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Abstract. Assignment processes permit to coordinate two set of variables so each variable of the 
first set is connected to another variable of the second set. This paper develops a new assignment 
algorithm by using a wide range of aggregation operators in the Hungarian algorithm. A new pro-
cess based on the use of the ordered weighted averaging distance (OWAD) operator and the in-
duced OWAD (IOWAD) operator in the Hungarian algorithm is introduced. We refer to it as the 
Hungarian algorithm with the OWAD operator (HAOWAD) and the Hungarian algorithm with 
the IOWAD operator (HAIOWAD). The main advantage of this approach is that we can provide 
a parameterized family of aggregation operators between the minimum and the maximum. Thus, 
the information can be represented in a more complete way. Furthermore, we also present a general 
framework by using generalized and quasi-arithmetic means. Therefore, we can consider a wide 
range of particular cases including the Euclidean and the Minkowski distance. The paper ends with 
a practical application of the new approach in a financial decision making problem regarding the 
assignment of investments. 

Keywords: uncertainty modelling, OWA operators, Hungarian algorithm, assignment theory, 
distance measure.
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Introduction 

In real life, the distance measure is usually used to calculate the deviations between dif-
ferent arguments. After doing an extensive literature review, we have found a great variety 
of distance measures. Among the existing ones, we observe that the Hamming distance is 
widely used by researchers in various fields of science. For example, De Luca and Termini 



(1972) and Kaufman (1975) used it for measuring the entropy of fuzzy sets. Gil-Aluja 
(1999) applied it in human resource management. Note that a very useful survey about 
different decision-making methods can be found in Figueira et al. (2005). Usually when 
dealing with distance measures it is necessary to aggregate them by using an aggregation 
operator. One of the most common aggregation operators is the weighted average. It ag-
gregates the information giving different degrees of importance to the elements. It has been 
applied in an incredibly wide range of aggregation operators. Another contribution that we 
can consider, very useful for the realization of our study, is the ordered weighted average 
(OWA) operator (Yager 1988; Yager, Kacprzyk 1997). It provides a parameterized family 
of aggregation operators between the minimum and the maximum. Since its introduction 
it has been studied by different authors. For example, Canós and Liern (2008) and Merigó 
and Gil-Lafuente (2011) developed a flexible decision support system in human resource 
management, Xu and Chen (2008b) studied priority weights from interval fuzzy prefer-
ence relations, Yager (1993) developed different families of OWA operators and Yager et al. 
(2011) presented an updated overview concerning the main trends in this field.

In recent years, it has appeared an interesting alternative which represents a general-
ization of OWA operators called the induced OWA (IOWA) operator (Yager 2003; Yager, 
Filev 1999). The main advantage is the reorganization of the information through the use 
of induced variables. Since its inception, it has been developed by several authors including 
the generalization of Merigó and Gil-Lafuente (2009) by using generalized and quasi-arith-
metic means, intuitionistic fuzzy sets (Atanassov 1986; Xu, Xia 2011) and fuzzy numbers 
(Wei et al. 2010).

A further interesting approach is the ordered weighted averaging distance (OWAD) op-
erator (Merigó, Gil-Lafuente 2010; Xu, Chen 2008a). It is a distance measure that provides a 
parameterized family of distance aggregation operators between the minimum distance and 
the maximum distance. The OWAD operator can be generalized by using order inducing 
variables in the reordering process of the information forming the induced OWAD (IO-
WAD) operator (Merigó, Casanovas 2011a). Further generalizations are possible by using 
other techniques such as the Euclidean distance (Merigó, Casanovas 2011b), the Minkowski 
distance (Merigó, Casanovas 2011c), the adequacy coefficient (Merigó et al. 2011a), the 
index of maximum and minimum level (Merigó et al. 2011b), moving averages (Merigó, 
Yager 2013), probabilities (Merigó 2013; Merigó et al. 2013), interval numbers (Zeng et al. 
2013) and intuitionistic fuzzy sets (Zeng, Su 2011).

In this paper, we present a new model for the assignment process by using the Hungar-
ian method (Kuhn 1955). Note that in the literature there are a lot of methods for dealing 
with the assignment process (Kuhn 2012; Lawler, Wood 1966). We introduce the use of 
the OWAD operator in this framework. The main advantage is that we can provide a more 
complete representation of this process considering results from the minimum distance to 
the maximum one. Therefore, we can consider several pessimistic and optimistic attitudes 
of the decision maker in order to obtain a more efficient decision. Next, we introduce a 
further generalization by using the IOWAD operator. Thus, we can assess the aggregation 
considering complex reordering processes that deals with high degrees of uncertainty in 
the information. We also analyse a wide range of particular cases included in this aggre-
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gation process such as the minimum distance, the normalized Hamming distance and the 
weighted Hamming distance.

We also develop an application in financial management. We analyse the optimal as-
signment of financial products for each decision maker according to his attitudinal charac-
ter. We see that we can use a wide range of OWAD and IOWAD operators from the min-
imum distance to the maximum one. Note that each particular case may provide different 
results leading to a different assignment process. The main advantage of this approach is 
that it provides a more complete picture of all the possible scenarios. Thus, the decision 
maker can consider the entire available situation and select the alternative that is in closest 
accordance with his interest.

This work is structured as follows: In section 1 we present the preliminary concepts. In 
Section 2, we suggest a new approach for dealing with the Hungarian Algorithm by using 
the OWAD, the IOWAD and the GOWAD operators. Section 3 analyses the applicability 
of this framework in financial management. Finally in the Conclusions we summarize the 
main results of this paper.

1. Theoretical foundations

In this section, we present the theoretical definitions and theorems related to the OWA 
operator and the Hungarian method.

1.1. The OWA operator

The OWA operator was introduced by Yager (1988). It provides a parameterized family of 
aggregation operators that has been used by many authors (Belles et al. 2013; Cheng et al. 
2009; Dong et al. 2010; Karayiannis 2000). The principal advantage of the OWA operator 
is that it reorders arguments based on their values. The weights are associated with a par-
ticular position in the ordering. This reordering process introduces nonlinearity into an 
otherwise linear process. It can be defined as follows:
Definition 1. An OWA operator of dimension n is a mapping OWA: 

nR R→  that has an associated weighting vector ( )1 2, , , .nw w w w= …  with  0,1jw ∈    and 

1
1

n

j
j

w
=

=∑  such that:

 ( )1 2OWA , , , na a a…  = 
1

n

j j
j

w b
=
∑ ,  (1)

where bj is the jth largest of ( )1 2, , , na a a… .
The OWA operator is commutative, monotonic, bounded and idempotent. Since its 

introduction, it has been studied by a lot of authors. For further reading see, for example 
Merigó and Wei (2011); Yager and Kacprzyk (1997) and Yager et al. (2011).

1.2. The induced OWA operator

If we use order inducing variables in the reordering step of the aggregation, we can ob-
tain the induced OWA operator (IOWA) (Yager, Filev 1999). Since its appearance, some 
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researchers have used this induced operator. For example, Merigó and Gil-Lafuente (2009) 
developed a generalization by using generalized and quasi-arithmetic means and Xu and 
Da (2003) introduced a geometric version and applied it in group decision making. The 
IOWA operator represents an extension of the first. Its main difference is that the reorder-
ing step is carried out with order inducing variables. This operator includes a particular 
case. It can be defined as follows:
Definition 2. An IOWA operator of dimension n is a mapping IOWA:   n nR R R× →  an 

associated weighting vector w of dimension n with 
1

1
n

j
j

w
=

=∑  and  0,1jw ∈   , and a set of 
order inducing variables uj, such that:

 
( )1 1 2 2

1
IOWA , , , ,, , , 

n

j jn n
j

w bu au a u a
=

… = ∑   (2)

where bj is the aj value or the IOWA pair 1 1, u a  is the jth largest ui, ui is the order induc-
ing variable and aj is the argument variable.

We remark that the IOWA operator is also monotonic, bounded, idempotent and com-
mutative. Note that in the case of ties between order inducing variables in the reordering 
process, it is necessary to make an adjustment in the aggregation. We recommend the 
methodology suggested by Yager and Filev (1999) concerning the use of the arithmetic 
mean between the tied arguments.

1.3. The OWA distance operator

The OWAD operator (Merigó, Gil-Lafuente 2010; Xu, Chen 2008a) is an aggregation opera-
tor and it is an extension of the traditional normalized Hamming distance by using OWA 
operators. The purpose of this operator is the reordering of the individual distances accord-
ing to their values. An interesting advantage of this operator is the possibility of calculating 
the distance between two fuzzy sets modifying the results according to the interests of the 
decision maker. It can be defined as follows:
Definition 3. An OWAD operator of dimension n is a mapping OWAD: 

0,1   0,1  0,1 n n× →            an associated weighting vector w, with 
1

1
n

j
j

w
=

=∑  and  0,1jw ∈    
such that:

 

( ) ( ) ( )( )1 21 2
1

OWAD , , ,  ,  , , ,
n

k k k
j jn n

j
w Du u u u u u

=

… =∑   (3)

where Dj represents the jth largest of the individual distances ( )| |k
i iu u− , with ui and 

( )  0,1k
iu ∈    , and 1, 2, , .k m= …

It is necessary to remark that this operator can be generalized to all the real numbers 
R by using OWAD:   n nR R R× → . Because it is possible to distinguish between ascending 
and descending orders, the weights of these operators are related by *

1j n jw w − += , where wj 
is the jth weight of the descending OWAD (DOWAD) operator and *

1n jw − +  the jth weight 
of the ascending OWAD (AOWAD) operator.
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1.4. The induced OWA distance operator

When we use the IOWA operator in the normalization process of the Hamming distance 
we can obtain the IOWAD operator. Chen and Zhou (2011) presented an approach to 
group decision making based on this operator, Merigó and Casanovas (2011b) studied 
its application in financial decision making. The reordering of the individual distances 
is developed with order inducing variables. In a case of two sets { }1 2 , , ,  nX x x x= …  and 

{ }1 2 , , ,  nY y y y= … . It can be defined as follows:
Definition 4. An IOWAD opetor of dimension n is a mapping IOWAD:    n n nR R R R× × →  

with associated weighting vector W, such that  0,1  jw ∈   with 
1

1
n

j
j

W w
=

= =∑ , according to 
the following formula: 

 
( )1 1 1 2 2 2

1
IOWAD ,  ,  ,  ,, , , , , , 

n

j jn n n
j

w bu x yu x y u x y
=

… = ∑   (4)

where bj is the i ix y−  value of the IOWAD triplet , , i i iu x y  that represents the jth larg-
est ui, ui is the order inducing variable and i ix y−  is the argument variable represented 
in the individual distances.

1.5. The Hungarian method

The Hungarian method (Kuhn 1955) was established as an assignment algorithm used in 
various fields of science by the diversity of applications that can be performed. In recent 
years we can highlight the contribution made by Goldberger and Tassa (2008), which sets 
out the main features of this algorithm.

Let A be a   n n×  matrix. The following algorithm finds a permutation  nSπ∈  that mini-
mizes the expression ( ),i i

i
A π∑ . In this algorithm, the entries of the matrix A are being 

modified repeatedly. Zero entries in the modified matrix may be either marked, by a star 
or by a prime, or unmarked. In addition, each row or column in the matrix may be either 
covered or uncovered. Initially, there are no starred or primed entries in the matrix and 
none of the rows or columns is covered:

1. For each row in the matrix A find its minimal entry and subtract it from all entries 
in that row.

2. For all 1 ,i j n≤ ≤  if 0ijA =  then star that zeros entry, unless there is already a starred 
zero in the same row or in the same column.

3. Cover each column that contains a starred zero. If all columns are covered, go to 
Step 7.

4. Repeat the following procedure until there are no uncovered zeros left and then go 
to Step 6: find an uncovered zero and prime it. If there are no starred zeros in the 
same row as this primed zero, go to Step 5. Otherwise, cover this row and uncover 
the column containing the starred zero.

5. Construct a series of alternating primed and starred zeros as follows: Let Z0 be the 
uncovered primed zero that was found in Step 4. Let Z1 be the starred zero in the 
column of Z1 (if any). Let Z2 be the primed zero in the row of Z1 (there will always 
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be one). Continue to construct this series of alternating primed and starred zeros 
until it terminates with a primed zero that has no starred zero in its column. Instead 
each starred zero of the series, star each primed zero of the series, erase all primes 
and uncover all rows and columns in the matrix. Go to Step 3.

6. Find the smallest uncovered value, add it to every entry in each covered row, and 
subtract it from every entry in each uncovered column. Go to Step 4.

7. At this stage, in each row of the matrix, as well as in each column, there is exactly 
one starred zero. The positions of the starred zeros describe an optimal permutation 

 nSπ∈ . Output this permutation and stop.

1.6. Fuzzy Hungarian algorithm

The Hungarian algorithm can be used with fuzzy information. For example, Gil-Aluja 
(1999) developed the fuzzy Hungarian algorithm for the efficient assignment of some prod-
ucts based on certain characteristics in different markets.

Developing the Hungarian fuzzy method, based on a distance matrix that we call Q 
  

or its complementary matrix R 
  ; in order to find the optimal assignment we will start by 

using a minimum principle.
In most cases these fuzzy relations are not always the same number of rows and col-

umns so they would have to operate with rectangular matrices. For operational reasons, it 
will be transformed into a square matrix by adding rows or columns needed for introducing 
fictitious elements, as well as pij denotes the elements of the matrix, such as if we consider 
the matrix Q 

   or R 
  .

The algorithm consists of the following steps:
1. Subtract the smallest value in each row or column based on what we have add-

ed to make the matrix square. In the case of the rows, we will have  min ijj
u p=

 
, 

obtaining  minij i ij ijj
p u p p− = − ; or  minj ijj

u p=  in the case of columns getting 

 minij j ij iji
p u p p− = − . We apply the same process in each column, ( ) minj ij ii

v p u= −  
or row ( ) mini ij jj

v p u= − . This means that at least we have one 0 in each column and 

row in a matrix whose elements take values ( )ij i jp u v− −  or ( )ij j ip u v− − .  
2. We analyze if it is possible to proceed with an assignment in the case that the pij 

values   of the solution are all zero. If so, we get an optimum. Otherwise is necessary 
to continue with the process as follows:
a) We search for the row of the matrix that contains less zeros.
b) Mark one of the zeros of each row and delete the other zeros that appear in the 

row and column to which it belongs the zero we have marked.
c) Repeat this process as many times as necessary in the rows that has more zeros to 

be marked.
3. We will get the least number of rows and columns that contain all zeros and we will 

continue the following process:
a) Mark with an arrow ← the rows that does not exist any zero marked.
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b) Mark with an arrow ↑ the columns in which there exists a zero deleted in a row 
marked with an arrow.

c) Indicate with an arrow ← the rows where there is a zero marked in a column 
shown with an arrow.

d) Repeat steps b) and c) as many times as necessary until we cannot form more rows 
or columns.

e) Draw a line in the rows not marked by arrows and a line in the columns marked by 
arrows. The result we get constitutes the minimum number of rows and columns 
with zeros marked or deleted.

4. Eventually, move some zeros. We choose the smallest value of non-marked elements 
at the matrix. This number is subtracted from the non-marked elements and we sum 
them to the elements of the marked rows. We obtain a matrix with the elements pij.

5. With this new matrix whose elements are pij, return to Step 2 following the same 
process shown above.

The solution obtained is not unique and it is important to note that we may find other 
solutions. 

2. OWA operators in the Hungarian algorithm

In this section we introduce the new approach. First we analyse the case with the OWAD 
operator. Next, we extend this approach by using induced aggregation operators. We end 
the section studying a general framework that uses generalized aggregation operators. 

2.1. Using the OWAD operator in the Hungarian algorithm

The Hungarian algorithm is an efficient assignment process. This algorithm is based on 
the similarity (or dissimilarity) between the elements considered. However, in real world 
problems, when calculating the similarity, we need to use a technique that permits to do 
so such as a distance measure. A very common one used in the Hungarian algorithm is 
the Hamming distance (Hamming 1950). When dealing with similarities, we have to nor-
malize the distance. The most common way for doing so is by using the arithmetic mean 
where we give the same importance to all the elements obtaining the normalized (or rela-
tive) Hamming distance. Another possibility is by using the weighted average where we 
assume that the elements are not equally important in the aggregation process forming the 
weighted Hamming distance. For the formulation used in fuzzy set theory, see, for example 
Kaufmann (1975) and Szmidt and Kacprzyk (2000).

In this paper, we suggest the use of the OWA operator in the normalized process of 
the Hamming distance. Thus, we use the OWAD operator (Merigó, Gil-Lafuente 2010; 
Xu, Chen 2008a) in the assignment process. Its main advantage is that we can provide a 
parameterized family of distance aggregation operators between the minimum and the 
maximum. Thus, we can analyse several similarity relations from the minimum to the 
maximum according to our particular attitude in the specific problem considered. It is very 
useful because we can consider our normal position when forming the similarity relations 
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but at the same time we can under or overestimate this position and see if the results are 
the same or some important changes may appear when dealing with the assignment pro-
cess. That is, the assignment process may be different depending on the particular type of 
OWAD operator used.

When dealing with the OWAD operator, we have to use the following formulation as it 
has been explained in Definition 3 for two sets { }1 2, , ,  nX X X X= …  and { }1 2, , ,  nY Y Y Y= … :

 
( ) ( )1 1 2 2

1
, OWAD , , ,, , ,,

n

j jn n
j

d X Y w Dx yx y x y
=

= … =∑   (5)

where Dj represents the jth largest of the individual distances  i ix y− , with xi and 

 0,1 iy ∈   , 
1

1
n

j
j

w
=

=∑  and  0,1jw ∈   .

Thus, we have to use it to calculate all the similarity relations between the elements of 
the set { }1 2, , ,  mT T T T= …  and { }1 2, , ,  pZ Z Z Z= … , in order to form the matrix R    as it 
is shown in Table 1.

Table 1. Similarity relations between T and Z

Z1 Z2 … Zk … Zp

[R]

T1 d(T1, Z1) d(T1, Z1) … d(T1, Zk) … d(T1, Zp)

T2 d(T2, Z1) d(T2, Z2) … d(T2, Zk) … d(T2, Zp)

… … … … … … …

Th d(Th, Z1) d(Th, Z2) … d(Th, Zk) … d(Th, Zp)

… … … … … … …

Tm d(Tm, Z1) d(Tm, Z2) … d(Tm, Zk) … d(Tm, Zp)

As can see, we calculate the distance by using the OWAD operator between each Th and 
Zk. Note that with the OWAD operator we can obtain a wide range of results between the 
minimum and the maximum distance according to our attitude in the aggregation process.

Once we have the similarity relations, it is straightforward to solve the assignment 
process with the Hungarian algorithm following the Steps 1–7 given in Section 1.5. Fur-
thermore, note that it is possible to analyse a wide range of particular cases. The main idea 
is that the decision maker will use the particular type that is in closest accordance to his 
interests. 
Remark 1. It is possible to distinguish between ascending and descending orders in the 
OWAD operator. The weights of these operators are related by *

1j n jw w − += , where wj is 
the jth weight of the descending OWAD (DOWAD) operator and *

1  n jw − + the jth weight of 
the ascending OWAD (AOWAD) operator.
Remark 2. Another interesting transformation is possible by using ( ) ( )* 1 / 1i iw w n= + − . 
Furthermore, we can also analyze situations with buoyancy measures (Yager 1993). In this 
case, we assume that i jw w≥ , for i > j. Note that it is also possible to consider a stronger 
case known as extensive buoyancy measure where wi > wj, for i < j. Additionally, we can 
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also consider the contrary case, that is, i jw w≤ , for i < j, and the contrary case of the 
extensive measure wi < wj, for i < j.
Remark 3. The maximum distance is found when w1 = 1 and wj = 0 for all 1j ≠  and the 
minimum distance when wn = 1 and wj = 0 for all j n≠ . A generalization of the previous 
ones is the step-OWAD. It sets wk = 1 and wj = 0 for all j k≠ . Note that if k = 1, we get the 
maximum and if k = n, the minimum distance.
Remark 4. The normalized Hamming distance is obtained when wj = 1/n for all j, and the 
weighted Hamming distance is obtained when the ordered position of i is the same as the 
ordered position of j. 
Remark 5. The olympic-OWAD is generated when w1  = wn  = 0, and for all others 

( )* 1/ 2jw n= − . Following Merigó and Gil-Lafuente (2010), it is possible to develop a general 
form of the olympic-OWAD by considering that wj = 0 for 1, 2, , , , 1, , 1j k n n n k= … − … − +  , 
and for all others ( )* 1/ 2jw n k= − , where / 2k n< . 
Remark 6. Moreover, we can develop the contrary case of the previous one by using 

( )1/ 2  jw k= for  1, 2, , , , 1, , 1j k n n n k= … − … − + , and wj  = 0, for all other values, where  
k < n / 2. 
Remark 7. Another interesting family is the S-OWAD operator. It can be subdivided into 
three classes: the “or-like,” the “and-like” and the generalized S-OWAD operators. 

 – The generalized S-OWAD operator is obtained if 
( ) ( )( ) ( ) ( )( )1 1/ 1 , 1/ 1nw n w n= − α + β + α = − α + β + β , and ( ) ( )( )1/ 1jw n= − α + β  

for j = 2 to n − 1, where ,   0,1 α β∈    and 1α + β ≤ . 
 – If α = 0, the generalized S-OWAD operator becomes the “and-like” S-OWAD opera-
tor.

 – If β = 0, it becomes the “or-like” S-OWAD operator.

A further interesting issue is to analyse some of the main properties of the  
OWAD operator. It is commutative from the context of an OWA aggrega-
t ion because  ( )1 1 1 , ,  , ,, , n n nf u x yu x y … = ( )1 1 1 , ,  , ,, , n n nf u c du c d …

 
,  where 

( )1 1 1 , ,  , ,, , n n nu x yu x y … ,  i s  any permutat ion of  the  arguments 

( )1 1 1 , ,  , ,, , n n nu c du c d … . It is also commutative from the context of a distance  
measure because ( )1 1 1 , ,  , ,, , n n nf u x yu x y … = ( )1 1 1 , ,  , ,, , n n nf u y xu y x …

 
. Moreover, 

it is monotonic because if i i i ix y c d− ≥ − , for all i, then ( )1 1 1 , ,  , ,, , n n nf u x yu x y … ≥

( )1 1 1 , ,  , ,, , n n nf u c du c d … .  It  is  a lso bounded since { }min i ix y− ≤

( )1 1 1 , ,  , ,, , n n nf u x yu x y … ≤ { }max i ix y− . Furthermore, it is idempotent becau-
se if i ix y a− = , for all i, then ( )1 1 1 , ,  , ,, , n n nf au x yu x y … = . It also accomplish-
es non negativity as ( )1 1 1 , ,  0, ,, , n n nf u x yu x y … ≥ . Finally, it is reflexive since 

( )1 1 1 , ,  0, ,, , n n nf u x xu x x … = .
In order to analyse the aggregation, we can use several measures for characterizing the 

weighting vector. A very common technique for doing so is the orness measure ( )W∝ . It 
can be defined as follows:
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( )

1 1
, 

n

j
j

n jW w
n=

− α =  − 
∑

 
 (6)

As we can see, ( ) 0,1W∝ ∈   . Note that the more of ( ) W∝ closer to 1 the more of the 
weight we locate at the top of W and vice versa.

Another useful measure is the balance operator. It permits to analyse if the balance of 
the aggregations closer to the minimum or to the maximum. It is defined as follows:

 
( )

1

1 2Bal . 
1

n

j
j

n jW w
n=

+ − =  − 
∑

 
 (7)

In this case, ( )Bal 1,1W ∈ −   . Note that if ( )Bal  W is positive, the aggregation tends to 
the maximum and if it is negative, it tends to the minimum.

2.2. IOWAD operators in the Hungarian algorithm

An interesting extension of the OWAD operator (Merigó, Gil-Lafuente 2010) that can be 
used in the Hungarian algorithm is the IOWAD operator by Merigó and Casanovas (2011a, 
2011b, 2011c). Its main advantage is that it deals with complex reordering processes in the 
aggregation. Thus, we can consider complex environments where the information may have 
different meanings than the usual numerical scale such as in the analysis of the temperature 
of the body where the optimal result is 36 or 37 degrees, and higher or lower results are 
not optimal.

By using the IOWAD operator in the Hungarian algorithm we can provide a more 
complete framework for representing the information when using distance measures in 
the analysis. Note that the IOWAD includes the OWAD operator as a particular case. The 
assignment process when using the IOWAD operator and the Hungarian algorithm can be 
described as follows: 
Step 1. Calculate the distances between the two set of elements { }1 2, , , NT T T T= …  and 

{ }1 2, , ,  NZ Z Z Z= … by using:

 
( )1 1 1 2 2 2

1
IOWAD , , ,   ,, , , , , , 

n

j jn n n
j

w bu x yu x y u x y
=

… = ∑   (8)

where bj is the i ix y−  value of the IOWAD triplet , , i i iu x y  that represents the jth 
largest ui, ui is the order inducing variable and i ix y−  is the argument variable repre-
sented in the individual distances.
Step 2. Thus, we obtain ( ),h kd T Z  for all h and k. That is, the fuzzy relations between T 
and Z. The results can be represented in a similar way as it is presented for the OWAD 
operator in Table 1.
Step 3. Next, analyse if we have the same number of rows and columns. If so, continue 
with the algorithm. If not, we have to add additional columns or rows until both are equal.
Step 4. Subtract the smallest value of each row in case we have added a column and the 
smallest value of each column if we have added a row. This process is explained in Section 1.6.
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Step 5. Analyse if it is possible an assignment in case the values of pij are all zero. If so, we 
get an optimum. If not, we continue with the process.
Step 6. Consider the row with less zeros. Mark one of the zeros of each row and delete the 
rest of the zeros of the row and the column of the zero marked. Repeat this process with 
the rows that have more and more zeros until there is no zero to be marked.
Step 7. Indicate with an arrow ← the rows where there is not any zero marked. 
Step 8. Next, indicate with an arrow ↑ the columns in which there exists a zero deleted in 
a row marked with an arrow. Finally, mark with an arrow ← the rows where there is a zero 
marked in a column indicated with an arrow.
Step 9. Repeat Step 8 until it is not possible to consider more rows or columns. 
Step 10. Draw a line in the rows not marked by arrows and a line in the columns marked 
by arrows. These rows and columns constitute the lowest number of them that possess 
zeros marked or deleted.
Step 11. Eventually, move some of the zeros. For doing so, we choose the smallest value 
among the elements of the matrix that has not been marked by arrows. This result is sub-
tracted from the elements of the columns not marked and it is added to the elements of 
the rows marked. We obtain a matrix with the elements pij

*.
Step 12. With the new matrix which elements are pij

*, we go back to Step 5, following the 
same process used for the matrix with the elements pij. If we find an optimal solution, we 
stop and reach the final point. Otherwise, we continue with Steps 6 to 11. If necessary, go 
back to Step 5.

Note that we may find a solution that may not be unique, so it is possible to obtain 
other solutions.

In this assignment process we can also study a wide range of particular cases following 
the methodology explained in Remarks 1 – 7 including the maximum, the minimum, the 
step-IOWAD and the olympic-IOWAD operator. Moreover, we can also analyse similar 
properties including commutativity, monotonicity and reflexivity.

Furthermore, we can study several measures for characterizing the weighting vector 
(Yager 1988; 2002). For example, the entropy of dispersion is defined as follows:

 ( )  H W = 
1

ln( )
n

j j
j

w w
=

−∑ .  (9) 

If wj = 1 for some j, then ( )   0H W = , and the least amount of information is used and 
if wj = 1/n for all j, then, the amount of information used is maximum.

Another measure that can be used is the divergence of W defined in the following way:

 ( )  Div W =  
2

1
( )

1

n

j
j

n jw W
n=

− 
− α − 

∑ .  (10)

Note that further extensions could be developed in a similar way as it is explained by 
Merigó and Casanovas (2011a) by using mixture operators, Choquet integrals and so on.
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2.3. Generalized aggregation operators in the Hungarian algorithm

In order to provide a general representation of the assignment process by using distance 
measures we can use generalized aggregation operators such as the generalized mean 
(Merigó, Casanovas 2011c) and the quasi-arithmetic mean (Fodor et al. 1995; Merigó, Gil-
Lafuente 2009). Thus, we will obtain a general framework that will include a wide range of 
particular including the use of the OWAD and the IOWAD operators in the analysis. Note 
that when we use the generalized mean with distance measures we are using the Minkowski 
distance. First, let us look to the case with the OWAD operator. Therefore, we are using 
the generalized ordered weighted averaging distance (GOWAD) operator (or Minkowski 
OWAD (MOWAD) operator) (Merigó, Casanovas 2011c; Xu, Chen 2008a) that can be 
defined as follows.
Definition 5. A Minkowski OWAD (MOWAD) operator of dimension n is a mapping 
MOWAD:  n nR R R→  that has an associated weighting vector W of dimension n with 

1
1

n

j
j

w
=

=∑  and 0,1jw ∈    such that:

 ( ) ( ) ( )1 1 2 2MOWAD , , , , , ,  n na b a b a b … =   
1/

1

n

j j
j

w D
λ

λ

=

 
 
 
 
∑  ,  (11) 

where Dj is the jth largest of the individual distance i ia b−  between A and B and λ is a 
parameter such that  ,  .λ∈ −∞ ∞

As we can see, we can use a wide range of particular cases by using different values in 
the parameter λ. For example:

 – If λ = 1, we use the OWAD operator as shown in Definition 3.
 – If λ = 2, we obtain the Euclidean OWAD (EOWAD) operator (Merigó, Casanovas 
2011b):

 ( ) ( ) ( )1 1 2 2EOWAD , , , , , ,  n na b a b a b … = 
2

1

n

j j
j

w D
=
∑ .  (12)

 – If λ = 3, we form the cubic OWAD (COWAD) operator:

 ( ) ( ) ( )1 1 2 2COWAD , , , , , ,  n na b a b a b … = 

1/3

3

1

n

j j
j

w D
=

 
 
 
 
∑ .  (13)

 – If λ = –1, we get the harmonic OWAD (HOWAD) operator:

 ( ) ( ) ( )1 1 2 2HOWAD , , , , , ,  n na b a b a b … = 

1/ 1

1

1

1

1n

j j n
jj

jj

w D
w
D

−

−

=

=

 
  =
 
 
∑

∑
.  (14)

The MOWAD operator can be generalized by using quasi-arithmetic means. Thus, we 
obtain the quasi-arithmetic OWAD (Quasi-OWAD) operator (Merigó, Casanovas 2011a). 
It can be defined as follows.
Definition 6. A Quasi-OWAD operator of dimension n is a mapping Quasi-OWAD: 
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 n nR R R→  that has an associated weighting vector W of dimension n with 
1

1 
n

j
j

w
=

=∑ and 
0,1jw ∈    such that:

 
( ) ( ) ( ) ( )1

1 1 2 2
1

Quasi-OWAD , , , , , ,  ,
n

jjn n
j

Dw ga b a b a b g −

=

 
   … =   

 
∑

 
 (15) 

where Dj is the jth largest of the individual distance i ia b−  between A and B and ( )jg D  
is a strictly continuous monotonic function.

As we can see, the Quasi-OWAD operator includes the MOWAD operator as a particu-
lar case and a wide range of other ones. For example:

 – If ( )j jg D Dλ= , we obtain the MOWAD operator.
 – If ( )j jg D D= , we the get the OWAD operator.
 – If 3( )j jg D D= , we form the EOWAD operator.
 – If 3( )j jg D D= , the Quasi-OWAD operator becomes the COWAD operator.
 – If 1( )j jg D D−= , we obtain the HOWAD operator.

Furthermore, we can extend the MOWAD and the Quasi-OWAD operators by using 
induced aggregation operators (Merigó, Casanovas 2011c). Note that a lot of other cases 
could be considered following the literature concerning quasi-arithmetic means (Beliakov 
et al. 2007; Merigó, Gil-Lafuente 2009).

Once we have established the type of distance measure to be used in the assignment 
process forming the similarity relations shown in Table 1, we could continue the Hungarian 
algorithm in a similar way as explained in Section 2.2.

3. Illustrative example

In the following, we develop a simple numerical example of the new approach. The focus 
is on assignment decision making problems based on the Hungarian algorithm. Note that 
in the literature there are many other methods for decision making (Gil-Aluja 1999; Han, 
Liu 2011; Vizuete et al. 2013; Wei et al. 2012).

Assume that an enterprise wants to invest some money in one product. After careful 
analysis of the different possibilities that the markets offer, the group of experts of the en-
terprise considers six possible investments:

 – P1 = Hedge Funds.
 – P2 = Investment Funds.
 – P3 = Bonds.
 – P4 = Fixed Income Notes.
 – P5 = Stocks.
 – P6 = Equity Derivatives.

When analysing the investments, the experts have considered the following general 
characteristics:

 – C1 = Risks of the investment.
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 – C2 = Difficulty of the investment.
 – C3 = Benefits in the long term.
 – C4 = Benefits in the mid term.
 – C5 = Benefits in the short term.
 – C6 = Social responsible investment (SRI).
 – C7 = Others aspects.

The companies involved in the following decision process that can invest in these fi-
nancial products are the following:

 – E1 = Enterprise A.
 – E2 = Enterprise B.
 – E3 = Enterprise C.
 – E4 = Enterprise D.
 – E5 = Enterprise E.

With this information, the group of experts describes each financial product according 
to the characteristics established in aggregated form the results are shown in Table 2. We 
assume that each company has similar characteristics so they are more or less equally quali-
fied for carrying out the strategic investment process and its aggregated subjective opinions 
are shown in Table 3. The results are valuations (numbers) between 0 and 1 being 1 the 
best result and 0 the worst result.

In the first case we consider the seven characteristics with the normalized Hamming 
distance (Gil-Aluja 1999). We assume that ( )W 0.3,  0.2,  0.2,  0.1,  0.1,  0.1,  0=  in the OWAD 
operator and ( )U 12,1 0,  9,  5,  7,1 5,  3=  in the IOWAD operator. Note that order inducing 
variables U are provided by the experts when they analyse the information. With this infor-
mation, it is possible to develop different methods for calculating the Hungarian algorithm.

In this example, we consider the Hamming distance, the OWAD operator and the IO-
WAD operator. In the first case, the distances that we obtain are shown in Table 4. In the 
second case, the aggregated results are shown in Table 5. The third operator is presented in 
Table 6. Note that many other aggregation operators could be used in the analysis by using 
different values in the parameter λ of Eq. (11). In this example, it is implicitly assumed  
λ = 1, which is the most common and practical case in decision making problems.

The results of Table 4, 5 and 6 are obtained by using Remark 4 and Eqs (3) and (4). For 
example, in Table 4, E1 with P1 is obtained as follows: d(E1, P1) = (1/7) [|0.8 – 0.6| + |0.7 – 
0.5| + |0.8 – 0.8| + |0.7 – 0.6| + |0.6 – 0.5| + |0.5 – 0.5| + |0.6 – 0.7|] = 0.10. And so on for 
the rest of the cases. We develop a Hungarian algorithm by using the Hamming distance. 
The results are shown in Table 7.

If we analyse the sum of distances in the original matrix, we obtain that 0.14 + 0.07 + 
0.09 + 0.09 + 0.11 + 1 = 1.50, if we subtract the value of the fictitious element, we obtain 
1.50 – 1 = 0.50, this is an optimal solution. With these calculations the optimal assignment 
by using the Hamming distance is as follows:
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Table 2. Characteristics of the financial products

  C1 C2 C3 C4 C5 C6 C7

P1 0.8 0.7 0.8 0.7 0.6 0.5 0.6
P2 0.7 0.6 0.7 0.7 0.5 0.8 0.6
P3 0.4 0.7 0.6 0.7 0.7 0.6 0.6
P4 0.6 0.7 0.5 0.6 0.8 0.7 0.7
P5 0.8 0.4 0.7 0.8 0.8 0.4 0.7
P6 0.8 0.7 0.7 0.8 0.7 0.5 0.7

Table 3. Characteristics of the enterprises

  C1 C2 C3 C4 C5 C6 C7

E1 0.6 0.5 0.8 0.6 0.5 0.5 0.7
E2 0.7 0.6 0.7 0.8 0.9 0.8 0.6
E3 0.8 0.9 0.8 0.7 0.5 0.7 0.5
E4 0.6 0.8 0.9 0.8 0.7 0.5 0.8
E5 0.9 0.8 0.7 0.8 0.9 0.6 0.7

Table 4. Aggregated distances with Hamming

  P1 P2 P3 P4 P5 P6

E1 0.10 0.11 0.16 0.14 0.14 0.13
E2 0.14 0.07 0.14 0.13 0.13 0.11
E3 0.09 0.10 0.17 0.19 0.21 0.14
E4 0.11 0.19 0.14 0.16 0.16 0.09
E5 0.13 0.17 0.16 0.14 0.11 0.07

Table 5. Aggregated distances with OWAD operator

  P1 P2 P3 P4 P5 P6

E1 0.14 0.16 0.18 0.21 0.20 0.17
E2 0.20 0.14 0.20 0.15 0.20 0.17
E3 0.13 0.15 0.24 0.24 0.31 0.18
E4 0.15 0.22 0.20 0.23 0.23 0.13
E5 0.16 0.24 0.24 0.20 0.19 0.11

Table 6. Aggregated distances with IOWAD operator

  P1 P2 P3 P4 P5 P6

E1 0.10 0.15 0.16 0.16 0.15 0.13

E2 0.18 0.05 0.18 0.12 0.19 0.15

E3 0.11 0.12 0.19 0.15 0.24 0.14

E4 0.09 0.20 0.13 0.15 0.18 0.08

E5 0.12 0.19 0.16 0.16 0.17 0.09
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Table 7. Aggregated results with the Hamming distance

  P1 P2 P3 P4 P5 P6

E1 0 0.02 0.03 0 (1.) 0.01 0.04
E2 0.06 0 (2.) 0 0 0.02 0.04
E3 0 (3.) 0.03 0.05 0.04 0.10 0.07
E4 0.02 0.10 0 0.03 0.03 0 (4.)
E5 0.05 0.10 0.04 0.02 0 (5.) 0
E0 0.05 0.05 0 (6.) 0 0.01 0.05

Assignment process 1
1. Enterprise 1 assigned with financial product P4 (Fixed Income Notes).
2. Enterprise 2 assigned with financial product P2 (Investment Funds).
3. Enterprise 3 assigned with financial product P1 (Hedge Funds).
4. Enterprise 4 assigned with financial product P6 (Equity Derivatives).
5. Enterprise 5 assigned with financial product P5 (Stocks).
6. Enterprise 0 assigned with financial product P3 (Bonds).
Next, we develop a Hungarian algorithm with the OWAD operator. We assume that

( ) W 0.3,  0.2,  0.2,  0.1,  0.1,  0.1,  0= . The results are shown in Table 8.

Table 8. Aggregated results with the OWAD operator

  P1 P2 P3 P4 P5 P6

E1 0.02 0.01 0 (1.) 0.05 0.02 0.07
E2 0.08 0 0.03 0 (2.) 0.02 0.07
E3 0 0 (3.) 0.07 0.08 0.13 0.08
E4 0 (4.) 0.05 0 0.05 0.03 0
E5 0.04 0.09 0.07 0.04 0 0 (5.)
E0 0.07 0.05 0.02 0.04 0 (6.) 0.09

By using the same process that we use before, we observe that 0.18 + 0.15 + 0.15 + 
0.15 + 0.11 = 0.74. In this case we do not add and subtract the fictitious value, and we can 
obtain an optimal solution. Therefore, the optimal assignment is the following one:

Assignment process 2
1. Enterprise 1 assigned with financial product P3 (Bonds).
2. Enterprise 2 assigned with financial product P4 (Fixed Income Notes).
3. Enterprise 3 assigned with financial product P2 (Investment Funds).
4. Enterprise 4 assigned with financial product P1 (Hedge Funds).
5. Enterprise 5 assigned with financial product P6 (Equity Derivatives).
6. Enterprise 0 assigned with financial product P5 (Stocks).
Next, we develop a Hungarian algorithm with the IOWAD operator. We assume that 
( )U 12,1 0,  9,  5,  7,1 5,  3= . The results are shown in Table 9 and 10.
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Table 9. Aggregated results with the IOWAD operator (1)

  P1 P2 P3 P4 P5 P6

E1 0 (1.) 0.08 0.01 0.02 0.00 0.03
E2 0.10 0 (2.) 0.05 0 0.06 0.07
E3 0 0.04 0.03 0 (3.) 0.09 0.03
E4 0 0.15 0 (4.) 0.03 0.05 0
E5 0.03 0.13 0.02 0.03 0.03 0 (5.)
E0 0.06 0.08 0 0.01 0 (6.) 0.05

Table 10. Aggregated results with the IOWAD operator (2)

  P1 P2 P3 P4 P5 P6

E1 0 0.08 0.01 0.02 0 (1.) 0.03
E2 0.10 0 (2.) 0.05 0 0.06 0.07
E3 0 0.04 0.03 0 (3.) 0.09 0.03
E4 0 (4.) 0.15 0 0.03 0.05 0
E5 0.03 0.13 0.02 0.03 0.03 0 (5.)
E0 0.06 0.08 0 (6.) 0.01 0 0.05

Note that with the IOWAD operator we find that there are two optimal assignment 
processes as shown in Tables 9 and 10. However, if we analyse both assignments in detail, 
we see the sum of distances in the original matrix is in the first case without taking the 
notional value of the assignment 0.10 + 0.05 + 0.15 + 0.13 + 0.09 = 0.52, and for the second 
assignment process is 0.15 + 0.05 + 0.15 + 0.09 + 0.09 = 0.53. Thus, although both assign-
ment processes are optimal, it seems that the first one (3a) is better. 

Assignment process 3a
1. Enterprise 1 assigned with financial product P1 (Hedge Funds).
2. Enterprise 2 assigned with financial product P2 (Investment Funds).
3. Enterprise 3 assigned with financial product P4 (Fixed Income Notes).
4. Enterprise 4 assigned with financial product P3 (Bonds).
5. Enterprise 5 assigned with financial product P6 (Equity Derivatives).
6. Enterprise 0 assigned with financial product P5 (Stocks).

Assignment process 3b
1. Enterprise 1 assigned with financial product P5 (Stocks).
2. Enterprise 2 assigned with financial product P2 (Investment Funds).
3. Enterprise 3 assigned with financial product P4 (Fixed Income Notes).
4. Enterprise 4 assigned with financial product P1 (Hedge Funds).
5. Enterprise 5 assigned with financial product (Equity Derivatives).
6. Enterprise 0 assigned with financial product P3 (Bonds).
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Conclusions

We have presented a new approach for decision making in an assignment process by using 
the OWAD operator. Its main advantage is that we can consider the information in a more 
complete way by using a parameterized family of aggregation operators from the minimum 
to the maximum distance. Thus, we can consider optimistic or pessimistic scenarios by 
under or over estimating the information. We have further extended this approach by using 
induced aggregation operators. Therefore, we have been able to analyse complex reordering 
processes where the information is not clearly known.

We have also generalized it by using generalized and quasi-arithmetic means forming 
the generalized OWAD (GOWAD) operator (also known as the Minkowski OWAD) and 
the quasi-arithmetic OWAD (Quasi-OWAD) operator. We have seen that these approaches 
include a wide range of particular cases including the Euclidean OWAD operator. A similar 
generalization has been developed by using the IOWAD operator obtaining the induced 
generalized OWAD (IGOWAD) operator (also known as the Minkowski IOWAD). In this 
case we have also found a lot of particular cases including the Euclidean IOWAD operator.

The applicability of this new approach has been studied in a financial management 
problem regarding the assignment of financial products. We have seen that each aggrega-
tion operator may lead to different assignments since the results can be different. The use 
of OWAD and IOWAD operators permits to consider different degrees of optimism or 
pessimism in the analysis.

In future research, we expect to improve this current proposalby adding new character-
istics in the problem such as the use of probabilistic information, norms, weighted averages 
and more complex structures. 
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