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Abstract. An important objective of a group decision-making problem is to determine the weights 
of attributes that are given by experts participating in the decision-making process. Since different 
decision-makers have unequal importance in decision-making, a series of studies focused on find-
ing a set of appropriate weights for experts participating in a decision problem. In this paper, the 
problem of weight determination among decision-makers is investigated by extending an algorithm 
taken from the technique for order preference by similarity-to-ideal solution. In this case, a pair 
of most compromising and least compromising solutions is derived from individual judgments of 
decision-makers and then, these solutions are applied as the bases for determining the magnitude of 
individual alignment with the group opinion by using a closeness coefficient approach. Determin-
ing the weights of decision-makers, the group decision-making problem is then solved. Application 
of the proposed method is illustrated by a numerical example for the selection of a maintenance 
strategy. 

Keywords: weights, multi-attribute, fuzzy, group decision-making, linguistic variable, triangular 
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Introduction

Decision-making is an intrinsic part of our daily life. From a professional viewpoint, de-
cision-making problems can be classified into two main groups of selection and planning 
problems. On the other hand, most of the decisions are made considering the set of criteria 
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that are usually conflicting. The problem of decision-making with multi-criteria is the sub-
ject of multi-criteria decision-making (MCDM). MCDM is further composed of multiple 
attribute decision-making (MADM) and multiple objective decision-making (MODM) 
(Xu 2015). MADM is used to solve selection type (discrete optimization) problems and 
MODM – for solving planning type (continuous optimization) problems. Multi-attribute 
decision-making, also known as multi-objective decision-making with finite alternatives, 
is an important component of modern decision science.

A great deal of research and publications is devoted to MADM problems. Hwang and 
Yoon (1981), Venkata (2013), Ishizaka and Nemery (2013), Zavadskas, Turskis (2011), 
Zavadskas et al. (2014a, 2014b) provided a complete survey and systematic classification 
of MADM techniques. Generally speaking, an MADM problem can be defined as fol-
lows: Let { }1 2, , , mA A A A=   be a non-empty and finite set of decision alternatives and 
{ }1 2, , , nC C C  is a finite set of goals, attributes or criteria, according to which desirability 
of an alternative is to be judged. The aim of MADM is to determine a preferable alternative 
with the highest degree of desirability with respect to all relevant goals (Zimmerman 1987). 
An MADM problem can be stated in form of a m n×  decision matrix [ ]ijX x= , where xij 
presents the performance of preference of the alternative Ai of the attribute Cj, and the 
weight vector ( )1 2, , , nW w w w=   which determines the importance of attributes. Mul-
ti-person decision-making, which occurs whenever two or more people actively participate 
in decision-making, is a ubiquitous human activity. Indeed, even when making decisions 
on our own, in which case decisions are not multi-person in the strict sense, we should 
almost always consider the situations and values of others. 

Most of multi-person multi-attribute decision-making problems depend to class (4) 
(Fig. 1).

Condorcet (1785) specified a three-candidate profile with a majority candidate that 
would lose under every Borda-type method that assigns more points to a first choice than a 
second choice, and more points to a second than a third choice. One of the most important 
advances in the theory of elections and social choice during the past century was Arrow’s 
discovery (Arrow 1950; Visco 2014) that a few appealing attributes for social ranking meth-
ods are mutually incompatible. Its essential idea is that the problems that arise from the 
Condorcet’s paradox of voting or cyclical majorities cannot be avoided under any reason-
able generalization of majority comparisons. Bellman and Zadeh (1970) offered the basis 
for hundreds of options for subsequent modelling of indi-
vidual decisions in fuzzy environments. For multi-person 
decision-making models, the origins are more diverse. 

Extensions of the basic model by Bellman and Zadeh 
can primarily be conceived in three directions:

1. Rather than a single decision-maker, there are sev-
eral decision-makers involved.

2. The preference or utility function is no single valued 
but rather vector valued. This extension is consid-
ered in multi-attribute utility theory and in multi-
attribute analysis.

Fig. 1. Classification  
of fuzzy optimization problems 

(adopted from Leung 1988)
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3. Finally, more than the occurrence of the states is uncertain, the uncertainty of the 
occurrence cannot be modelled by single valued probabilities, the uncertainties are 
not of a probabilistic nature, or evidences for the assumptions are contradictory or 
insufficient.

In fact, while the complexity of social, economic, and technological world is increasing, 
it becomes more and more difficult for a single decision-maker (DM) to make decisions 
(Hwang, Lin 1986). In many real-life situations, decision-makers are interested in the value 
of a physical quantity that is difficult (or even impossible) to measure directly. Since we 
cannot measure such quantities directly, they get measured indirectly, by measuring some 
other quantities and using the known relations (Kreinovich 2014).

The problem become challenging once the second issue of uncertainty becomes inev-
itable. Yovits (1984) believed that uncertainty is a consequence of partial or approximate 
information. To deal with vagueness of human thought, Zadeh (1965) first introduced the 
fuzzy set theory, which was focused on the rationality of uncertainty due to imprecision or 
vagueness. Application of the framework of fuzzy optimization proposed by Bellman and 
Zadeh (1970) shows that the equilibrium problem in a fuzzy environment leads to the main 
result of fuzzy optimization which is an extremum problem of a scalar function.

A common solution approach is to reformulate the basic fuzzy optimization problem 
into a conventional optimization problem and then solve it by well-established algorithms 
(Zimmermann 1976, 1991).

Considering these two points, the main problem of this paper can be called fuzzy mul-
ti-attribute group decision-making (FMAGDM) (Kahraman et al. 2007).

FMAGDM problem has been studied previously and several methods have been pro-
posed by researchers. Chen (2000) presented a study on extensions of the TOPSIS for 
group decision-making in a fuzzy environment; Turskis and Zavadskas (2010) presented 
a new fuzzy additive ratio assessment method (ARAS-F), which was applied for group 
decision-making process in order to select the location for a logistics centre; Chaudhuri 
et al. (2013) applied a group decision-making approach using numeric and linguistic data 
to solve a problem of risk assessment during the development of a new product; Xu et al. 
(2013) applied the Logarithmic least squares method to priority for group decision-mak-
ing with incomplete fuzzy preference relations; Zhou et al. (2013) presented Generalized 
Multiple Averaging Operators and applied them to a group decision-making problem; Devi 
and Yadav (2013) presented a multi-attribute intuitionistic fuzzy group decision-making 
model for the selection of the location for a plant with ELECTRE method; Keršulienė and 
Turskis (2014) presented a hybrid linguistic fuzzy multiple criteria group selection of a 
chief accounting officer, which is based on ARAS-F and AHP methods; Yue (2014a, 2014b) 
presented and applied models of group decision-making based on aggregating interval 
data into interval-valued intuitionistic fuzzy information and aggregating crisp values into 
intuitionistic fuzzy number for group decision-making.

Most of the presented algorithms for FMAGDM problems start by initially determin-
ing individual decision-maker preferences in the form of individual decision matrices and 
aggregating them into a single decision-making matrix. This aggregation is done often by 
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using simple or weighted arithmetic or geometric averaging operators, where a weight is 
assigned to each decision-maker (Hwang, Lin 1986).

Here, an issue under the question is whether to consider different decision-maker opin-
ions on attributes as equally important or to assign different weights to them due to dif-
ferent expertise about each attribute. In fact, since different decision-makers have different 
specialty, their judgments of different attributes must be considered non-similar. Next, a 
prior weight for each decision-maker has to be determined; and then, individual decision 
matrices have to be aggregated based on these weights in an aggregated decision matrix. 
Ramanathan and Ganesh (1994) proposed, and later, Jabeur and Martel (2002) exploited 
the idea by Zeleny (1982) to determine the relative importance coefficient of each DM 
by using AHP method (Analytic Hierarchy Process (Saaty 1980; Saaty, Peniwati 2008)). 
Jabeur et al. (2004) proposed a two-step algorithm for aggregation of experts’ opinions. 
Chen and Fan (2007) extended a factor score method (FAM) for ranking of the assessment 
levels of experts. Yue (2011a) presented a new approach for determining weights of DMs 
in the group decision environment based on an extended TOPSIS method. Yue (2011b, 
2012a, 2012b) extended the TOPSIS-based method to determine weights of decision-mak-
ers, when decision matrices are expressed in interval numbers. Yue (2011c) extended his 
TOPSIS-based method for determining weights of decision-makers for cases when DMs 
preferences are expressed in interval-valued intuitionistic fuzzy information. Yue (2012c) 
used the projection method to determine the weights of individuals by the projection of 
individual decisions on the ideal solution. In his studies, Yue defined the average of deci-
sion-makers as a positive ideal solution. Dong and Saaty (2014) developed an AHP-based 
method that allowed decision-makers to update their judgments in each step to reach 
the highest consensus. Li and Chen (2014) investigated a TOPSIS-based method on the 
prospect theory and trapezoidal intuitionistic fuzzy numbers for group decision-making. 
They found weights of decision-makers by using distance measures and the trapezoidal 
intuitionistic fuzzy weighted averaging operator.

One common approach in the aforementioned researches is to calculate weights of 
different decision-makers based on closeness coefficient, as defined in TOPSIS method, 
as the ratio of their distance from negative ideal solution, divided by the sum of distances 
to negative and positive solutions. A common way of defining a positive ideal solution is 
considering it as the average of decision-maker preferences. 

The aim of this paper is to develop a method to derive decision-maker weights, when 
DMs opinions are expressed in the form of fuzzy numbers. An advantage of the proposed 
method is to compute different weights for each decision-maker in different attributes. 
Suppose that k decision-makers participated in a decision-making process. Usually a weight 
vector 1 2( , , , )kλ = λ λ λ  is computed, where λl is the weight of lth decision-maker. In 
this paper, a k n×  weight matrix [ ]ljλ = λ is computed, where λlj is the weight of lth deci-
sion-maker in jth attributed. The main idea of the method proposed in this paper is to find 
the most compromising and the least compromising solution and then define a closeness 
coefficient for each decision-maker to approximate decision-maker weights. These weights 
are then used to construct the aggregated decision matrix that implied the higher consensus 
among decision-makers.



1. Preliminaries of fuzzy set theory

Fuzzy set theory was introduced by Zadeh (1965) and has been further developed and 
applied in a wide variety of practical problems. A fuzzy set A  in the universe X is charac-
terised by its membership function : 0,1A Xm →   

, where ( ),A x x Xm ∈


 denotes the mem-
bership degree of x to A .

A fuzzy number is a fuzzy set a  on the real line R whose membership function am


is 
a convex, upper semi-continuous function. A triangular fuzzy number (TFN) is denoted 
by ( )1 2 3 1 2 3, , ,a a a a a a a= ≤ ≤ , the membership function of which is as follows (Kaufman, 
Gupta 1991):
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. (1)

( )1 2 3, ,a a a a= is defined as a positive TFN if 1 0a ≥ . If ( )1 2 3, ,a a a a=  and ( )1 2 3, ,b b b b=  
be two positive TFNs, then their arithmetic operations will be defined as follow:

 ( )1 1 2 2 3 3, ,a b a b a b a b+ = + + +

 ; (2)

 ( )1 3 2 2 3 1, ,a b a b a b a b− = − − −

 ; (3)

 ( )1 2 3, , , 0a a a aλ = λ λ λ λ ≥ . (4)

Multiplication of two positive TFNs is not exactly a TFN, but is approximated as:

 ( )1 1 2 2 3 3, ,a b a b a b a b⋅ = . (5)

The Euclidean distance between two TFNs a  and b  is defined as:

 
( ) 2 2 2

1 1 2 2 3 3
1, [( ) ( ) ( ) ]
3

D a b a b a b a b= − + − + −

 . (6)

2. Fuzzy Multi-Attribute Group Decision-Making

The FMAGDM problem is defined as follows: suppose that a group of k decision-makers 
{ }1 2, , , kE E E  are participating in a group decision-making problem. The decision prob-
lem is to compare a set of finite alternatives { }1 2, , , mA A A  to rank or to prioritise them. 
These alternatives are evaluated based on a set of attributes ( ) ( )α = α, ,j js s . Initially, each 
member of the group expresses her/his preferences in the form of a decision matrix ( )lX :

 

( )
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( ) ( ) ( )
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l l l
l n
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x x x

 
 
 
 =
 
 
  

  



  



   

  



, (7)

where ( ) ( ) ( ) ( )
1 2 3, ,l l l l

ij ij ij ijx x x x =  
 

  is the preference of the lth decision-maker over the perfor-
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mance of the alternative Ai with respect to the attribute Cj. The aim of the paper is to find 
a decision-makers’ weight matrix λ,

 

11 12 1

21 22 2

1 1

n

n

k k kn

λ λ λ 
 λ λ λ λ =  
 
λ λ λ  





  



, (8)

where λlj is the weight of decision-maker l opinion about attribute j, λlj ≥ 0,
0, 1,2, , ; 1, 2, ,lj l k j nλ ≥ = =   and for each 1,2, ,j n=  , 1 1k

ljl= λ =∑ . Finally, the aggregated 

decision matrix ijD x =    is obtained, where ( )
1

kk
ij lj ijlx x== λ∑  .

3. Fuzzy Multi Attribute Group Decision-Making Approach

The proposed algorithm for solving FMAGDM problem consists of three main stages: Ini-
tialization, Aggregation, and Final Ranking. 

Initialization

First of all, the alternative set A and attributes set C are determined. Then, the de-
cision-making team including k experts or decision-makers (DMs) is formed. Each ex-
pert states his or her individual decision matrix ( ) ( )[ ], 1, 2, ,ll

ijX x l k= =  along with in-
dividual weight vector ( ) ( ) ( ) ( )

1 2, , , , 1, 2, ,l l ll
nW w w w l n = = 

 
  . It should be noted that 

the weight vector can be determined using analytic hierarchy process, Entropy (Shannon 
1948; Sušinskas et al. 2011), LINMAP (Yoon, Hwang 1995; Mikhailov 2000, 2003; Xia et al. 
2006; Li, Liu 2008), SWARA (Keršulienė et al. 2010), or any other methods. In the proposed 
approach, DMs can determine their weighting scheme linguistically.

Aggregation

To compute the decision-makers weight matrix λ, first, the individual decision matrices 
( ) , 1, 2, ,lX l k=   are normalised. The normalised decision-making matrix ( ) ( )[ ]ll

ijN n=   is 
constructed applying (Chen et al. 2006):
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(11)

where

                         
( ) ( )
1 1min .l l
ij iji

x x−  =  
    

(12)
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Then, the weighted normalised decision matrix ( ) ( ) ( ) ( ) ( )
1 2 3[ ] [( , , )]l l l ll

ij ij ij ijV v v v v= =  is speci-
fied by multiplying the weight vector ( )lW in ( )lN ,

 
( ) ( )l l

jij ijv w n=  . (13)

Now, the vector ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2
1 2 1 2 1 2, , , , , , , , , , , ,k k k

j j j mj j j mj j j mjv v v v v v v v v v =  
 
        

    , composing 
the weighted-normalised vectors of decision-makers over jth attribute. The most compro-
mising solution (B) for attribute j is defined as follows:

Definition 1. Considering the vector vj, the most compromising solution is an artificial 
point ( ), , j j j jB l m u+ + += , which has the least total square Euclidean distance from compo-
nents of vj, defined as follows:

 
( ) ( )12

1 1
, ,

k m

j j jij
l i

TD v B D v B
= =

 =  
 ∑∑  . (14)

Similarly, the least compromising solution (L) is defined.
Definition 2. Considering the vector vj, the least compromising solution is an artificial 

point ( ), , j j j jL l m u− − −= , which has the least total square Euclidean distance from compo-
nents of vj, defined as follows:

 
( ) ( )12

1 1
, ,

k m

j j jij
l i

TD v L D v L
= =

 =  
 ∑∑  . (15)

A mathematical model can be developed to find Bj. This model is extended as follows:

                               

( )12

1 1
min , ;

k m

jij
l i

D v B
= =
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jij ijl k i m l k i m

v l v+
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

   ≤ ≤   
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min min max max ;l l
jij ijl k i m l k i m

v m v+
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

   ≤ ≤   
   

                                     
( ) ( )
3 31 1 1 1

min min max max ;l l
jij ijl k i m l k i m

v u v+
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

   ≤ ≤   
   

                                     
.j j jl m u+ + +≤ ≤                                                                      (16)

Absolutely, according to arithmetic average properties (Aladjev, Horitonov 2004), the 
average of decision-makers’ opinions is the obvious solution of the model (16) and, there-
fore, Bj is calculated as follows:

 
( ) ( ) ( ) ( )

1 2 3
1 1 1 1 1 1

1, , , ,
k m k m k ml l l

j j j ij ij ij
l i l i l i

l m u v v v
ml

+ + +

= = = = = =

 
=   

 
∑∑ ∑∑ ∑∑ . (17)

Similarly, the L solution ( ), ,  j j jl m u− − − is determined, replacing ( ) , , j j jl m u+ + +  in Eqs (16) – 
(18) with ( ), , j j jl m u− − −  and maximising the corresponding model with the following objec-
tive function:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 2 3 1 2 3

1 1 1 1 1 1 1 1

1max 2 2 2
3

k m k m k m k ml l l l l l
j j j j j jij ij ij ij ij ij

l i l i l i l i
v v v l v m v u v km l m u− − − − − −

= = = = = = = =

  + + − − − + + +  
   

∑∑ ∑∑ ∑∑ ∑∑  . 

(18)
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Replacing the above equation in Eq. (15), a quadratic programming model is obtained. 
Since the constraints of the problem include a set of linear constraints, which construct 
a convex set, the optimal solution of the problem can be easily determined using ordinal 
optimisation software, e.g. LINGO, LINDO, or AIMS. Solving this model, the optimal 
values of ( ), , j j jl m u+ + +  are determined.

By applying the B and L models for each attribute, the positive ideal solution (B) and 
negative ideal solution (L) are determined: ( ) ( )1 2 1 2, , , , , , , . n nB B B B L L L L= … = …

Now, consider the attribute j. The distance of each decision-maker in attribute j from 
Bj and Lj is calculated:

( ) ( ) ( )2 2 2

1 2 3
1

1 , 1,2, , ; 1, 2, , ;
3

m l l l
j j jij ij ijlj

i
S v l v m v u l k j n+ + + +

=

      = − + − + − = =      
       

∑  

 
(19)

( ) ( ) ( )2 2 2

1 2 3
1

1 , 1,2, , ; 1,2, , .
3

m l l l
lj j j jij ij ij

i
S v l v m v u l k j n− − − −

=

      = − + − + − = =      
       

∑  

 
(20)

The closeness coefficient of decision-maker l in attribute j to ideal solution is defined as

 
, 1,2, , ; 1,2, ,lj

lj
lj lj

S
w l k j n

S S

−

− +
= = =

+
  .  (21)

Finally, the weight of decision-maker l in attribute j is defined as:

 1

, 1,2, , ; 1,2, ,lj
lj k

ljl

w
l k j n

w=

λ = = =
∑

  . (22)

Final Ranking

Calculating the decision-maker weights of different attributes, the aggregated deci-
sion-making matrix X  is obtained,

 

11 12 1

21 22 2

1 2

,

n

n

m m mn

x x x
x x x

X

x x x

 
 
 =  
 
  

  



  





   

  



 

(23)

where ( )
1

kk
ij lj ijlx v== λ∑  . Now, the score of each alternative Ai is computed as,

 
( )

1
, 1,2, , .

n

i ij
j

S A x i m
=

= =∑





 
(24)

The values of ( ), 1,2, ,iS A i m=

  are triangular fuzzy numbers. These values can be 
ordered using the centre of gravity (COG) method (Buckley, Eslami 2002). It should be 
kept in mind that for a triangular fuzzy number ( )1 2 3, ,a a a a= , its COG is calculated as 
( )1 2 3 3a a a+ + . The final ranking of alternatives is determined based on the descending 
ranking of their COG values.

The proposed algorithm for solving an FMAGDM problem could to be described as a 
step-wise procedure. It is presented in Figure 2.
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4. Illustrative example

In this section, the proposed algorithm (Fig. 2) is applied to assess the maintenance strategy 
in a corporation. Iran Foolad Kavir (IFK) is a steel and rolling company, which produces 
nine different types of reinforcing bars (rebar’s) from 8 to 24 mm in diameter. Three dif-
ferent types of ingots are melted for the manufacturing process. At the first stage, the 
ingots are melted by smelter machines; then, the rolling machines produce specific sizes 
of the bars according to the production schedule. Depending on whether spare parts are 
purchased from a domestic or a foreign supplier, hiring domestic or foreign maintenance 
experts, and adopting a preventive or emergency maintenance approach, eight different 
strategies can be distinguished for the machinery system of IFK., as listed in Table 1. 

The proposed algorithm is used to select the suitable maintenance strategy in IFK Co. 
Steps 1, 2, and 3 are completed by identifying the maintenance strategies and the evaluation 

Fig. 2. Group multi-attribute decision-making process

Start

Determining the alternatives set A

Determining the criteria set C

Forming a decision-making team

Individual decision-making

Determining and

Normalising the individual decision matrices [Eqs (9)–(12)]

Constructing the aggregated decision matrix [Eq. (2 3)]

Computing the weighted-normalised individual decision
matrixes [Eq. (1 3)]

Finding Bj, j =1, 2, …, n [Eq. (16)]

Finding Lj, j =1, 2, …, n [Eqs. (16) and (18)]

Finding decision-makers weight matrix λ [Eqs ( 20)–(22)]

Computing the scores of alternatives [Eq. (24)]

Ranking the alternatives

End

l =1, 2, …, n( )lX ( )lW ,
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attributes, to construct the individual decision matrices. By replacing the equivalent trian-
gular fuzzy numbers in Tables 3 and 4, the algorithm continues by step 4 – normalisation 
of individual matrices. It considers that accessibility, quality, and reliability are benefit-type 
attributes, while cost and time are cost-type attributes. Then, each of the individual nor-
malised matrices is transformed into a weighted normalised matrix by Eq. (13). Table 6 
presents the obtained weighted normalised matrices.

The aforementioned strategies can be compared based on five main attributes. Two of 
these attributes are quantitative, including cost and time of each decision, and three attrib-
utes are qualitative, including accessibility, quality and reliability of each strategy, which are 
implied from six experts from IFK, namely: the procurement manager, quality manager, op-
erations manager, maintenance manager, financial manager, and human resources manager.

The predicted cost and time needed for each strategy are evaluated by the Maintenance 
Department and summarized in Table 2.

Table 3 indicates the proposed scale to show the importance of each strategy in each 
criterion, and the experts are asked to determine their opinions using the given scale. Also, 
each decision-maker expresses his/her opinion about attribute weights according to the 
scale given in Table 4.

Regarding the qualitative attributes, opinions of top-level managers were collected using 
linguistic terms. The results are shown in Table 5.

Table 2. Quantitative attributes: 
information on different mainte-
nance strategies

Strategy 
code

Cost 
(U.S.D.)

Time 
(weeks)

1 200,000 4
2 250,000 6
3 600,000 10
4 275,000 9
5 280,000 7
6 250,000 6
7 350,000 8
8 450,000 6

Table 3. Linguistic terms for strat-
egy performance in attributes

Linguistic term TFN
Especially high (9, 9, 10)

Very high (7, 9, 9)
High (5, 7, 9)

Ordinary (3, 5, 7)
Low (1, 3, 5)

Very low (0, 1, 3)
Especially low (0, 1, 1)

Table 4. Linguistic terms for  
attribute weights

Linguistic term TFN
Very high (0.8, 0.9, 1.0)

High (0.7, 0.8, 0.9)
Moderately High (0.5, 0.65, 0.8)

Moderate (0.4, 0.5, 0.6)
Moderately Low (0.2, 0.35, 0.5)

Low (0.1, 0.2, 0.3)
Very low (0, 0.1, 0.2)

Table 1. Possible maintenance alternatives

Strategy 
code

Spare 
parts

Maintenance 
men Technology

1 Domestic Domestic Emergency
2 Domestic Foreign Emergency
3 Domestic Domestic Preventive
4 Domestic Foreign Preventive
5 Foreign Domestic Emergency
6 Foreign Foreign Emergency
7 Foreign Domestic Preventive
8 Foreign Foreign Preventive
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Table 5. Individual decision matrices of experts

Expert Strategy Accessibility Quality Reliability Cost Time

1x 2x 3x 4x
 

5x

1

1 VVH O L 200,000 4
2 H H H 250,000 6
3 H L VL 600,000 10
4 H H L 275,000 9
5 H VL VL 280,000 7
6 H H H 250,000 6
7 VVH VVH VVH 350,000 8
8 L VVH VVH 450,000 6

Attribute weights M H H M MH

2

1 VH H VL 200,000 4
2 VH H H 250,000 6
3 H VL VL 600,000 10
4 H L L 275,000 9
5 L L L 280,000 7
6 H H H 250,000 6
7 H H H 350,000 8
8 O H H 450,000 6

Attribute weights MH H H MH H

3

1 VH H VL 200,000 4
2 VH H L 250,000 6
3 L L L 600,000 10
4 L L L 275,000 9
5 H VL VL 280,000 7
6 H VH H 250,000 6
7 VH VH VVH 350,000 8
8 0 H H 450,000 6

Attribute weights ML H H VH MH

4

1 VH H VL 200,000 4
2 H VH O 250,000 6
3 H L L 600,000 10
4 L L L 275,000 9
5 VH H L 280,000 7
6 VH VH VH 250,000 6
7 L VH VH 350,000 8
8 L VH VH 450,000 6

Attribute weights M H H M MH
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Expert Strategy Accessibility Quality Reliability Cost Time

1x 2x 3x 4x
 

5x

5

1 H VL VVL 200,000 4
2 L L L 250,000 6
3 VL VL VVL 600,000 10
4 VL L L 275,000 9
5 L L L 280,000 7
6 VH VH VH 250,000 6
7 VVH VVH VH 350,000 8
8 H VVH VVH 450,000 6

Attribute weights ML H H H M

6

1 VVH VH H 200,000 4
2 VH VH VH 250,000 6
3 L L L 600,000 10
4 VL VL VL 275,000 9
5 VH H L 280,000 7
6 L L L 250,000 6
7 VH VH VH 350,000 8
8 H VVH VVH 450,000 6

Attribute weights ML H H M MH

In step 6, the Bs are determined by calculating the average values of triangular fuzzy 
numbers in weighted normalised matrices for each of the attributes. Thus, the P vector is 
computed as demonstrated below:
B: [(0.156, 0.305, 0.481); (0.303, 0.485, 0.685); (0.238, 0.404, 0.597); (0.359, 0.432, 0.505); 
(0.317, 0.399, 0.481)].

Table 6. Individual weighted normalised decision matrices

Ex
pe

rt

St
ra

te
gy

 

1x 2x 3x 4x 5x

1 1 (0.36, 0.45, 0.6) (0.21, 0.4, 0.63) (0.07, 0.24, 0.45) (0.4, 0.5, 06) (0.5, 0.65, 0.8)

2 (0.2, 0.35, 0.54) (0.35, 0.56, 0.81) (0.35, 0.56, 0.81) (0.32, 0.4, 0.48) (0.333, 0.433, 0.533)

3 (0.2, 0.35, 0.54) (0.07, 0.24, 0.45) (0, 0.08, 0.27) (0.133, 0.167, 0.2) (0.2, 0.26, 0.32)

4 (0.2, 0.35, 0.54) (0.35, 0.56, 0.81) (0.07, 0.24, 0.45) (0.291, 0.364, 0.436) (0.222, 0.289, 0.356)

5 (0.2, 0.35, 0.54) (0, 0.08, 0.27) (0, 0.08, 0.27) (0.286, 0.357, 0.429) (0.286, 0.371, 0.457)

6 (0.2, 0.35, 0.54) (0.35, 0.56, 0.81) (0.35, 0.56, 0.81) (0.32, 0.4, 0.48) (0.333, 0.433, 0.533)

7 (0.36, 0.45, 0.6) (0.63, 0.72, 0.9) (0.63, 0.72, 0.9) (0.229, 0.286, 0.343) (0.25, 0.325, 0.4)

8 (0.04, 0.15, 0.3) (0.63, 0.72, 0.9) (0.63, 0.72, 0.9) (0.178, 0.222, 0.267) (0.333, 0.433, 0.533)

End of Table 5
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1x 2x 3x 4x 5x

2

1 (0.389, 0.65, 0.8) (0.389, 0.622, 0.9) (0, 0.089, 0.3) (0.5, 0.65, 0.8) (0.7, .8, 0.9)

2 (0.389, 0.65, 0.8) (0.389, 0.622, 0.9) (0.389, 0.622, 0.9) (0.4, 0.52, 0.64) (0.467, 0.533, 0.6)

3 (0.278, 0.506, 0.8) (0, 0.089, 0.3) (0, 0.089, 0.3) (0.167, 0.217, 0.267) (0.28, 0.32, 0.36)

4 (0.278, 0.506, 0.8) (0.078, 0.267, 0.5) (0.078, 0.267, 0.5) (0.364, 0.473, 0.582) (0.311, 0.356, 0.4)

5 (0.056, 0.217, 0.444) (0.078, 0.267, 0.5) (0.078, 0.267, 0.5) (0.357, 0.464, 0.571) (0.4, 0.457, 0.514)

6 (0.278, .506, 0.8) (0.389, 0.622, 0.9) (0.389, 0.622, 0.9) (0.4, 0.52, 0.64) (0.467, 0.533, .6)

7 (0.278, .506, 0.8) (0.389, 0.622, 0.9) (0.389, 0.622, 0.9) (0.286, 0.371, 0.457) (0.35, 0.4, 0.45)

8 (0.167, 0.361, 0.622) (0.389, 0.622, 0.9) (0.389, 0.622, 0.9) (0.222, 0.289, 0.356) (0.467, 0.533, 0.6)

3

1 (0.156, 0.35, 0.5) (0.35,0.56,0.81) (0,0.08,0.27) (0.8,0.9,1) (0.5,0.65,0.8)

2 (0.156, 0.35, 0.5) (0.35,0.56,0.81) (0.07,0.24,0.45) (0.64,0.72,0.8) (0.333,0.433,0.533)

3 (0.022,0.117,0.278) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.267,0.3,0.333) (0.2,0.26,0.32)

4 (0.022,0.117,0.278) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.582,0.655,0.727) (0.222,0.289,0.356)

5 (0.111,0.272,0.5) (0,0.08,0.27) (0,0.08,0.27) (0.571,0.643,0.714) (0.286,0.371,0.457)

6 (0.111,0.272,0.5) (0.49,0.72,0.81) (0.35,0.56,0.81) (0.64,0.72,0.8) (0.333,0.433,0.533)

7 (0.156,0.35,0.5) (0.49,0.72,0.9) (0.63,0.72,0.9) (0.457,0.514,0.571) (0.25,0.325,0.4)

8 (0.067,0.194,0.389) (0.35,0.56,0.81) (0.35,0.56,0.81) (0.356,0.4,0.444) (0.333,0.433,0.533)

4

1 (0.311,0.5,0.6) (0.389,0.622,0.9) (0,0.089,0.3) (0.4,0.5,0.6) (0.5,0.65,0.8)

2 (0.222,0.389,0.6) (0.544,0.8,0.9) (0.233,0.444,0.7) (0.32,0.4,0.48) (0.333,0.433,0.533)

3 (0.222,0.389,0.6) (0.078,0.267,0.5) (0.078,0.267,0.5) (0.133,0.167,0.2) (0.2,0.26,0.32)

4 (0.044,0.167,0.333) (0.078,0.267,0.5) (0.078,0.267,0.5) (0.291,0.364,0.436) (0.222,0.289,0.356)

5 (0.311,0.5,0.6) (0.389,0.622,0.9) (0.078,0.267,0.5) (0.286,0.357,0.429) (0.286,0.371,0.457)

6 (0.311,0.5,0.6) (0.544,0.8,0.9) (0.544,0.8,0.9) (0.32,0.4,0.48) (0.333,0.433,0.533)

7 (0.044,0.167,0.333) (0.544,0.8,0.9) (0.544,0.8,0.9) (0.229,0.286,0.343) (0.25,0.325,0.4)

8 (0.044,0.167,0.333) (0.544,0.8,0.9) (0.544,0.8,0.9) (0.178,0.222,0.267) (0.333,0.433,0.533)

5

1 (0.1,0.245,0.45) (0,0.08,0.27) (0,0.08,0.09) (0.7,0.8,0.9) (0.4,0.5,0.6)

2 (0.02,0.105,0.25) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.56,0.64,0.72) (0.267,0.333,0.4)

3 (0,0.035,0.15) (0,0.08,0.27) (0,0.08,0.09) (0.233,0.267,0.3) (0.160,0.2,0.24)

4 (0,0.035,0.15) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.509,0.582,0.655) (0.178,0.222,0.267)

5 (0.02,0.105,0.25) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.5,0.571,0.643) (0.229,0.286,0.343)

6 (0.14,0.315,0.45) (0.49,0.72,0.81) (0.49,0.72,0.81) (0.56,0.64,0.72) (0.267,0.333,0.4)

7 (0.18,0.315,0.5) (0.63,0.72,0.9) (0.49,0.72,0.81) (0.4,0.457,0.514) (0.2,0.25,0.3)

8 (0.1,0.245,0.45) (0.63,0.72,0.9) (0.63,0.72,0.9) (0.311,0.356,0.4) (0.267,0.333,0.4)

6

1 (0.18,0.315,0.5) (0.49,0.72,0.81) (0.35,0.56,0.81) (0.4,0.5,0.6) (0.5,0.65,0.8)

2 (0.14,0.315,0.45) (0.49,0.72,0.81) (0.49,0.72,0.81) (0.32,0.4,0.48) (0.333,0.433,0.533)

3 (0.02,0.105,0.25) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.133,0.167,0.2) (0.2,0.26,0.32)

4 (0,0.035,0.15) (0,0.08,0.27) (0,0.08,0.27) (0.291,0.364,0.436) (0.222,0.289,0.356)

5 (0.14,0.315,0.45) (0.35,0.56,0.81) (0.07,0.24,0.45) (0.286,0.357,0.429) (0.286,0.371,0.457)

6 (0.02,0.105,0.25) (0.07,0.24,0.45) (0.07,0.24,0.45) (0.32,0.4,0.48) (0.333,0.433,0.533)

7 (0.14,0.315,0.45) (0.49,0.72,0.81) (0.49,0.72,0.81) (0.229,0.286,0.343) (0.25,0.325,0.4)

8 (0.1,0.245,0.45) (0.63,0.72,0.9) (0.63,0.72,0.9) (0.178,0.222,0.267) (0.333,0.433,0.533)

End of Table 6
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To determine the Ls, the mathematical problem in Eq. (16) is solved by replacing 
Eq. (18) in its objective function for each attribute.
L: [(0.389, 0.65, 0.8); (0, 0.08, 0.27); (0, 0.08, 0.09); (0.8, 0.9, 1); (0.7, 0.8, 0.9)].

The weight matrix of decision-makers is now computed by using Eqs (19) to (22) based 
on the above P and R vectors. This matrix is formed as follows:

 

DM1 0.1755 0.1708 0.1663 0.1810 0.1703
DM2 0.1058 0.1711 0.1718 0.1757 0.1454
DM3 0.1916 0.1673 0.1631 0.1303 0.1703
DM4 0.1680 0.1778 0.1715 0.1810 0.1703
DM5 0.1769 0.1466 0.1562 0.1511 0.1733
DM6 0.1821 0.1665 0.1711 0.1810 0.1703

λ =

 
 
 
 
 
 
 
 
  

.

Applying Eq. (23) yields the aggregated decision matrix as listed in Table 7.

Table 7. Aggregated decision matrix

St
ra

te
gy

 

1x 2x 3x 2R 5x

1 (0.974, 1.642, 2.290) (1.229, 2.013, 2.884) (0.277, 0.743, 1.450) (2.289, 2.773, 3.256) (2.349, 2.964, 3.580)

2 (0.709, 1.391, 2.064) (1.472, 2.338, 3.109) (1.050, 1.843, 2.678) (1.831, 2.218, 2.605) (1.566, 1.976, 2.387)

3 (0.451, 0.937, 1.667) (0.194, 0.770, 1.64) (0.142, 0.647, 1.342) (0.763, 0.924, 1.085) (0.940, 1.186, 1.432)

4 (0.313, 0.731, 1.408) (0.429, 1.093, 1.967) (0.235, 0.859, 1.689) (1.665, 2.017, 2.368) (1.044, 1.318, 1.591)

5 (0.590, 1.218, 1.910) (0.595, 1.229, 2.119) (0.192, 0.761, 1.579) (1.635, 1.981, 2.326) (1.342, 1.694, 2.046)

6 (0.684, 1.340, 2.060) (1.532, 2.406, 3.080) (1.409, 2.254, 3.017) (1.831, 2.218, 2.605) (1.566, 1.976, 2.387)

7 (0.769, 1.400, 2.105) (2.077, 2.828, 3.489) (2.045, 2.776, 3.370) (1.308, 1.584, 1.861) (1.175, 1.482, 1.790)

8 (0.332, 0.895, 1.688) (2.076, 2.723, 3.488) (2.045, 2.675, 3.428) (1.017, 1.232, 1.447) (1.566, 1.976, 2.387)

Eq. (24), calculates the score of different strategies:

( ) ( )1 7.117,10.135,13.460S A = ( ) ( )2 6.629,9.767,12.842S A =

( ) ( )3 2.490,4.464,7.130S A = ( ) ( )4 3.686,6.017,9.023S A =

( ) ( )5 4.355,6.882,9.980S A = ( ) ( )6 7.022,10.193,13.149S A =

( ) ( )7 7.373,10.071,12.615S A = ( ) ( )8 7.037,9.501,12.437S A =

Calculating COG for the alternative scores, the selected strategy is chosen, i.e. to buy 
spare parts from domestic suppliers by hiring domestic maintenance experts for emergen-
cies. According to Table 1, the next two strategies are the 6th and the 7th. 

Technological and Economic Development of Economy, 2015, 21(5): 738–755 751



Conclusions

In real world, decision-making problems always consist of evaluation of a set of alterna-
tives based on a set of attributes. The complexity of such problems makes it unsolvable by 
a single decision-maker in a crisp mode. In fact, most of the real world decisions are made 
by incorporating a group of experts who explain their judgments on the performance of 
alternatives with uncertain information. A considerable issue is whether to consider an 
opinion of the decision-making group member as equally important or not. An important 
consideration is that different people have different specialties; therefore, their opinions 
become issues of unequal importance in different attributes. Researchers are concerned 
with this problem in the context of calculating weights of decision-makers. This paper 
presents a method for calculation of weights of decision-makers participating in a group 
decision-making. The main idea behind the paper was to assign weights to decision-makers 
according to the consistency of their opinion with the most compromising solution in 
each attribute. Therefore, a quadratic programming model was developed to find the most 
and least compromising solutions in each attribute. Then, the closeness coefficient of each 
decision-maker was considered to calculate his/her weight in different attributes. These 
weights were then used to aggregate individual preferences and to make the final decision. 
The proposed algorithm has some advantages in comparison to previous methods: first, 
this model can be used in a fuzzy environment. Second, different weights are computed 
for each decision-maker in each decision-making attribute, which has more coincidence 
with the fact that different people have different competences in various attributes. Third, 
like most of the previous studies, the average of decision-maker opinions is considered as 
the positive ideal solution, which makes the total square of distances as little as possible. 
Also, a quadratic programming model is solved to find the negative ideal solution. Then, 
these points play the role of reference points to determine the weights of decision-makers. 
Application of the proposed method is examined in a problem of maintenance strategy 
selection, where a decision-making team was formed from experts. It is expected that dif-
ferent expert weights will provide a larger degree of acceptability of the results.
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