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Abstract. A control system of urban passenger transport is considered. The system participants are a passenger flow, a 
transport operator and municipal authorities. The participants’ strategies include a travel mode choice, a frequency of 
public transport service, and a road capacity. Objective functions are transport costs, public transport profit, road costs, 
and travel time. The passenger flow heterogeneity is based on the value of time that has an exponential distribution. 
The total costs of passenger flow depend on the probability of the travel mode choice. The dependence between travel 
time, roads capacity, and traffic is based on Greenshields model. The authorities’ objective consists of travel time and 
road costs, which can be changed by the road capacity. The game theoretic approach is applied to describe the control 
system. The existence of Nash equilibrium for coalition-free games for two (the passenger flow and the authorities and 
three (with addition of public transport) players is proved. The characteristics of urban passenger transport were stud-
ied based on a numerical example.
Keywords: mode choice; passenger transportation; road capacity; optimal control; game theory.

Introduction 

Development of transport science has led to the conclu-
sion that the increase of roads capacity is not the only 
possible way to solve the traffic problems of cities.

Many theoretical and practical examples show that 
the construction of additional public roads may have 
no effect or even negative influence on travel time. In 
particular, Downs–Thomson paradox indicates that the 
increase of roads capacity leads to congestion. As the 
capacity increases, the passengers shift from the public 
transport  into cars, the public transport operator loses 
the quality, which, in turn, shifts additional passengers 
into cars. Therefore, the process of increasing roads ca-
pacity may lead to degradation of public transport, in-
creasing traffic, and congestion (Downs 1992).

To solve the problem the authorities use restric-
tions and prohibition for car users, which decrease traf-
fic. However, such solution reduces the decision-making 
freedom and it decreases the quality of life too. It is gen-
erally preferred to use the active system theory (Burkov, 
Enaleev 1994), i.e. the authorities create conditions for 
a useful passenger decision-making (by improving the 
public transport quality).

The main reason of the paradox is that the travel 
mode choice must be respected. Therefore, mathemati-
cal models will be significantly complicated. 

In the review (Hollander, Prashker 2006) a lot of 
research is considered in which game theoretic models 
of transport system are classified according to the set of 
participants (private company and travellers, authorities 
and travellers, private company and authorities, authori-
ties between themselves, and private companies among 
themselves). Such classification was suggested for trans-
portation system (Evans 1987). The paper introduced 
participants ‘potential passengers’, ‘operators’ and ‘public 
authority’, but statement of the problem was presented as 
non-game model. Concepts of non-cooperative game are 
used for the solution of the conflict of interest between 
participants. The urban transportation system (Koryagin 
2011) represented by a set of private companies (which 
explore a set of routes), authorities and a set of passenger 
flows (which make travel mode choice). The existence of 
Nash equilibrium was proved for the system. The paper 
(Bell, Wichiensin 2012) took into consideration the de-
pendence between the traffic and the travel time. In the 
(Zhang et al. 2008) was used either a set of participants: 
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traveller, node and arc, which were presented as a road 
user, an intersection and a roadway segment.

It is necessary to join both classifications. In this 
paper, the mathematical model of urban transport sys-
tem consists of roads, public transport operator and 
passenger flow, with their strategies and goals. Such ap-
proach allows to construct more complicated models of 
urban transportation system by considering the interests 
of passengers, public transport and authority that man-
ages the road. 

1. System of Urban Transport

The structure of urban passenger transport system can 
be represented by subsystems ‘authorities’, ‘passenger 
flow’ and ‘public transport operator’. All the participants 
influence each other, so the functions of profit and costs 
depend on all parameters. 

In published models (Koryagin 2011), the travel 
time was static, i.e. the mode choice did not have an 
influence on travel time by car or by public transport. 
In this paper such influence is taken into consideration 
by introducing a participant ‘municipal authorities’ (the 
authorities manage subsystem ‘road’). The participant 
strategy is road capacity (or travel time) and the goal is 
the reducing of the road costs and travel time.

Urban system exchanges parameters amid partici-
pants as shown in the scheme (Fig.  1). The passenger 
flow uses the travel time by car and by public transporta-
tion for a travel mode choice. The choice generates the 
transit passenger flow and car traffic. The public trans-
portation interval depends on bus velocity and transit 
passenger flow. The road capacity depends on traffic 
(both car and bus) and determines the travel time by 
car and bus velocity.

1.1. Subsystem ‘Passenger Flow’
Subsystem ‘passenger flow’ determines transit passenger 
flow and car traffic. It is difficult to imagine that every 
passenger would carry out the calculations of different 
characteristics of travel, build a model and solve it by the 
numerical method. However, the behaviour of the pas-
senger flow is possible to be described mathematically. 

The passenger flow looks for a proportion between 
using a private car and the public transportation. The 
goal function of the passenger flow is the total travel 
costs (travel time, waiting time and transport costs). 

If the distance between origin and destination is 
large, then passengers will choose between to drive or to 
go by public transport. Travelling by car is more expen-
sive than by public transportation, but requires less time. 
Therefore, the part of passenger flow with low value of 
time will use public transport. 

The main parameters determinate the travel mode 
choice: b – fare at the public transport; t – time of trave-
ling by car; Dt – the difference between the travel time 
by the public transport and car disregarding the time of 
waiting for the public transport; μ  – frequency of the 
public transport (transit) (Poisson flow); c – costs of car 
using (the costs of traveling by car are assumed to exceed 
the public transport fare c > b); g′ – average value of time; 
p – the probability of car use for transportation which 
everybody determines in terms of economic utility.

Usually travel mode choice models are based on 
logit-models (Horowitz et al. 1986). But those models 
do not have a decision-making process. Therefore, re-
searchers’ used models are based on the value of time 
dispersion. Usually, the value of time is described by the 
uniform distribution (Dodgson, Katsoulacos 1988), but 
really the value of time is changed over a wide range. 
Suppose that the cost of travel time were described by 
the exponential distribution (Koryagin 2008). Let g′ be 
the value of time, which divides the passengers by travel 
mode (if the value of time is less than g′, traveller choos-
es а bus, else a car), then:
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The dispersion of travel time by bus or car is disre-
garded in the model. The mathematical expectation of 
travel time is used. Therefore, average costs per travel 
on the public transport consist of the travel time t = Dt, 
waiting time 1

µ
 and fare at the public transport b:

( )ln 1
1
p p p

t t
p
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.  (1)

In addition, the average value of time of using a car 
(Koryagin 2008) is:
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Fig. 1. Urban transport system: passenger flow,  
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The average costs per travel by car is:

( )( )ln p t cγ − γ + .  (2)

The purpose of the passenger flow is the minimi-
zation of total travel costs changing parameter p. The 
total passengers’ costs per travel consist of the sum of the 
costs of travelling by car Eq. (2) with probability p and 
public transport Eq. (1) with probability 1 – p:

( ) ( )( ) 1, , lnG t p p p p t t
 

µ = γ + γ − γ + + ∆ + µ 
( ) ( )( )1 ln min

p
p p p p t cpβ − + γ − γ + → .              (3)

Claim 1. Costs function per travel G(t, p, μ) is convex 
downward function in the parameter p.
Proof. The first derivative of the total costs per travel is 
as follows:

( ) ( )1ln p t c
 

γ + ∆ + −β µ 
.  (4)

The second derivative is as follows:
1 1 0t
p
 

γ + ∆ ≥ µ 
.

Therefore, the G(t, p, μ) is convex downward func-
tion in the parameter p. 

By equating derivate (4) to zero, we get the optimal 
probability of car use:
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The probability of travels by the public transport 
is as follows:
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1.2. Subsystem ‘Public Transport’
The strategy of public transport operator is the pub-

lic transport frequency μ. The operator may increase the 
number of transit passengers by increasing μ (decreasing 
waiting time), but expenses increases too. 

Ridership on public transport is the product of the 
intensity of the passenger flow l on the probability of 
choice of public transport Eq. (6):
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The profit (the difference between income and ex-
penses) is:
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where: a – the cost of round trip of the public transport.

Claim 2. The function ( )1H µ  is convex upward in the 
parameter μ.
Proof. The first derivative of the ( )1H µ  is as follows:
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The second derivative (7) is as follows:
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The second criterion of efficiency of public trans-
port operator is minimization of the travel (waiting) 
time (1) and spending on public transport:

( )
( )( )

2
1 ln

min
p p p

H
γ + −
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µ

.  (8)

One of the major constraints is the restriction on 
capacity of a bus q:

( )1 p qλ − ≤ µ.  (9)

1.3. Subsystem ‘Road’
Municipal authorities have to find optimal parameters 
of road infrastructure (subsystem roads) which depend 
on traffic intensity. 

Traffic flow theory is greatly developing but most of 
traffic flow models have been made based on fundamen-
tal diagram of Greenshields (Kerner 2009). 

The higher traffic intensity leads to worse traffic 
congestion. Average traffic speed reduction is well de-
scribed by a simple Greenshields model (Greenshields 
et al. 1935):

0 1
j

v v
 ρ = −
 ρ 

,

where: v0 – constant (free) speed; ρj – jam density, i.e. 
the density when traffic is so heavy that it is at a com-
plete standstill (vehicles per unit distance), ρ average 
traffic density (vehicles per unit distance).

The density depends on the average traffic speed 
and the average rate of flow of vehicles l′ (vehicles per 
unit time):

v
′λ

ρ = .

Note that the total flow of personal and public 
transport can be expressed by the following formula:

p d′λ = λ + µ ,  (10)

where: d is a coefficient that expresses bus vehicles in 
terms of equivalent passenger car.

Thus, Greenshields formula is written as follows: 
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using the dependence:
lv
t

= ,

the formula is obtained:
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j
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 ρ 

.

The choice of variable influences further calcula-
tions. In this case, a travel time t is used as variable, 
so we express the road capacity ρj, that depending on 
the variable t (i.e. the travel time determines the road 
capacity):
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Claim 3. Function ρj(t, p, μ) is convex downward in the 
parameter t.
Proof. The first derivative of ρj(t, p, μ) is as follows:
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Thus, the road capacity Eq. (11) is convex down-
ward function in the travel time.

Passenger flow’ costs consist of travel time on cars 
and the public transport:

( ) 11p t p t t
 

λ γ + − λ + ∆ + µ 
.  (12)

The road costs (construction and maintenance) de-
pends on the road capacity Eq. (11), the road length and 
the coefficient d (costs per unit of distance per unit of 
capacity per unit of time):
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The cities costs consist of passengers costs Eq. (12) 
and road costs Eq. (13) is:

( ) ( )1
1, , 1F t p p t p t t

 
µ = λ γ + − λ + ∆ + + µ 

( )
( )

2
0

0
min

p d t v
v t l

λ + µ δ
→

−
.  (14)

A public transport allows to transit a lot of pas-
sengers at lower cost. Public transport requires less road 
infrastructure per passenger than car. Therefore, a more 
complex criterion is considered – the sum of travel time 
Eq. (3), transport expenses aμ and clp, and roads costs 
(the fare at the public transport are not taken into ac-
count because it is redistributed fees between passengers 
and transport operator):

( ) ( )( )2
1, , lnF t p p p p t t

 
µ = λ γ + γ − γ + + ∆ + µ ( )( )lnp p p t c pαµ + λ γ − γ + λ +

( )
( )

2
0

0
min

p d t v
v t l

λ + µ δ
→

−
.                                 (15)

Claim 4. Function F2(t, p, μ) is convex downward in the 
parameters t, μ.
Proof. Function (15) consists of several parts. Linear 
summands:

( )( )lnp p p t cpλ γ − γ γ + + αµ .

Summand:

( )( ) 1lnp p p t t
 

λ γ + γ − γ + + ∆ µ 
consists of two terms with coefficient: hyperbole in μ 
and linear in t + Dt.

Finally:
( )

( )
2

0

0

p d l t v
l v t l
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−
can be described as:

( ) ( )g f tµ ,

where: according to Claim 3, ( )f t  is convex downward 
and ( )g p dµ = λ + µ  is linear; it is easy to check that 
the product functions ( ) ( )g f tµ  will also be a convex 
downward function.

The sum of convex and linear functions is a convex 
function. 

2. Optimization of Urban Transport System

Several formulations of the problem are considered. At 
first participant must define the set of strategies.

For the passenger flow it’s probability of car use 
p P∈ , 0,1P  =   . For the transit it’s the public transport 
frequency µ∈Μ , 0,M  = µ  . The upper bound µ  may 
be defined from the following reason: the number of 
buses in the city must be limited. For road the strategy is 

travel time by car t T∈ , 
0
,lT t

v
 

=  
 

. The lower bound 

is minimal travel time (travel with maximal velocity v0), 
the upper bound t  may be limited for the road (traffic 
must be less than road capacity).

2.1. The First Statement of the Problem

Passenger flow minimizes the total passengers’ costs 
per travel by variation of the probability of car use. The 
public transport maximizes the profit by variation of the 
public transport frequency. The authorities minimize 
Eq. (14) by variation of the travel time. Thus, the game 
with three participants is constructed. 
Proposition 1. The game 1 1, , , , ,P M T G H F− −  has a 
Nash equilibrium.
Proof. Consider the conditions of the Nash equilibrium 
existence theorem (Glicksberg 1952).

 – Set of pure strategies of players is compact, con-
vex and not empty. The condition is performed 
for sets P, M, T.

 – Players payoff functions are quasiconcave in self 
strategies and continuous.Obviously, that the 
Eqs (3, 7, 14) is continuous function in the p, t, μ.
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The payoff functions Eqs (3, 7) are convex 
(Claim 1, 2). The function Eq. (14) consists of linear and 
convex summands (Claim 3) and convex too. 

2.2. The Second Statement of the Problem
Passenger flow minimizes the total passengers’ costs per 
travel by variation of the probability of car use. The pub-
lic transport minimizes the waiting time and spending 
on public transport by variation of the public transport 
frequency. The authorities minimize Eq. (14) by varia-
tion of the travel time. Thus, the game with three par-
ticipants is constructed. 
Proposition 2. The game 2 1, , , , ,P M T G H F− − −  has 
a Nash equilibrium.

The proof is trivial. Unlike Proposition 1, the con-
vexity of Eq. (8) is required but the requirement is obvi-
ously satisfied.

2.3. The Third Statement of the Problem
Passenger flow minimizes the total passengers’ costs per 
travel by variation of the probability of car use. The au-
thorities minimize total costs of the passenger flow, the 
public transport and the road Eq. (15) by variation of the 
travel time and the public transport frequency. Thus, the 
game with two participants is constructed. 
Proposition 3. The game 2, , ,P M T G F× − −  has a 
Nash equilibrium.

The proof is trivial. The F2 is convex downwards 
function (Claim 4).

2.4. The Fourth Statement of the Problem
The authorities minimize total costs of the passenger 
flow, the public transport and the road by variation of 
the travel time and the public transport frequency. The 
passengers’ activity is used by Eq. (5). The probability 
of car uses p on Eq. (15) must be substituted on Eq. (5). 
Therefore, the classical (not game) optimization state-
ment will be constructed: 
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All the statement is considered in the numerical 
example. 

3. Numerical Example

All four statements of the problem are considered on the 
numerical example (it’s named by ‘Model 1’, ‘Model 2’, 
‘Model 3’ and ‘Model 4’). The parameter changing shifts 
equilibrium point. Therefore, we research into how pa-
rameters influence the urban transport system for each 
control system. The characteristics of solution are prob-
ability of car use p, road capacity ρj, public transport 
frequency μ, and total costs F2.

Parameters of the models are considered for Kras-
noyarsk city (Russia). Average number of lane 4 (two in 
each direction), average travel distance 10 km:

 – the fare at the public transport b = 19 roubles;
 – the intensity of the passenger flow l = 6000 pas-
sengers per hour;

 – the difference between the travel time by the pub-
lic transport and carDt = 0.1 hour;

 – the frequency of the public transport μ = 7 bus 
per hour;

 – the costs of car using c = 100 roubles (for 10 km); 
 – the average value of time g  = 200 roubles per 
hour;

 – the cost of round trip by the public transport a = 
1500 roubles;

 – the jam density ρj = 200 cars per km;
 – the coefficient expresses bus vehicles in terms of 
equivalent passenger cars d = 2;

 – the road costs d = 5 roubles (the parameter was 
estimated as average road costs in Krasnoyarsk 
per year that is divided on the road capacity and 
amount of peak hours in a year).

We use coordinate descent with method of golden 
section for numerical solution. We have not proved the 
convergence of such simple approach for all parameters 
of the models, but the approach always led to optimal 
solution on our examples. 

First of all the average value of time is different in 
cities or may be changed in the city (economic growth 
or reduction).

The travel time is the most important parameter in 
the models. High level of income leads to high level of 
motorisation and congestion (Fig. 2).

If the value of time increases, then a car will be a 
more attractive mode than the public transport (Fig. 3). 
However, city leads to a high level of motorization slow-
ly (Model 4) or faster (Model 3). Such tendencies are 
shown for the road capacity (Fig. 4).

The public transport fare has more complicated in-
fluence on the value of time (Fig. 5). For the low level of 
the value of time, the frequency can increase (Model 1 
and Model 4). In the low level of income, passengers 
are more sensitive to the mode choice. Model 3 leads to 
degradation of public transport. The optimal frequency 
(Model 4) must be greater than the equilibrium one.

The total costs (Fig.  6) will increase. However, 
mode in Model 3 gets better results than in Models 1 
and 2 for upper level of income.
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The second parameter is the fare at the public 
transport. The Models 1–3 lead to obvious results: the 
optimal fare is zero (models do not consider passenger 
flow generation). The Model 1 shows more interesting 
results (Fig. 6). The characteristics are convex or concave 
on the fare (Fig. 7).

The car mode cost influences on public transport. 
The Model 2 leads to the development of public trans-
port. However, with the low level of car costs public 
transport will degrade (only Model 4 has large frequen-
cy) – Fig. 8.

All models have identical trends when the passen-
ger flow intensity is increasing: the probability of car use 
is decreasing, public transport frequency is increasing. It 
shows that for a small city, cars are more effective and 
for a big city, public transport is.

Numerical example shows that the public transport 
will work in all conditions, because passengers have dif-
ferent value of time, therefore catastrophic degradation 
of described public transport does not take place. 

Table shows that both optimal road capacity and 
travel time increase (will be Downs–Thomson paradox). 
However, if the intensity of passenger flow increases, the 
road capacity and the travel time should have different 
trends.

Fig. 2. Influence of value of time on time travelling by car

Fig. 3. Influence of value of time on probability of car use

Fig. 4. Influence of value of time on road capacity

Fig. 5. Influence of value of time on public transport 
frequency

Fig. 6. Influence of value of time on total costs

Fig. 7. Influence of fare at the public transport  
on characteristics of the Model 1

Fig. 8. Influence of car mode cost on public transport 
frequency
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Table. Travel time and road capacity changes,  
when parameter increase

              Statement
Parameter 1 2 3 4

Value of time both 
increase

both 
increase

both 
increase

both 
increase

Intensity of 
passenger flow opposite opposite opposite opposite

Fare at public 
transport

both 
convex

both 
increase

both 
increase

both 
increase

The numerical example shows that Model 2 (Fig. 3) 
is better than Model 3 for low value of time, but worse 
for high value of time. In other words, public transpor-
tation agency and traffic agency in the developed coun-
tries must be united. Model 2 gives preference to public 
transport (Fig. 4), but Model 3 prefers to develop road 
infrastructure. 

Next stage of research will be generalization of 
the given models for real-sized road network. The road 
network will be presented as a set of participants (road 
segments), besides passengers will consist of а set of 
passengers flow (between each origin and destination). 
It is important to understand whether the models are 
adequately in real situations or not. We wish to make an 
important note that it is impossible to find an optimal 
solution (Model 4) for a real-sized city, because large-
scale goal function will be non-convex. However, Mod-
els 1–3 allow to find Nash equilibrium in a few time. In 
addition, if equilibrium point will be close to optimal 
point then the suggested approach will have practical 
implications. 

The following problems call for further investiga-
tions:

 – taking into account other forms of public trans-
port (which use dedicated way, such as light rail, 
trolleybus, BRT, metro);

 – taking into account the trips generation (choice 
of destination or trip withdrawal); 

 – optimizing of city planning (parking, parks, 
shops, job location, housing); 

 – generalization of the model to the case of the 
real-sized road network; 

 – cooperation with practical scientists allow to im-
plement models for calculating optimal param-
eters of the real cities. 

The major goal of this research is the development 
of the model that can improve the quality of life by op-
timizing the citizens’ mobility. 

Conclusions

1) Three participants: the passenger flow, the public 
transport operator and the road are introduced. The 
strategies, the set of strategies and participants’ goal 
functions are constructed. 

2) The existence of Nash equilibrium is proved. Four 
statements of the problem are formulated as follows:

 – the first statement described poor nations, which 
cannot subsidy public transport (private company 
manages public transport);

 – the second statement describes developing nations; 
in this case, traffic agency and public transportation 
operator are independent public organizations; 

 – the third statement describes developed nations; 
united agency manages both public transport and 
traffic; 

 – the fourth statement presents optimal (non-game) 
solution to the problem, but applicability of this 
approach is limited because it is a large-scale non-
convex problem.

3) The numerical example shows the influence of the 
parameters on the solution for each statement of the 
problem. The models predict further degradation of 
public transportation in Krasnoyarsk city (Russia) on 
condition of passengers income growth. 
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