the increasing economic globalization, a topic of much interest about 
the economy is the engagement in international commerce.

Establishing in foreign markets contributes to the long-term development of firms and 
economies (Miskinis, Reinbold 2010; Zeng et al. 2012). Within the existing alternatives to 
establish in foreign markets, export is considered the easiest and fastest one. In addition, it 
represents an attractive and manageable opportunity for firms independently of their size 
(Nassimbeni 2001; Majocchi et al. 2005). Export-oriented companies contribute to increase 
the competitiveness of an economy, since they become more proactive and adaptable to 
turbulent environments. For these reasons, exports figure prominently in the minds of 
policymakers (Girma et al. 2004).

To properly design and control export promotion policies, an accurate monitoring sys-
tem should be implemented. However, current monitoring systems entail some concerns, 
such as the cost of producing the indicators, over-aggregation of data and the lag between 
implementing a specific policy and its effect on overseas sales (Wholey, Hatry 1992; Spence 
2003). Policy monitoring can be enriched by obtaining firm-level data in real time, which 
would turn it into a continuous process with a higher level of granularity. This would allow 
to immediately collect changes in the microeconomic situation to improve their identifica-
tion and understanding for researchers and policymakers.

In addition to the chance offered by technology to apply Big Data analysis on real-
time data, the WWW has the ability to remove a number of geographic constraints and to 
facilitate instant communication worldwide, thus empowering exports (Dholakia, Kshe-
tri 2004; Vivekanandan, Rajendran 2006). Therefore, corporate websites could reflect the 
export orientation of firms in different ways, a reflection which would gradually grow as 
Internet penetration deepens. Confirming this tendency, a previous work demonstrated 
that adoption of web technology and some web features are good predictors of firms’ export 
orientation (Blazquez, Domenech 2014). Unfortunately, this proposal to obtain an indicator 
of export orientation with web-based variables relies on a manual retrieval, which renders 
them inappropriate for designing a real-time monitoring system.
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Given the importance of exports to the evolution of an economy, the availability of a 
new source of prompt information about firm export orientation becomes especially useful. 
This paper focuses on developing a new monitoring method which relies on automatically 
obtaining an indicator for the export orientation of firms by analyzing their corporate web-
sites. This way, we can design a model for nowcasting not only the export orientation of 
a firm, but also of an economic sector or of a region. Nowcasting models exploit the early 
availability of variables correlated with the target one to obtain an “early estimate” before 
the official figure becomes available (Choi, Varian 2009; Bánbura et al. 2013). These real-
time estimates can help policymakers to make informed decisions earlier.

To evaluate our proposal, we build a regression model in a first step with manual web-
based variables and compare its predictive performance to a baseline model with firm 
economic variables. In a second step, after validating the web variables, we check the use-
fulness of their automatic version by comparing the predictive performance of the manual 
model to that of an automatic one. Hence this paper has two objectives: to examine the 
ability of some web-based variables to infer firms’ export orientation; and to validate their 
automatic retrieval so that a nowcast model, which constitutes a real-time monitoring sys-
tem, can be implemented.

The remainder of the paper is organized as follows. Section 1 reviews some related 
research on the automatic extraction of web features and nowcasting, linking web activi-
ties to the economy and on the website features that are expected to be related to firms’ 
export orientation. Section 2 describes the data used to carry out the performance analysis 
and shows the results for the baseline model and the manual web-based model. Section 
3 explains the construction and validation of the automatic variables, and analyzes the 
prediction performance of the proposed automatic model. The last section draws some 
concluding remarks and provides directions for future work.

1. Theoretical background

This section provides background on linking web activities to firms’ characteristics and 
on the automatic extraction of web features. First, we review the related literature; second, 
we focus on some website features that could provide valuable information on the export 
orientation of firms; finally, we review some firms’ economic characteristics which have 
been usually related to export behavior.

1.1. Web data mining for science and economic indicators

The digital nature of the WWW makes it easy for computer programs to explore and ana-
lyze its contents, thus enabling Big Data techniques and automatic knowledge discovery. 
In this context, the automatic extraction of web indicators for economic purposes is an 
incipient research topic, although similar methods have been formerly applied to other 
purposes such as obtaining indicators for scientific production.

The first approach to systematically use the web as a source of information is the webo-
metrics. These indicators rely on analyzing web page links to compute similar measures to 



Technological and Economic Development of Economy. 2018, 24(2): 406–428 409

some widespread bibliometrics indicators. The first related work attempted to equate hyper-
text links with publication cites to generate similar indicators to impact factors (Ingwersen 
1998; Smith 1999). The main drawback of this approach is that the large heterogeneity found 
in the web hinders the reliability of such indicators (Smith 1999; Vaughan, Hysen 2002). 
However, this heterogeneity was not a limitation when the scientific production of universi-
ties or nations was analyzed (Wilkinson et al. 2003; Scharnhorst, Wouters 2006; Heimeriks 
et al. 2008). More recent research has successfully focused on economic topics, such as 
obtaining indicators for the financial situation of banks (Vaughan, Romero-Frias 2010).

Another noteworthy approach to obtain economic indicators from web data is using 
reports generated by Google Trends (GT). This tool provides up-to-date reports on the vol-
ume of web search queries with some specific text. These data can be used to nowcast some 
economic variables because some specific text querying (e.g., “apply for unemployment 
benefits”) might correlate with some particular aspect of economy (e.g., unemployment). 
Since they were first introduced as an economic indicator by Choi and Varian (2009), 
nowcasting models with GT data have been applied to a number of situations, such as 
proposing indicators for investors’ attention (Da et al. 2011), tourist arrivals (Bangwayo-
Skeete, Skeete 2015), business performance (Vaughan 2014), transaction volumes on the 
stock market (Preis et al. 2010; Moat et al. 2014), and well-being (Askitas, Zimmermann 
2015). Although GT can supply useful hints on the economic activity at an aggregate level, 
its ability for characterizing individual firms is limited because it only provides data about 
what users demand.

Individual firm strategies can be better observed on their corporate websites. In this 
context, Libaers et  al. (2010) constructed a taxonomy of technology commercialization 
models by counting the appearance of some keywords on firms’ websites. This analysis 
was conducted by automating Google queries with each potentially related keyword. The 
keyword analysis method for tracking firms’ strategies has also been used by Youtie et al. 
(2012) and by Arora et al. (2013) in the emerging technologies context.

Beyond the keyword analysis, the first attempt to combine different website features to 
perform a completely automatic analysis of corporate websites to retrieve economic indica-
tors was introduced by Domenech et al. (2012). This research work presented an architec-
ture for a web data mining system that manages the download and analysis of corporate 
websites. The proposed system was applied to find web-based indicators for the size of 
companies. In this paper, we extend this system to deal with website features related to the 
export orientation of firms. Section 3 provides more details on the system implementation.

1.2. Export-related indicators built from website features

Web technologies and online platforms have made it possible for companies, independently 
of their size, to enter new markets and to increase their export sales thanks to the removal 
of geographical constraints and the instant communication all over the world. In fact, the 
WWW can at once remove some organizational and resource constraints which exporting 
presumably entails (Vivekanandan, Rajendran 2006; Sinkovics et al. 2013).

At an aggregate level, a number of recent studies revealed that the Internet stimulates 
trade. For instance, it has been checked that expanding Internet use improves information 
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availability, reduces trade-related costs (informational and transactional, among others) 
and boosts exports. Moreover, it has been found that an increase in the number of Internet 
users reduces asymmetric information, increases the business competition level and cuts 
fixed trade costs, thus contributing to export growth, as verified in the food and manufac-
turing industries (Clarke, Wallsten 2006; Bojnec, Fertö 2009, 2010).

Focusing on the WWW, the work by Freund and Weinhold (2004) revealed that growth 
in the number of websites in a country explains its export growth in the following year, 
since the Internet reduces market-specific fixed costs of trade. In addition, the WWW 
is useful for increasing firm’s visibility and potential customers, and to also improve op-
erational efficiency. This is due to its capacity to make communications and transactions 
easier and less expensive, which means important efficiency gains (Dholakia, Kshetri 2004; 
Kažemikaitiene, Bilevičiene 2008; Berthon et al. 2012).

Corporate websites have been used in previous works to infer firms’ economic charac-
teristics. In line with this, Overbeeke and Snizek (2005) reviewed company websites to find 
indicators of corporate culture, while Meroño-Cerdan and Soto-Acosta (2007) related web 
content to firm performance. Similarly, Llopis et al. (2010) used corporate website contents 
to analyze firm strategies. Firm export orientation can also be found on website adoption, 
as described by Blazquez and Domenech (2014). Therefore at an individual firm’s level, a 
number of website features could be linked to company international strategies.

For all these reasons, we review how different website features could provide valuable 
information on the export orientation of firms. The objective is to verify whether these fea-
tures differ between the corporate websites of exporters and non exporters, thus enabling 
to build a web-based predictive model. To do so, we classified web features in two different 
groups according to their nature: the “Web presence” group and the “Content-based” group.

Web presence variables
The first group of variables is related to how and when firms implement a corporate 

website. It includes two variables, namely the domain name age and top-level domain code.
Experienced firms are usually more likely to export as they have had time to increase 

their knowledge and accumulate useful resources for internationalization (Majocchi et al. 
2005; Fernández, Nieto 2006). Firms with more experience on the Internet could follow 
this same pattern towards export.

The domain name is the main identifier of a company on the Internet. The date on 
which a domain name is registered suggests the approximate date when a company started 
to go online (Scaglione et al. 2009), despite the temporal gap between a domain name be-
ing registered and a website being implemented (Murphy et al. 2007). Hence, the domain 
name age is related to the firm’s experience in the Internet. As older firms usually own older 
domains, having an older domain could be indicative of a greater propensity to export.

The top-level domain (TLD), as part of the firm’s Internet name, is either an ISO coun-
try code (e.g., .es for Spain) or a generic code (e.g., .com). According to Murphy and Scharl 
(2007), using a country code or a generic one reflects local or global interests, respectively. 
In addition, it is an important decision in the company’s e-branding strategy (Ibeh et al. 
2005). Thus, its election could be related to the firm’s strategic orientation.
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Current exporters or companies which intend to start exporting in the near future 
would prefer to choose any generic domain code to establish its presence on the Internet, 
as they have a more international profile. Therefore, a generic top-level domain could be 
positively related to the firm’s export orientation.

Content-based variables
This group of variables refers to the contents and functions available in corporate web-

sites. It includes two variables, namely the foreign language version and presence of export-
related keywords.

Offering websites in more than one language is usually related to greater marketing ef-
fectiveness (Lee, Morrison 2010). Moreover, deploying multilingual websites helps firms to 
succeed in reaching their target markets and to better deal with clients and suppliers as the 
cultural language barrier disappears and users feel more confident. In fact offering a multi-
lingual website helps firms gain a competitive advantage in the global market, and enables 
them to reach a larger number of potential customers (Samiee 2008; Escobar-Rodríguez, 
Carvajal-Trujillo 2013). Therefore, a website being available in more than one language 
could be related to the foreign target markets of companies.

Across all languages, English seems the most natural option for exporting firms in non 
English speaking countries as it is the most widely used language in international busi-
nesses.

The WWW is being used as a marketing media by firms. Through their websites, firms 
can provide information about the markets and countries where they operate and can 
describe their products and services without limitations. This way, they can easily reach 
more potential customers throughout the world (Dholakia, Kshetri 2004; Vivekanandan, 
Rajendran 2006; Berthon et al. 2012).

Motiwalla et al. (2005) suggest that websites allow companies to gain marketing effi-
ciencies. One fact that this relies on is that website information origination costs are lower 
than for printed catalogues (Bennett 1997). These characteristics make websites appealing 
for companies so that they can include as much information about themselves as they con-
sider necessary. In this way, business strategies can emerge on the WWW and they can be 
monitored by the presence of key terms, as demonstrated by recent research (Youtie et al. 
2012; Arora et al. 2015).

For these reasons, if a firm is selling abroad or intends to reach new markets, it is likely 
that information about these matters is provided in its corporate website. These activities 
can be tracked by detecting the presence of certain keywords on websites. Consequently, 
presence of trade-related keywords on a corporate website could be positively related to 
the firm’s export orientation.

1.3. Structural variables related to export orientation

To assess the prediction performance of the web-based variables, a baseline predictive 
model was built using the firms’ structural variables which have been traditionally related 
to their export propensity. These included the size, labor productivity and age of the firm.
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Firm size
Firm size has been usually related to firm enrollment and performance in international 

activities. Its effect can differ depending on the industry and other variables considered for 
prediction, as shown in the literature. On the one hand, some authors emphasize that firm 
size positively impacts export behavior, as stated by the stage theory of internationalization. 
Larger firms have more resources, so they are better equipped to deal with the interna-
tionalization challenge (Majocchi et al. 2005; Fernández, Nieto 2006). On the other hand, a 
number of studies have revealed that firm size is not a restriction in export performance. In 
fact, it is argued that firm size influences the firm’s decision to enter international markets 
only when it remains under some specific level (Bonaccorsi 1992; Pla-Barber, Alegre 2007).

Firm labor productivity
The literature shows that exporters are generally more productive than non exporters. It 

is argued that this could be due to two alternative effects: the “learning-by-exporting” effect 
and the “self-selection” effect. The first establishes that the higher productivity of export-
ers comes from the international experience and knowledge that they acquire from their 
presence in international markets. The latter states that the most productive firms decide to 
enroll in exporting activities because they are better positioned to succeed and to recover 
the sunk costs associated with entering foreign markets. As pointed out in the literature, 
both effects may co-exist (Bernard, Jensen 1995; Girma et al. 2004; Andersson et al. 2008). 
Among others, a frequently employed measure for firm performance is labor productivity.

Firm age
The firm’s age, which is taken as a proxy to its experience, has been usually considered 

in the literature as being related to export orientation. However, results between different 
studies diverge. Some authors have found a positive relationship between the firm’s age and 
its export behavior in both propensity and intensity terms. This can be explained because 
they have had more time to increase their knowledge, resources and capabilities, which 
are useful business tools to face the internationalization challenge (Majocchi et al. 2005; 
Fernández, Nieto 2006).

Other studies have concluded that the firm’s age is not that related to export behavior 
or that it has a negative effect, which is in line with the “born-global” phenomenon. This 
maintains that there are firms which have expanded into foreign markets since they were 
set up and did not need much time or lots of resources because of the role of innovation 
and ICTs (Baldauf et al. 2000; Andersson et al. 2004). The differences between studies could 
be due to two co-existing effects: the greater solidity and experience of older firms, which 
imply better conditions for exporting and, at the same time, the more receptive and flexible 
nature of younger firms, which can make it easy to adapt to the current quick changes in 
trends and markets.
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2. Using web-based variables to infer firm export orientation

2.1. The sample

The sample for this study included 350 manufacturing companies (NACE Rev. 2 codes 10-
33) with corporate website established at the Region of Valencia, in east Spain. According 
to INE (2012), the rate of industrial companies with website in this region is 75.9%, similar 
to the rest of Spain (75%). The sample was retrieved through a simple random sampling 
design from the SABI1 database. As the list of corporate websites provided by SABI was 
incomplete, the missing website URLs were obtained by querying a search engine with the 
company’s name or its VAT number, given that Spanish regulations make firms include this 
information in their websites. From each website, the following web-based variables were 
manually retrieved and coded at the end of 2012:

 – Domain name’s age (DOM_AGEi): Continuous variable measured as the number of 
years since the corporate website domain name was registered. It was computed from 
the information available in the Internet whois service.

 – Top-level domain (TLDi): Dichotomous variable that takes a value of 1 if the TLD of 
the corporate website was generic.

 – English version (ENi): Dichotomous variable that takes a value of 1 if the corporate 
website had a functional English version available.

 – Export-related keywords (KEYWORDSi): Dichotomous variable with a value of 1 if 
the website contained any term associated with exportation. A word list2 containing 
key terms potentially connected to export orientation was prepared and searched for 
by querying Google with each term on each website using the advanced search tool. 

In order to validate our proposal, this set of web-based variables was supplemented 
with some economic characteristics of the firms. This information was collected from the 
companies’ financial statements, available in SABI, and the records of exporters of the 
Spanish Institute for Foreign Trade (ICEX) and the Spanish High Council of Chambers of 
Commerce. After downloading the websites, we had to wait more than one year to access 
to the economic information from year 2012, as it is made available with delay. Once our 
proposal is validated, we will be able to provide frequent estimations about firm export ori-
entation without relying on official sources of data. The following variables were included:

 – Size of the firm (SIZEi): Continuous variable measured by the logarithm of the num-
ber of employees in the firm.

 – Firm’s labor productivity (LPi): Continuous variable measured as the value added 
per employee.

 – Age of the firm (AGEi): Continuous variable measured as the number of years since 
the firm was established.

 – Firm’s industry (INDUSTRYi): Vector of binary variables for two-digit NACE Rev. 2 
codes used to control for specific industry effects. It included 14 variables, of which 

1 SABI: Sistema de Análisis de Balances Ibéricos. It is published by Bureau van Dijck. It includes information about 
5,000 active manufacturing firms with website in the Region of Valencia.

2 The terms included in the word list (mostly Spanish) were: Continental; continente; continentes; export; exporta; 
exportación; exportaciones; exportamos; exportando; exporter; extranjero; globalización; internacional; interna-
cionales; internacionalización; mundial; países. These keywords were selected from our experience after visiting 
many corporate websites.
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13 corresponded to different industry categories with at least 10 companies in the 
sample. The remaining one gathered all those firms in sectors with fewer than 10 
companies in the sample. Ensuring that each variable controls for 10 companies or 
more allowed us to avoid overfitting.

 – Export orientation (EXPORTi): Dichotomous variable that takes a value of 1 if the 
firm was enrolled in exporting activities. It is the dependent variable in the predic-
tion models.

2.2. Data analysis

First, some descriptive statistics were obtained, as Table 1 shows. Firms with export activi-
ties accounted for 48.29% of the sample. It can be observed that the majority of the com-
panies owned a generic domain. It is also remarkable that the mean firm age (20.24 years) 
was much larger than the mean domain name age (8.60 years). This means that firms have 
little experience in the Internet and that its adoption is a relatively recent practice, which 
predictably will continue to expand. In addition, the absence of high correlations (>0.7) 
among the variables means that there was no high risk of information redundancy and 
multicollinearity when estimating the prediction models.

Table 2 reflects the sector distribution of the firms in the sample. The metal products, 
textiles and furniture industries, which are highly representative of the Valencian manu-
facturing sector (Molina-Morales et al. 2011), predominate the sample.

In order to test whether the variables behaved differently depending on the firm’s ex-
port orientation, statistical techniques of group differences were employed. Normality and 
homogeneity of variance were checked both graphically and numerically for the continuous 
variables. As none of the variables fulfilled both assumptions, the nonparametric U Mann-
Whitney test was employed. For the case of the binary variables, the Pearson’s Chi-squared 
test was employed (Anderson et al. 2014). The results of these analyses are reported in Table 3.

Table 1. Descriptive statistics and correlation matrix3

Variable Mean SD 1 2 3 4 5 6 7
1. EXPORTi 0.48 0.50
2. DOM_AGEi 8.60 4.15 0.36***

3. TLDi 0.73 0.44 0.01 0.12**

4. ENi 0.39 0.49 0.56*** 0.42*** 0.06
5. KEYWORDSi 0.37 0.48 0.38*** 0.30*** 0.01 0.33***

6. SIZEi
† 20.47 48.15 0.44*** 0.40*** -0.15*** 0.34*** 0.29***

7. LPi 35.42 24.67 0.22*** 0.18*** -0.10 0.15*** 0.09*** 0.20***

8. AGEi 20.24 10.82 0.33*** 0.29*** -0.06 0.19*** 0.19*** 0.28*** 0.17***

Notes: ***(p < 0.01); **(p < 0.05). †: The mean for variable SIZEi is expressed in levels instead of log-
arithms, as this is more informative on the behavior of the variable. However, all analyses were per-
formed using the variable in logarithms.

3 Procedures employed: Pearson’s r coefficient for pairs of continuous variables; Point-biserial coefficient for pairs 
of a continuous and a binary variable; and Phi coefficient for pairs of binary variables (Cohen et al. 2002).
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Table 2. Sector distribution of the firms in the sample

NACE Rev. 2 Codes N %
10. Food products 26 7.43
13. Textiles 29 8.29
15. Leather and related products 18 5.14
16. Wood and products of wood and cork, except furniture; articles of straw  
      and plaiting materials

18 5.14

18. Printing and reproduction of recorder media 26 7.43
20. Chemicals and chemical products 21 6.00
22. Rubber and plastic products 27 7.71
25. Fabricated metal products, except machinery and equipment 52 14.86
27. Electrical equipment 12 3.43
28. Machinery and equipment n.e.c 24 6.86
31. Furniture 28 8.00
32. Other manufacturing (jewelry, games and toys, etc.) 13 3.71
33. Repair and installation of machinery and equipment 11 3.14
Various 45 12.86
Total 350 100

Note: “Various” includes the firms under those NACE manufacturing codes with fewer than 10 firms.

Table 3. Results of the comparison made between exporters and non exporters

Variable Mean EXPORTi = 1 Mean EXPORTi = 0 U Mann-Whitney
(Sig.)

Chi-squared 
(Sig.)

DOM_AGEi 10.096 7.200 0.000 –
TLDi 0.740 0.729 – 0.922
ENi 0.675 0.127 – 0.000
KEYWORDSi 0.562 0.193 – 0.000
SIZEi

* 32.030 9.508 0.000 –
LPi 40.912 30.200 0.000 –
AGEi 23.924 16.807 0.000 –

Note: * The mean for variable SIZEi is expressed in levels instead of logarithms, as this is more in-
formative on the behavior of the variable. However, all analyses were performed using the variable in 
logarithms.

Within the domain name age, exporters owned significantly older domains than non 
exporters on average (10.1 years vs. 7.2 years). This suggests that a relationship between 
Internet experience and export behavior exists as exporters started the implementation of 
corporate websites earlier than non exporters. Furthermore, older firms have the possibility 
of owning older domains, thus the firm’s experience, domain name age and enrollment in 
exporting activities are connected.

For TLD, no statistically significant differences between exporters and non exporters 
were found. This finding, though contrary to what was expected, is actually reasonable. 
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First, although a generic domain is related to e-business, it does not necessarily imply an 
international profile. Second, the legal and bureaucratic obstacles when registering Spanish 
domains, which were in force until 2005, probably made them less appealing than generic 
domains. This could have favored adopting the latter among the majority of firms. 

Regarding an English website version, its availability was statistically higher for ex-
porters (67.5%) than for non exporters (12.7%), which indicates that the relation between 
exports and the most widely used language in international trade is reflected on corporate 
websites. Presence of keywords on exporters’ websites was higher than on the non export-
ers’ ones (56.2% vs. 19.3%), and the difference was statistically significant. However, the 
positive percentage for non exporters websites suggests that some words considered in the 
analysis may not be appropriate for distinguishing between both groups of firms. An analy-
sis on the separate effect of each export-related keyword was conducted when evaluating 
the automatic extraction of web features (see Section 3).

For the firm’s structural variables, exporters showed higher values for the three variables 
under study (size, labor productivity and age of firm), and the differences were statistically 
significant in all cases. Therefore, they can be safely included in a baseline model to check 
the effectiveness of the web-based predictions.

Overall, the univariate analysis exhibited that exporters have earlier implemented 
corporate websites on which the availability of an English version and the presence of 
export-related keywords are also more frequent than for the websites of non exporters. 
These results bring up the potential of the information extracted from corporate websites 
for monitoring firms’ export behavior. Regarding the structural variables, exporters seem 
larger, more experienced and more productive than non exporters.

2.3. The predictive models

This section describes the predictive model based on the variables retrieved from corporate 
websites, and compares its prediction performance against the baseline model based on 
firms’ structural variables. To do this, two logistic regression models were built after iden-
tifying which characteristics varied across exporters and non exporters. The estimations of 
both models were compared to determine the validity of our proposal.

About the statistical methods, logistic regression was applied because it is the most 
appropriate when a dependent variable is binary, as is the case in this study. The selected 
variables were those that varied with an admissible level of significance (p < 0.05) between 
both groups of firms and did not correlate highly (Nassimbeni 2001). According to these 
criteria, the web-based model was defined as follows:
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where β0 is a constant and the coefficients β1, β2, β3 and γ indicate the relative influence of 
each feature on the prediction of the category of the dependent variable. Table 4 shows the 
estimation results, including the estimated regression coefficients and the Standard Error 
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(SE), p-value and Odds Ratio for these estimations. The Odds Ratio (OR) is a measure of 
association between the presence of a particular characteristic and the presence of exports, 
that is, our dependent variable. Thus, an OR greater than 1 indicates that the probability 
of being an exporter increases with a given independent variable, an OR lower than 1 
indicates that this probability decreases, while OR equals 1 when there is no association 
between the independent and the dependent variable. For binary variables, it can be ex-
pressed as follows:
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Results show that the domain name’s age effect is positive and statistically significant, 
thus increasing the probability of exporting. An English version being available on the 
website is the feature that most contributes to inferring the export orientation, being asso-
ciated with a high OR. Similarly, presence of export-related keywords is also connected to 
the export orientation since it significantly raises the probability of exporting. The model 
performs relatively well, as pointed out by the pseudo-R2 (0.534), the high prediction accu-
racy (81.4%) and the Hosmer-Lemeshow test which, in this case, indicates that the model is 
adequate to explain the data. Table 5 shows the model prediction performance by compar-
ing the firm’s actual export orientation to the predictions made by this model.

Table 4. Prediction of export orientation with manually retrieved WWW variables

Variables β SE p-value OR
DOM_AGEi 0.068 0.039 0.083 1.070
ENi 2.186 0.333 0.000 8.901
KEYWORDSi 1.203 0.311 0.000 3.329
(Constant) –1.717 0.489 0.000 0.180
Pseudo-R2 0.534
Hosmer-Lemeshow 0.112
Prediction accuracy 81.4%

Notes: The null hypothesis of the Hosmer and Lemeshow test is that the model is fit. The industry 
dummies have been included in the model specification.

Table 5. Comparison of the model predicting business export orientation from manually retrieved 
WWW features to the actual export orientation of the firm

Export orientation MANUAL = 0 MANUAL = 1
EXPORT = 0 44.6% 11.4%
EXPORT = 1 7.1% 36.9%

The results of this model were compared with the prediction performance of the base-
line model, which included the firms’ structural variables and was made up as follows:
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where β0 is a constant and the coefficients β1, β2, β3 and γ indicate the relative influence of 
each feature on the prediction of the category of the dependent variable. The estimations 
for this model are reported in Table 6. The effect of the three considered variables is positive 
and statistically significant, thus contributing to the probability of being an exporter. This 
model also performs relatively well, with a pseudo-R2 of 0.468, a prediction accuracy of 
77.7% and a good data fit according to the Hosmer-Lemeshow test results. When compar-
ing both models, it can be stated that the web-based variables contain as much information 
about a firm’s export orientation as the firm’s size, age and labor productivity. Table 7 sum-
marizes the model prediction performance by comparing the actual export orientation of 
the firm to the predictions made by this model.

Table 6. Prediction of export orientation with the firm’s structural variables

Variables β SE p-value OR
SIZEi 0.847 0.178 0.000 2.333
LPi 0.016 0.006 0.016 1.016
AGEi 0.058 0.015 0.000 1.060
(Constant) –3.556 0.604 0.000 0.029
Pseudo-R2 0.468
Hosmer-Lemeshow 0.658
Prediction accuracy 77.7%

Notes: The null hypothesis of the Hosmer and Lemeshow test is that the model is fit. The industry 
dummies have been included in the model specification.

Table 7. Comparison of the model predicting business export orientation from structural variables to 
the actual export orientation of the firm

Export orientation BASELINE = 0 BASELINE = 1
EXPORT = 0 40.3% 11.6%
EXPORT = 1 11.0% 37.1%

3. Automating the retrieval of web-based variables

This section describes the method which was followed to obtain the export orientation 
indicator built from automatic web-based variables, as well as the evaluation of their per-
formance. To do so, we first describe the implementation of a web data mining tool to auto-
matically obtain information from corporate websites, and second, the statistical techniques 
applied to construct the automatic web-based variables. Finally, we describe the replication 
of the manual web-based model with the automatic web-based variables, which was done 
to check their predictive power.
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3.1. Architecture of the web data mining system for analyzing corporate websites

To automatically extract and analyze the contents from the corporate websites, we extended 
the web mining model presented in Domenech et al. (2012) with specific analysis modules. 
Figure 1 shows the architecture of this system, which consists of three main modules: the 
Capture Module, the Analysis Module and the Production Module.

The Capture Module basically acts as a crawler that parses and downloads all the website 
contents from the corporate sites provided as input. It has been implemented as a modified 
version of HTTrack (Roche 2014), which is a robot that recursively parses and downloads 
the links found in the initial URI.

The Analysis Module examines the contents downloaded by the Capture Module to pro-
duce some raw variables that potentially relate to the firm’s economic variable under study; 
i.e., the export orientation in this case. This module is composed of several independent 
blocks, each one computing related variables.

The language analysis block detects the language in which every HTML file on the site 
is written. Its output is the number of resources in each considered language. The keyword 
detector block departs from a list of keywords and counts the number of occurrences of each 
keyword in the text of the website. It provides counting not only for strict matching (i.e., 
exact coincidence), but also for wide matching, that is, derived words are also considered 
a coincidence. The domain name age block makes a request to a whois server to find the 
date on which the provided domain name was registered.

Finally, the Production Module takes as input all the raw variables generated by the 
Analysis Module to compute the web-based variables for detecting, in this study case, the 
export orientation of firms. For this purpose, statistical methods to estimate the prob-
ability of exporting given the raw variables were used. More details on these methods are 
provided below.

3.2. Construction and validation of automatic web-based variables

The web-based model described in Section 2.3 relied on two website features that were 
manually retrieved (ENi and KEYWORDSi). This section describes the supervised learn-
ing methods applied to estimate the manually retrieved variables from the raw variables 
generated by the Analysis Module of the system. These methods, which are particularly 
useful with big data, bring up much more realistic prediction performance measures (in 
terms of obtaining good out-of-sample predictions) than other measures generally used in 
economics (Varian 2014).

Fig. 1. Model for a web data mining system to retrieve the web-based variables
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English version
The detection of the foreign language version of the website from the related raw vari-

ables (number of HTML documents in each language) relied on the ratio of documents in 
the foreign language (English) to the number of documents in the local language (Spanish). 
The rationale behind this is that the English version can be functional, although not all the 
website’s sections are translated.

One of the limitations of our Capture Module is its ability to detect duplicate content. 
This makes that the number of apparently different documents grows uncontrollably with 
some dynamic websites. This happens, for instance, when two (or more) different terms 
in an HTML form lead to the same page. To alleviate this problem, a saturation parameter 
was included. It was defined as the maximum number of files to be considered in each 
language so that the number of documents saturates at this level.

Both the language ratio and saturation threshold parameters were tuned by a 10-fold 
cross-validation method. This method assesses in which way the results of a particular 
statistical analysis would generalize to an independent data set. Basically, this method in-
volves splitting the data sample into a number of complementary subsets, then performing 
the analysis on one subset (referred to as the training set) and validating it on the other 
subsets (referred to as the test set). In this case, 10 partitions were made so that 10 rounds 
of cross-validation were performed (to reduce variability in the test error estimation). With 
this method, we were able to choose the values for both the parameters that led to the low-
est test error, thus limiting the problem of overfitting.

The results of this method are shown in Figure 2. The saturation threshold varied from 
1 to 40 documents, while the language ratio ranged from 0.1 to 2.0. However, for the sake 
of clarity, the figure shows only a few of these values. The results indicate that the optimal 
value for the saturation threshold is 11 HTML files, while the optimal value for the lan-
guage ratio is 0.4. These parameter values were used to compute the estimated EN variable.

When compared to the manually retrieved variable, the estimated one (ENi
A) provides 

an overall prediction accuracy of 84.3%, as Table 8 shows. A detailed analysis of the classi-

Fig. 2. Cross-validation test error for a range of parameter values of the automatic  
English version indicator
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fication errors reveals that false positives occur when some error messages are found in the 
HTML text (generated by the web server). False negatives are found to be usually caused 
by crawling errors (i.e., not all the pages are downloaded). In captured information terms, 
the moderate correlation found between both variables (0.676) shows that the estimated 
variable contains similar information to the manually retrieved one.

Table 8. Prediction performance of the automatic English version indicator

English version AUTO = 0 AUTO = 1
MANUAL = 0 50.7% 8.3%
MANUAL = 1 7.4% 33.6%

Presence of export-related keywords
The automatic variable for export-related keywords (KEYWORDSi

A) was built from the 
raw features that included the number of occurrences that apply strict and wide matching 
algorithms to each word in the list of terms. This list consisted of the same keywords related 
to business exports as the ones used in the manual model. Though these raw variables are 
numeric variables that doubtlessly include valuable information, they were transformed 
into binary in order to replicate the manual variable and thus checking the validity of their 
automatic extraction, as it is one of our objectives. Since the number of features was large, 
the Least Absolute Shrinkage and Selection Operator (LASSO) method was employed to find 
a more parsimonious model. The LASSO, which is derived from the Elastic Net Regression 
method, is a statistical method for variable selection which includes a penalty term (shrink-
age parameter) and works by producing regressions where some coefficients are set at zero. 
Hence, problems such as multicollinearity are limited feasibly. The shrinkage parameter (λ) 
required by this method was tuned by a 10-fold cross-validation procedure, whose results 
are presented in Figure 3. This procedure resulted in the selection of a logistic regression 
model with 15 features to be used to estimate the presence of the export-related keywords. 
That is, 15 binary variables that take a value of 1 when a match with a given word in the 
resulting list occurs.

Fig. 3. Cross-validation test error (with 5% confidence intervals) for a range of λ parameter values  
of the LASSO Method for computing the automatic KEYWORDS indicator
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The prediction performance of the estimated variable (KEYWORDSi
A) is summarized 

in Table 9. As observed, the proposed method works relatively well since the prediction 
accuracy is 85.1%. Most misclassifications come from false negatives, which are found 
on 13.1% of corporate websites. A more detailed analysis reveals that most of these false 
negatives are due to the incomplete crawling of the site. In captured information terms, 
the strong correlation found between both variables (0.714) indicates that the estimated 
variable contains similar information to the manually retrieved one.

Table 9. Prediction performance of the automatic KEYWORDS indicator

KEYWORDS AUTO = 0 AUTO = 1
MANUAL = 0 52.8% 1.7%
MANUAL = 1 13.1% 32.3%

3.3. Predicting firm export orientation from automatic web-based variables

The automatic export-related variables ENi
A and KEYWORDSi

A computed in the previous 
section are now employed to finally estimate the business export orientation. To do so, the 
manually retrieved variables used in the manual web-based model are replaced with the 
automatically retrieved ones.

The results of the estimation of this model are reported in Table 10. This model at-
tempts to capture most of the prediction accuracy achieved with the manual web-based 
model. The estimation results of this new model give a prediction accuracy of 78.2%, which 
is slightly below the 81.4% resulting from the manual web-based model. Taking into ac-
count that the model based in manually retrieved web variables acts as an upper bound 
of the prediction performance of the automatic model, this result means that 96% of the 
prediction power of the manual model has been successfully reproduced. For each variable 
effect, in this case the domain name’s age and presence of export-related keywords are not 
statistically significant. The English version variable remains statistically significant, and 
is associated with an OR of 6.6. This model also performs relatively well, as pointed out 
by the pseudo-R2 (0.481), the high prediction accuracy mentioned above and the Hosmer-
Lemeshow test, which indicates that the model correctly fits the data.

Table 10. Prediction of export orientation with automatically retrieved WWW variables

Variables β SE p-value OR
DOM_AGEi 0.050 0.046 0.274 1.052
ENi

A 1.888 0.379 0.000 6.604
KEYWORDSi

A 0.541 0.379 0.152 1.718
(Constant) –1.721 0.652 0.008 0.179
Pseudo-R2 0.481
Hosmer-Lemeshow 0.732
Prediction accuracy 78.2%

Notes: The null hypothesis of the Hosmer and Lemeshow test is that the model is fit. The industry 
dummies have been included in the model specification.
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Table 11 shows the model performance by comparing the firm’s actual export orienta-
tion to the predictions made by this model. A detailed comparison of the results of the 
manual and automatic web-based models (see Tables 5 and 11) evidences that, as expected, 
the main difference lies in the false negative rate (7.1% vs. 10.0%), which derives from limi-
tations in website crawling. Overall, the comparison shows that the automatic variables are 
good predictors of firms’ export orientation, despite losing some performance if compared 
to the manually retrieved ones.

Table 11. Comparison of the model predicting business export orientation from automatically retrieved 
WWW features to the actual export orientation of the firm

Export orientation AUTO = 0 AUTO = 1
EXPORT = 0 38.0% 11.8%
EXPORT = 1 10.0% 40.2%

Conclusions

The online data stream increases on a daily basis as people and companies adopt and use 
the Internet and web technologies. Corporate websites, which are being widely adopted by 
any kind of firm, reflect the intentions and activities of companies. Following the Big Data 
paradigm, they can be used as a source of information to produce real-time indicators of 
the evolution of some economic variables. This is particularly important given that the 
availability of fresh and frequent data about the economy gives governments more time to 
react and correct imbalances. As use of web technologies and their economic and social 
importance are fully expanding, more granular and updated information is available and 
also demanded at the same time.

This paper has explored the use of Big Data analysis on corporate websites for now-
casting firms’ export orientation by automatically producing a web-based indicator. This 
objective has been accomplished in two steps: first, by finding the corporate website fea-
tures related to the firms’ export orientation; second, by implementing and validating the 
automatic extraction of these features through a web data mining system.

Our results show that the selected website features contain as much information about 
the export orientation of companies as the main firm’s structural variables (size, age and 
labor productivity). In contrast to the classic variables obtained from official sources, which 
are usually made available with long delays, these web features can be retrieved and ana-
lyzed in real time. Moreover, our system for automatically analyzing corporate websites 
achieved 96% of the prediction accuracy of the model with manually retrieved web features, 
thus validating a new inexpensive and timely source of information about individual firm’s 
export orientation.

From the academic point of view, these web-based variables can complement firms’ 
data from other sources to understand the role played by corporate websites in the inter-
nationalization strategy. The results of this study also have implications for policymak-
ers, particularly for the evaluation of export promotion policies. By demonstrating that 
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there are website features from which export indicators can be built, a new way for timely 
and inexpensive monitoring opens. As their retrieval has been automated, the continuous 
monitoring of export orientation is now possible. This would allow policymakers to detect 
how fast companies are reacting to some export promotion policies or what the trend in 
trade openness is, among others. Furthermore, as website contents are usually related to 
the designed corporate strategy, it is expected that the decision to export is reflected earlier 
on the website than in foreign sales, thus anticipating future exports.

There are some limitations of the study that are worth mentioning. First, caution should 
be taken when generalizing the implications beyond the scope of this study. The results 
come from only a sample of firms from the Region of Valencia, in east Spain, so they may 
be specific to this setting, particularly those variables related to language. Further studies 
using samples from other regions and countries should be carried out. Second, only cross-
sectional data are analyzed. A longitudinal analysis would help determine how fast changes 
in export behavior translate into website changes.

Given the system’s ability to retrieve a large number of website features in a short period 
of time, and the advantages and possibilities offered by web technology, in future works 
we will explore the relation between other website features and exports, and with other 
business activities.
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