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Abstract. In case of the Intelligent Driver Model (IDM) the actual Velocity–Density law V(D) applied by this dynamic 
system is not defined, only the dynamic behaviour of the vehicles/drivers is determined. Therefore, the logical question 
is whether the related investigations enhance an existing and known law or reveal a new connection. Specifically, which 
function class/type is enhanced by the IDM? The publication presents a model analysis, the goal of which was the ex-
ploration of a feature of the IDM, which, as yet, ‘remained hidden’. The theoretical model results are useful, this analy-
sis important in the practice in the field of hybrid control as well. The transfer of the IDM groups through large-scale 
networks has special practical significance. For example, in convoys, groups of special vehicle, safety measures with 
delegations. In this case, the large-scale network traffic characteristics and the IDM traffic characteristics should be 
taken into account simultaneously. Important characteristics are the speed–density laws. In case of effective modelling 
of large networks macroscopic models are used, however the IDMs are microscopic. With careful modelling, we can-
not be in contradiction with the application of speed–density law, where there IDM convoy passes. Therefore, in terms 
of practical applications, it is important to recognize what kind of speed–density law is applied by the IDM convoys 
in traffic. Therefore, in our case the goal was not the validation of the model, but the exploration of a further feature 
of the validated model. The separate validation of the model was not necessary, since many validated applications for 
this model have been demonstrated in practice. In our calculations, also the applied model parameter values remained 
in the range of the model parameters used in the literature. This paper presents a new approach for Velocity–Density 
Model (VDM) synthesis. It consists in modelling separately each of the density and the velocity (macroscopic param-
eter). From this study, safety time headway (microscopic parameter) can be identified from macroscopic data by mean 
of interpolation method in the developed map of velocity–density. By combining the density and the velocity models, 
a generalized new VDM is developed. It is shown that from this one, some literature VDMs, as well as their properties, 
can be derived by fixing some of its parameters. 
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Introduction 

Traffic modelling can be classified into the three follow-
ing classes. 

The first class includes the microscopic models 
where the traffic is viewed as a system of interacting 
particles or vehicles. This interaction is modelled by 
differential equations as done by Bando et  al. (1998), 
Helbing and Tilch (1998), Treiber et  al. (2000b), Mo-
lina (2005), Ge et al. (2008), Kesting (2008), Rakha and 
Gao (2010). For interested readers, a general overview of 
microscopic traffic models is presented by Derbel et al. 
(2012a, 2012b). 

The second class includes the macroscopic mod-
els where the traffic is viewed as one group of particles. 
Macroscopic parameters are traffic density, traffic flow 
and velocity, which are used for graphic representation 
of the fundamental diagram. Several works are based on 
this approach such as those ones developed by Holden 
and Risebro (1995), Herty and Klar (2003), Treiber et al. 
(2000b), Péter (2012), Bede et  al. (2013), Dömötörfi 
et al. (2016), Péter et al. (2015), Bede and Péter (2014).

The third class includes the mesoscopic models, 
which appears to be an intermediate between the two 
last classes. Here, the traffic is viewed as clusters of ve-
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hicles. Several studies have been realized in this field 
such as those done by Prigogine and Herman (1971), 
Paveri-Fontana (1975), Mahnke and Kaupužs (1999). 

The presented research work deals with micro-
scopic and macroscopic approaches, where the traffic is 
represented by one cluster. The goal is to predict traffic 
density and velocity with a minimum of errors. Most 
of the literature Velocity–Density Models (VDMs) are 
developed and identified by mean of experimental mac-
roscopic traffic data. Since we do not have these data, 
our work is based on the simulation data. Here, the idea 
is to generate macroscopic traffic data from microscopic 
traffic model simulation. Nonetheless, this microscopic 
model must faithfully reproduce the traffic behaviours 
and be validated by the fundamental diagram study. 

In this paper, the developed VDM is based on the 
Intelligent Driver Model (IDM) (Kesting 2008; Treiber 
et  al. 2000a). Our new method proceeds by the iden-
tification of the simulated velocity and density data 
separately. Among the advantages of this method is 
the ability to identify each microscopic parameter from 
macroscopic ones by interpolation method using our 
developed map of macroscopic data related to micro-
scopic parameter. Then, a new VDM is computed with 
a mathematical development of the velocity and the 
density models. In addition, it will be shown later that 
some of existing models in the literature, as well as their 
properties can be derived from this new VDM by fixing 
some of its parameters. 

In this paper, Section 1 presents a brief state-of-the 
art of the existing VDMs. Section 2 identifies the ve-
locity and the density functions. Section 3 presents the 
synthesis method of the new VDM. Section 4 presents 
the generalized VDM and the last section concludes and 
gives outlooks.

1. State-of-the-art of the Velocity–Density Models

Two classes of VDMs can be distinguished: the stochas-
tic models and the deterministic models. This section 
presents a brief state-of-the-art of deterministic VDMs 
considering the chronological order. 

1.1. Greenshields Model
Up to our knowledge, the first deterministic VDM was 
proposed by Greenshields (1935). This affine model is 
given by the following expression:

( ) max
max

1
 

= −  
 

DV D V
D

,  (1)

where: Dmax is the maximum density which is the jam 
density. 

This model is identified by linear regression met-
hod using seven experimental observations. 

Recently, Wang et al. (2013) have showed that, with 
more than seven data, the Greenshields model is not en-
abling the prediction of velocity and density.

1.2. Greenberg Model
By the analogy with fluid flow, Greenberg (1959) has 
developed a logarithmic velocity–density relationship 
given by: 
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log
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DV D V
D

.  (2)

The main drawback of this model is its inability to 
predict velocities for low densities. Indeed, the velocity 
tends to infinity when the density tends to zero, which 
is unrealistic.

1.3. Underwood Model
Underwood (1961) has derived an exponential model in 
order to overcome the drawbacks of the Greenberg and 
Greenshields models for the free traffic flow condition. 
This model is given by:

( ) max
max

exp
 

= −  
 

DV D V
D

.  (3)

The main drawback of the Underwood model is 
that velocity becomes zero only when density D reaches 
infinity and not D = Dmax. Hence, this model cannot be 
used for predicting velocities at high densities.

1.4. Newell Model 
The VDM of Newell (1961) is expressed by:

( ) max
max max

1 11 exp
   λ = − − −        

V D V
V D D

,  (4)

where: λ>0 is the slope of inter-distance–velocity curve 
at V = 0 km/h.

Here, when D = Dmax, then V = 0 km/h; D = 0 then 
V = Vmax. Therefore, the limit conditions are verified by 
the Newell model.

1.5. Drake Model
Drake et al. (1967) have enhanced the Greenberg model 
by studying various macroscopic traffic models. By es-
timating the density from velocity and flow data, they 
propose the new VDM expressed by:

( )
2
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max

1exp
2

   = −      

DV D V
D

.  (5)

According to Ardekani et  al. (2011), this model 
presents a better fitting than the models of Greenshields, 
Greenberg and Underwood for non-congested condi-
tions. In case of congested conditions, the Drake model 
presents a poor data fitting. 

1.6. Pipes Model
Pipes (1967) has generalized the Greenshields model 
leading to a new velocity–density relationship given by:

( ) max
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1
   = −      
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DV D V

D
.  (6)
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By varying the values of r and m, a family of models 
can be developed. For example, Greenshields model is 
obtained for r = 1 and m = 1.

1.7. Drew Model
Drew (1968) has proposed another model expressed as 
follows:
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.  (7)

According to Ardekani et  al. (2011), at free-flow 
phase, the Drew model presents an underestimated ve-
locity, but in the congested phase, the velocity is over-
estimated. 

1.8. Del Castillo Model 
Del Castillo and Benítez (1995) have developed a VDM, 
which is given by the following expression:
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jC D
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,  (8)

where: Cj is the kinematic wave speed given by:

max

max
=

=j
D D

dVC D
dD

.

According to MacNicholas (2008), the drawback 
of this model is the large kinematic wave speed range, 
which makes difficult its estimation.

If Dmax = 1 and Cj = λ, then we have the Newell 
model. 

1.9. Van Aerde Model 
Van Aerde (1995) developed a new VDM, which is 
based on a simple car-following model. This last one de-
pends on the free and current velocity and a calibrated 
constant. The VDM is given by:
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where: C1, C2, C3 are constants which can be calibrated 
by nonlinear regression.

1.10. MacNicholas Model
MacNicholas (2008) have proposed the following VDM:
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where: m, q are real constants. 
By varying these constants, a family of models 

can be developed. For example, if Dmax = 1, m = 0 and 
1

2
+

=
pq  the Drew model expression is found.

1.11. Power Function Model
The power function proposed by Del Castillo (2012) is 
given by:
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where: θ is a shape parameter; a, b are constants; 

max
r =

D
D

.

1.12. Exponential Model
The exponential model is given by Del Castillo (2012) 
as follows:
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baV D b a b e e ,    (12)
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1.13. Negative Power Model
The negative power model is presented by Del Castillo 
(2012) as:

( ) ( ) ( )
1

1 1
−Θ Θ−Θ = ⋅ ⋅r + −r r  

fV D u .  (13)

1.14. Environmental Parameterization Model
Péter and Fazekas (2014) have enhanced the environ-
mental parameterization model by studying various 
macroscopic traffic models. The classical literature does 
not deal with the definition of the environmental vec-
tor, but the velocity is determined not only by vehicle 
density, but by other environmental parameterization, as 
well: this refinement can be implemented with the modi-
fication of Vmax, or via the modification of the function 
itself considering the weather, visibility, road quality, 
width of the road. These environmental, seasonal fac-
tors can be represented in the environmental parameter 
vector e : ( ),rV e :

( )
1

5

4 max

3 2

,

1

r =
 r

+  
−r 

e

e

e V
V e

e e

.  (14)

In this case, the parameter vector e  contains 5 pa-
rameters (Fig. 1).

The Table 1 demonstrates the favourable and un-
favourable parameter domains. The internal domain is 
located between the two distinct domains, in most of the 
cases the practical parameter comes from this internal 
interval. The borders of the intervals are empirical val-
ues, in a given case the coordinates of the e  = [e1, e2, e3, 
e4, e5] parameter-vector are determined via regression 
analysis after the velocity–density measurement.

The specialty of the introduced V(r, e) function 
is that it gives the same results as the linear function 
of Greenshields, if every parameters’ value equals to 1 
(Fig. 2). 
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Table 1. Demonstration of the e parameter vector

ei
Meaning of the 

parameter
Unfavourable 

cases Favourable cases

e1 Road quality Bad: e1 = 0.1–0.3 Good: e1 = 3–4

e2 Curly road Lot of curves: 
e2 = 3–4

Few curves: 
e2 = 0.1–0.2

e3 Slippery road Bad, slippery: 
e3 = 1.2–4 No slippery: e3 < 1

e4 Safety, visibility Bad conditions: 
e4 = 0.5–0.7

Good conditions: 
e4 > 1

e5 Width of road Narrow: 
e5 = 0.1–0.2 Wide: e5 > 4

Fig. 1. V(r) velocity–density function with e1 = 2; e2 = 1; 
e3 = 1; e4 = 1; e5 = 1 parameters

Fig. 2. V(r) velocity–density function with e1 = 1; e2 = 1;  
e3 = 1; e4 = 1; e5 = 1 parameters
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Table 2. VDM summary

Reference Model

Greenshields 
(1935) ( ) max

max
1
 

= −  
 

DV D V
D

Greenberg 
(1959) ( ) max

max
log

 
=   

 

DV D V
D

Underwood 
(1961) ( ) max

max
exp

 
= −  

 

DV D V
D

Newell 
(1961) ( ) max

max max

1 11 exp
   λ = − − −        

V D V
V D D

Drake et al. 
(1967) ( )

2

max
max

1exp
2

   = −      

DV D V
D

Pipes (1967) ( ) max
max

1
   = −     

mr
DV D V

D

Drew (168) ( )
1

2
max

max
1

+ 
  

= −     
 

p

DV D V
D

Del Castillo 
and Benítez 
(1995)

( ) max

max
1 exp 1
     = − −        

j
Max

C D
V D V

V D

Van Aerde 
(1995)

( )
2

1 3
max

1
=

+ +
−

D V
CC C V

V V

MacNicholas 
(2008) ( ) max

max

−
=

+

q q

Max q q
D D

V D V
D mD

Del Castillo 
(2012) 
(power 
model)

( ) ( ) ( ) ( )( )
1

1 1
ΘΘ Θ

 
  = + − r− r + −r  r   
 

V D b a b a b

Del Castillo 
(2012) 
(exponential 
model)

( ) ( )( )11 1( ) log 1α −rαr 
= + − r− + − r α 

baV D b a b e e

Del Castillo 
(2012) 
(negative 
power 
model)

( ) ( ) ( )
1

1 1
−Θ Θ−Θ = r + −r r  

fV D u

Péter and 
Fazekas 
(2014) (en-
vironmental 
param-
eterization 
model)

( )
1

5

4

3 2

,

1

r =
 r

+  
−r 

Max
e

e

e V
V e

e e

This result shows that Greenshields’ linear function 
has parameter values from the mid-range, so that pro-
vides really an average V(r) velocity–density function 
relationship in practice. 

1.15. Synthesis
Table 2 summarizes the references with the macroscopic 
traffic models cited in this section. Vmax is the maximum 
velocity, Dmax the jam density, λ the slope of inter-dis-
tance–velocity curve at V = 0, C1, C2, C3, m, p, q and r 
are constants and Cj is the kinematic wave speed at jam 
density. 
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It was necessary to review the evolution of the ve-
locity–density laws in the literature, since these func-
tions have a decisive role in the fundamental equation 
in case of traffic models. They shall satisfy two con-
flicting needs: to be as simple as possible, so that the 
large complex simulation models provide fast numeri-
cal calculations, while satisfying the real practical situ-
ations as widely as possible. A common feature of the 
velocity–density laws is that they result from non-linear 
regression analysis based on measurements and hypoth-
eses (preconceptions). The common flaw of the classical 
results is that because they do not refer to other environ-
mental impacts, they only examine the effect of speed 
on the vehicle density, so essentially any of them can be 
suitable for a given modelling. Péter and Fazekas (2014)
goes much further and examines also the environmen-
tal parameters. In case of the IDMs the comprehensive 
examination of the speed–density functions is an inter-
esting problem, because without preconception an ex-
panded set of functions can be examined from the point 
of view of which known function types or other new 
models are considered as valid by this model. Of course, 
neither the classic IDMs contain the environmental pa-
rameters mentioned above, so the studies in this area are 
far from closed. 

The next section is dedicated to generate micro-
scopic and macroscopic simulated traffic data, which 
are the density and the velocity. In addition, the impact 
of microscopic parameters to macroscopic ones is in-
vestigated. 

2. Macroscopic Traffic Data Generation

Based on microscopic traffic simulation, density–time 
and velocity–time functions will be computed in this 
section. 

Subsection 2.1 presents the simulation assumptions 
and the IDM intended to represent the microscopic lon-
gitudinal vehicle motion. Subsection 2.2 introduces the 
used mathematical formula to compute macroscopic 
parameters (velocity and density). Subsection 2.3 pre-
sents the simulation results and discussions and subsec-
tion 2.4 studies the impact of microscopic parameter on 
macroscopic ones.

2.1. Microscopic Traffic Model:  
Intelligent Driver Model 
The IDM is an Adaptive Cruise Control (ACC) system 
intended for adjusting the driver’s longitudinal desired 
velocity and safety time gap. The IDM, developed by 
Kesting et al. (2008), is expressed by:
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where: an is the maximum acceleration of the vehicle n 
[m/s2]; 0

nv  the desired velocity of the vehicle n [m/s]; sn 
the distance gap [m]:
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a v
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where: an is the desired deceleration of the vehicle 
n [m/ s2]; 0

ns  the jam distance of the vehicle n [m]; Tn 
the safety time gap of the vehicle n [s].

Compared to the other Adaptive Cruise Control 
(ACC) models in the literature, the IDM shows more 
advantages in terms of easy implementation, calibration 
and the intuitive and the availability of its parameters. 
These ones are the desired velocity 0

nv  and the safety 
time gap Tn, which are fixed as system inputs

2.2. Density and Velocity Formula
2.2.1. Density Formula
As shown in subsection 1.15 in Table 2, the quotient be-
tween the traffic density and the jam density are used 
in all models in the literature for density normalization. 
In this paper, the density is already normalized. Here, 
the traffic road section is limited by the first and the 
last vehicle. Then, the density formula can be written as:

( ) ( )
1==
∑
N

k
k

platoon

l
d t

L t
,  (17)

where: lk is the length of the vehicle (k=1, 2, …, N); N 
the number of vehicle in the platoon; Lplatoon the length 
of the platoon. The density d can be normalized in the 
interval [0,1]. Then, we have:

max
=

Dd
D

,

where: Dmax = 1 in this case. For this purpose, in the rest 
of this paper, the density d will be noted as D.

2.2.2. Velocity Formula
The platoon velocity v is the average velocity of the ve-
hicles in the platoon which is given by:

( ) ( )
1

1

=
= ∑

N

n
n

v t v t
N

,  (18)

where: vn is the velocity of the vehicle n.

2.3. Simulations and Results 
2.3.1. The Simulation Model
The following system of non-linear matrix differential 
equations shows the structure of the IDM under inves-
tigation. For a multi vehicle system, the IDM is given by:

( ) ( )( ) ( )( )
11

1 2 1
−−

+ + = A x t V f x t S f x t   (19)
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1

1 2

1 1 1, ,...,
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=
N

A
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This model examines the longitudinal dynamics in 
the direction of travelling in case of vehicles travelling 
in a lane and is specifically capable of analysing the evo-
lution of the speed–density law. The movement is per-
formed on a line, which is a given lane. We have dealt 
with the further generalization of the model in Derbel 
et al. (2012b, 2013). 

2.3.2. Simulation Assumptions
In our simulations, the following assumptions are taken 
into account: 

 – the AAC model, which is our microscopic traf-
fic model, is already validated and its parameters 
are identified based on experimental data (Kest-
ing et al. 2008);

 – the traffic is homogeneous. It means that the lon-
gitudinal motion of all vehicles is controlled by 
the same ACC model (IDM) with the same pa-
rameter values; a heterogeneous traffic includes 
vehicles with manual and automatic driving 
modes;

 – the road has only one lane.
 – only the longitudinal vehicle motion is studied; 
the lane change and the lateral motion are ne-
glected. 

2.3.3. The Simulator
The development of traffic simulators has received much 
attention in recent years. Many companies have invested 
in such projects and have made simulators integrating 
various dynamic and kinematic models of vehicles, driv-
er and road architectures available. These simulators are 
known by their complexities in terms of software devel-
opment. For example, the simulator ARCHISIM adopts 
multi-agent approach and techniques from artificial in-
telligence to simulate complex phenomena.

Our motivations for the development of a mixed 
traffic simulator (coexistence of automated and manual 
driving style in the same traffic section) are justified ac-
cording to the following two aspects:

 – the high cost of traffic simulators in the market;
 – the collision management problem. For example, 
the traffic simulators CarMaker and Microsimu-
lation of Road Traffic Flow (MRTF) do not per-
fectly manage collisions between vehicles.

Our mixed traffic simulator is developed using the 
C language and the Open Graphics Library (OpenGL) 
library for graphical interface. Fig. 3 shows the structure 
of mixed traffic simulator. This simulator has inputs that 
are used by its different modules to save the output of 
the simulation in different formats such as video and/or 
data required for post-processing.

The inputs of the simulator are the following three:
 – ‘XML File’ in which some parameters can be set: 
the simulation number, the initial vehicle num-
ber, the road length and the minimum and maxi-
mum percentage of automated vehicles; 

Fig. 3. Structure of the developed simulator

Open Gl
library

Global
parameters XML

Simulation management 
module main function

Pa
ra
m
et
er
s

Pa
ra
m
et
er
s

Pa
ra
m
et
er
s

Models: automated and 
manual driving, line change

Numerical 
integration module

Up
da
te

Pa
ra
m
et
er
s

GUI 
management Measurement

File .txtScreenVideo

Da
ta

Da
ta

Da
ta

Op
tio
ns

OU
TP

UT
M
AI
N

IN
PU

T



Transport, 2018, 33(2): 489–501 495

 – ‘Global Settings’: these parameters are fixed 
throughout the simulation (e.g. road width);

 – ‘OpenGL library’: this library is responsible for 
the Graphical User Interface (GUI) management 
such as scenarios and architectures used in the 
simulation.

In the simulator body, the following modules are 
developed:

 – ‘Scenario Development Module’: This module 
includes the different developed scenarios. They 
take their input parameters through the ‘main’ 
function. It selects the script to run from the 
choice made in the XML file. In this module, 
there are useful models: the IDM for longitu-
dinal automated driving style, the Two Velocity 
Difference Model (TVDM) (Ge et al. 2008) for 
longitudinal manual driving style and the Mini-
mizing Overall Braking change Induced by Lane 
change (MOBIL) model (Kesting et al. 2008) for 
the lane change management. These models need 
to be updated in each simulation step through 
the numerical integration module (Runge Kutta);

 – ‘GUI Management Module’: This module is based 
on the OpenGL library and the measurements 
are recorded to generate and update the simula-
tor graphical interface.

The outputs of this simulator are the following 
three:

 – ‘Screen’ – displays the architecture and the sce-
nario;

 – ‘Video’ – to save the simulation; 
 – ‘File .txt or .bin’ – saves the data needed for post-
processing.

Fig. 4 shows the position of the vehicles in a pla-
toon.

The IDM simulation model with the parameters 
given by Table 3 is applied to simulate the fully auto-
mated traffic using our developed microscopic traffic 
simulator. The presented parameter values in this ta-
ble are originated from an identification step using ex-
perimental data and used to validate the IDM with the 
fundamental diagram by Kesting et al. (2008). At each 
simulation step, the simulated microscopic traffic data 
such as the position, the velocity and the acceleration 
of each vehicle are computed. Then, the density and the 
velocity are computed according to Eqs (17) and (18) 
respectively.

Simulation parameters are given in Table 4. In this 
table, the jam distance sn

0 is set to zero in order to have 
the maximum density equal to 1.

Table 3. IDM simulation parameters

Parameter Mean value Unit

Maximum acceleration an 3 m/s2

Desired deceleration bn 3 m/s2

Safety time headway Tn 1.5 s

Table 4. Simulation parameters

Parameter Value Unit

Vehicle number 20 vehicle

Simulation time 1000 s

Simulation time step 0.01 s

Initial inter distance 0 m

Initial acceleration 0 m/s2

Desired velocity 50 km/h

Initial velocity 0 km/h

The jam distance 0 m

Vehicle length 5 m

To study the sensitivity of macroscopic parameters 
(velocity and density) according to the microscopic pa-
rameters (an, bn, Tn), traffic simulation is performed 
made for each of the maximum acceleration an values 
(the other microscopic parameters are constants), the 
desired deceleration bn (the other microscopic param-
eters are constants) and the safety time headway Tn (the 
other microscopic parameters are constants). 

2.3.4. Simulation Results
Fig.  5 shows the density versus the time (first curve) 
and the velocity versus the time (second curve) during 
1000  s of simulation with the microscopic parameters 
given by Table 3 and the simulation parameters given 
by Table 4. Here as the density increases, the velocity 
decreases until the stable state.

Fig. 4. Positions of the vehicles in the platoon
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2.4. From Macroscopic Parameters  
to Microscopic Parameters
In this section, two goals are fixed: the first one consists 
in studying the dependency of the shape of the veloc-
ity–time and the density–time functions to microscopic 
parameters. The second goal is to study the ability to 
identify microscopic parameters from macroscopic pa-
rameters. Microscopic parameters are the maximum ac-
celeration an, the desired deceleration bn and the safety 
time headway Tn. In this step the following assumptions 
are made: the maximum acceleration an ∈ [2, 7] m/s2 the 
desired deceleration bn ∈ [2, 5] m/s2 and the safety time 
headway Tn ∈ [1.5, 4] s. The ranges are empirical inter-
vals given by Kesting et  al. (2008). In this subsection, 
it is noted that all vehicles have the same parameters 
(homogeneous traffic).

2.4.1. Impact of an, bn and Tn on Density
As shown in Fig. 6, the maximum acceleration and the 
desired deceleration have no impact on traffic density. 

Indeed, when the traffic becomes stable:

Dvn = 0, ∀n ∈ {1, ..., N} 

and then 

0
2

D
=n n

n n

v v
a vb

.

The safety time headway Tn has an impact on traffic 
density i.e when Tn increases, traffic density decreases. 
In fact, vehicles tend to increase inter-distance when Tn 
is high, then the traffic density decreases.

2.4.2. Impact of an, bn and Tn on Velocity 
As shown in Fig. 7, the maximum acceleration and the 
desired deceleration have no impact on the velocity. The 
same reason cited in 3.4 is the cause of this result: when 
the traffic becomes stable, Dvn = 0 ∀n ∈ {1, ..., N} and 
then 0

2
D

=n n

n n

v v
a vb

. The safety time headway Tn has an 

impact on the velocity i.e. when Tn decreases vehicles ve-

Fig. 6. Density for different an, bn and Tn sets

Fig. 7. Velocity for different an, bn and Tn sets
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locity increases. Vehicles accelerate to reach the desired 
velocity until the safety time headway is guaranteed.

Fig.  8 shows the impact of the time headway Tn 
on the macroscopic parameters. Now the curves of this 
figure will be considered as reference to us (velocity–
density map). In case of unknown time headway, from 
the density and the velocity values, we can identify the 
mean value of time headway between vehicles by mean 
of interpolation.

3. New Velocity–Density Model Synthesis Method

The new method consists in studying the variation of 
each of the two macroscopic parameters (velocity and 
density given by the Figs 6 and 7 separately along the 
simulation time. To carry out this study, a family of 
functions is computed to approximate the density–time 
and velocity–time functions. For a given γ, this family of 
candidate functions is expressed by:

( ) ( )3
1 2 1 2/ , , ; exp

γ

γ

    = ∃ τ ∈ℜ = − +  τ   
f

f

tH F F F F t F F .

For reasons, which will be later explained, γ is fixed 
for all candidate functions of the two macroscopic pa-
rameters.

The function D ∈ Hγ, which is a candidate to ap-
proximate the density–time function, is given by:

( ) 1 2exp
γ 

= − +  τ d

tD t D D ,  (20)

where: D1, τd and D2 are constants. 
The function v ∈ Hγ, which is a candidate to ap-

proximate the velocity–time function, is given by:

( ) 1 2exp
γ 

= − +  τ v

tv t V V ,  (21)

where: V1 < 0, and τv > 0, V2 > 0 are constants. 
γ is fixed for the two candidate functions to have an 

analytical time independent velocity–density relation-
ship from Eqs (20) and (21). D and v functions are used 
to fit separately the density and the velocity data in the 
least square sense. The fitted curves of the density and 
the velocity together with the macroscopic data given 
by IDM simulation. Parameters of these two functions, 
obtained with setting γ = 0.8, are summarized in Table 5. 
The mean, the maximum and the minimum absolute er-
rors are given by Table 6. The absolute error between 
data given by microscopic simulation and the computed 
functions D and v is small compared to the maximum 
values of each one. The IDM is written as:

( )
2

0

4 * ,
1
    D  = − −         



n nn
n n

nn

s v vv
v a

sv

and

( ) D
D = + −0* ,

2
n n

n n n n n
n n

v v
s v v s T v

a v
.

The solution for the velocity is given by:

( )
γ 

= − +  τ 
1 2exp

v

tv t V V .

When traffic become stable, we obtain 0=nv  and 

0

γ−
τ →v

t

e .  

Fig. 8. Impact of the time headway on  
the velocity–density curve
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Then,

( ) ( )
2

4 42 40 0
2 2

n
n n

n

T v vV Vs
 

+ =  
 

  (22)

and, as shown in Eq (22), V2 depends on the inter-
distance and the safety time headway Tn and does not 
depends on an and bn. 

Table 5. Parameters of the D and v functions with γ = 0.8

Parameter Mean value Unit
D1 0.8971 –
τd 0.1205 s
D2 0.1029 –
V1 –48.4583 km/h
τv 0.0813 s
V2 48.48205 km/h
R2 (velocity) 0.9788 –
R2 (density) 0.9399 –

Table 6. Density and velocity error

Parameter Mean Max Min
Density error 0.0157 0.0786 0
Mean velocity error 0.6402 6.3786 0

4. Velocity–Density Model Synthesis

From the density model defined by Eq. (20) and the ve-
locity model defined by Eq. (21), the VDM is developed 
analytically in this section.

4.1. Model Synthesis 
Eq. (20) is given by:

( ) 1 2exp
γ 

= − +  τ d

tD t D D .  (23)

The function v ∈ Hγ, which is a candidate to ap-
proximate the velocity–time function, is given by:

( ) 1 2exp
γ 

= − +  τ v

tv t V V .  (24)

From these two equations, we get:

( )

( )

2

1

2

1

ln ;

ln ;

γ

γ

  −
 = τ     


 − = τ    
 

d

v

D t D
t

D

v t V
t

V

  (25)

( )( ) ( ) 2
1 2

1

τ
τ −

= +  
 

d

vD t D
v D t V V

D
.  (26)

Let V, the function defined as:

( ) 2
1 2

1
:

τ
τ −

→ +  
 

d

vD t D
V D V V

D
  (27)

with slight abuse of notation, we have ( )( ) ( )=v D t V D .
Then, the analytic velocity–density relationship can 

be written as:

( ) 2
1 2

1

τ
τ −

= + 
 

d

vD D
v D V V

D
.  (28)

To calibrate this model, the limit conditions are ap-
plied in the next subsection. 

4.2. Generalized Velocity–Density Model
Applying the limit conditions given by:

( )2 1

2 max

1 0; ; = ⇒ = e ≈ e = +
 = ⇒ =

V VD V V V
D D V V

 
 (29)

to Eq. (28), we have:

2
1 2

1

2 2
1 2 max

1

1
;

.

τ
τ

τ
τ


  −

+ = e 
  

  − + =   

d

v

d

v

V
D

V V
D

D D
V V V

D

  (30)

Eq. (30) is given by Eqs (31) and (32):

2 max=V V ;  (31)

max
1

2 2

1 1

1 1
τ τ
τ τ

− e
= +

   − −
   
   

d d

v v

VV
V

D D
D D

  (32)

using Eqs (28), (31) and (32):

( )
τ
τ

τ τ
τ τ

 
 
  − e − = + +       − −
         

max 2
max

1
2 2

1 1

.

1 1

d

v

d d

v v

VV D D
V D V

D
D D

D D  (33)

Then, the generalized VDM can finally be ex-
pressed as:

( ) 2 2
max

2 2
1

1 1

τ τ
τ τ

 
    − −

= − + e    − −    
 

d d

v v
V

D D D D
V D V

D D
,  (34)

where: τd > 0, τv > 0, 2[1, ]∈D D , D1 > 0, D2 > 0 are con-
stants, and D1  +  D2  =  1. From this calibrated model, 
some of models defined in section 1 can be derived. 
Next subsections show which of these models can be 
obtained.

4.3. Sub Models 
From the model defined by Eq. (34), some of existing 
models in the literature can be derived by fixing some 
of its parameters:

 – If D2= 0 and eV = 0.
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In this case, 

( ) ( )max 1
τ
τ= −
d

vV D V D   (35)

represents the Pipes model given by Eq. (6) where r = 1, 
eV = 0, 

τ
=
τ
d

v
m  and Dmax = 1. One of the advantages of 

the new model is the finding of the physical meaning of 
the parameter m.

 – If D2= 0, eV = 0 and τd = τv.

In this case, 

( ) ( )max 1= −V D V D .  (36)

Eqs (20) and (21) can be written as:

( ) 1 2exp
γ 

= − +  τ d

tD t D D ;  (37)

( ) 1 2exp
γ 

= − +  τ v

tV t V V .  (38)

Then: 

( ) 1 2
1

1
 

= − + 
 

DV D V V
D

,  (39)

where: the relationship between velocity and den-
sity remains linear. In case of the Greenshields model, 
Vmax = V2 and Dmax = 1.

 – If D 2= 0, eV = 0 and 1
2

τ +
=

τ
d

v

p  and p ≥ –1. 

In this case,

( )
1

2max 1
+ 

 = −
 
 

p
V D V D ,  (40)

which is the Drew model given by Eq. (7), where Dmax= 1. 

Since τd and τv are two time constants, then 0
τ

≥
τ
d

v
. 

Therefore, the choice of 1
2

τ +
=

τ
d

v

p  leads to have 

p + 1 ≥ 0 and then p ≥ −1. In this study, the density is 
expressed as:

( ) 1 2exp
γ 

= − +  τ d

tD t D D .  (41)

It implies that when t → ∞, 1 2exp
γ 

− <<  τ d

tD D .

If D2 → 0, then only lower densities can be pre-
dicted. Therefore, velocity can be estimated only in free 
flow condition. Thus, the model cannot predict lower 
velocities. This result has been proven by Ardekani et al. 
(2011), empirically and proved analytically now by our 
method of velocity–density synthesis and through our 
generic model.

Conclusions

The velocity–density functions known from the lit-
erature are results of non-linear regressions, which are 
obtained by the determination of functions that fit the 
measured coherent speed–density values with the mini-
mum error.

The first step of the analysis we have performed in 
the field of IDMs is also a non-linear regression, which 
was developed based on the speed and density changes 
over time. Next, we have described a direct function re-
lation for the speed–density function using a time pa-
rameter.

There is no defined speed–density law in the IDM, 
so it was an important achievement to show what speed–
density function is followed by the IDM.

The method presented in this publication has been 
developed for the determination of the speed–density 
function V(D) specific to the IDM, which took into ac-
count the development of the process of the free flow.

The developed method is based on the regression 
procedure relative to the parametric functions V(t) and 
D(t). The selection of the proper function type was per-
formed using regression analysis (minimization of ex-
pected error, χ2 analysis) with the boundary condition 
that the defined function V(D) should be mathemati-
cally easily tractable. The [(Vi,ti); (Di,ti), i = 1, 2, ..., n] set 
of pairs of points constituting the basis of the regression 
was provided by the IDM simulation.

In the case of the function V(D) the studies pre-
sented aimed, therefore, at the definition of a general 
mathematical form and thus Vmax was a general param-
eter as well. (In the publication, in a particular example 
the value of that was 50 km/h, which is typical of urban 
traffic.) A separate new interesting result is that the law 
presented by us has defined a more general class of func-
tion compared to what was known earlier. At the same 
time this has also integrated three known speed–density 
relationships as special cases (with the proper selection 
of parameters) (Greenshields 1935; Pipes 1967; Drew 
1968). 

We emphasize that the analysis – in terms of the 
development of simulation models – led to another 
important question. The known speed–density func-
tions are univariate functions of the vehicle densities. 
The significant formal differences between these types 
of functions raise the question whether the differences 
can significantly be predetermined by the environmental 
parameters, as well. An interesting question is whether 
more general classes of functions that integrate more 
known function types can be determined by broader 
measurement and analysis, and further IDM analysis. 
These known function types are multivariate functions 
that depend on the density and environmental param-
eters, as well, for example the one presented in Péter and 
Fazekas (2014). The simulator discussed in this article 
is capable of carrying out these further investigations.

It is an exciting issue, that the parameters D1, D2, 
V1, V2, τd, τv acting in the function V(D) are other func-
tions, as they depend on the parameters of the IDM. The 
research is, therefore, not closed, the topic of further re-
ally interesting studies is how these parameters depend 
on the parameters of the IDM and on their distribution.

Similarly, another important area is the investiga-
tion of environmental parameters that affect the IDM 
parameters.
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Taking into account the velocity processes the 
method is directly connectable with the optimization 
of environmental pollutions, so further research in this 
direction may be conducted within the project. It has 
an important influence in many areas of transportation 
(Tettamanti et al. 2015; Gumz, Török 2015; Török et al. 
2015; Lakatos 2015; Szauter et al. 2014). 

Acknowledgements

Authors thank the Hungarian Government and the Eu-
ropean Social Fund for their financial support to the 
‘Smarter Transport’ – IT for co-operative transport sys-
tem project TÁMOP-4.2.2.C-11/1/KONV-2012- 0012.

References

Ardekani, A. S.; Ghandehari, M.; Nepal, M. S. 2011. Macro-
scopic speed-flow models for characterization of freeway 
and managed lanes, Bulletin of the Polytechnic Institute of 
Iasi 7: 149–160.

Bando,  M.; Hasebe,  K.; Nakanishi,  K.; Nakayama, N. 1998. 
Analysis of optimal velocity model with explicit delay, 
Physical Review E: Covering Statistical, Nonlinear, Biologi-
cal, and Soft Matter Physics 58(5): 5429–5435. 
https://doi.org/10.1103/PhysRevE.58.5429 

Bede,  Z.; Péter, T. 2014. Optimal control with the dynamic 
change of the structure of the road network, Transport 29(1): 
36–42. https://doi.org/10.3846/16484142.2014.895959 

Bede, Z.; Péter, T.; Szauter, F. 2013. Variable network model, 
IFAC Proceedings Volumes 46(25): 173–177. 
https://doi.org/10.3182/20130916-2-TR-4042.00026 

Del Castillo, J. M. 2012. Three new models for the flow–density 
relationship: derivation and testing for freeway and urban 
data, Transportmetrica 8(6): 443–465. 
https://doi.org/10.1080/18128602.2011.556680 

Del Castillo, J. M.; Benítez, F. G. 1995. On the functional form 
of the speed-density relationship – I: general theory, Trans-
portation Research Part B: Methodological 29(5): 373–389. 
https://doi.org/10.1016/0191-2615(95)00008-2 

Derbel, O.; Mourllion, B.; Basset, M. 2012a. Extended safety 
descriptor measurements for relative safety assessment in 
mixed road traffic, in 2012 15th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC), 16–19 
September 2012, Anchorage, Alaska, US, 752–757. 
https://doi.org/10.1109/ITSC.2012.6338774 

Derbel,  O.; Péter,  T.; Zebiri,  H.; Mourllion,  B.; Basset, M. 
2012b. Modified intelligent driver model, Periodica Poly-
technica Transportation Engineering 40(2): 53–60. 
https://doi.org/10.3311/pp.tr.2012-2.02 

Dömötörfi, Á.; Péter, T.; Szabó, K. 2016. Mathematical mod-
eling of automotive supply chain networks, Periodica Poly-
technica Transportation Engineering 44(3): 181–186. 
https://doi.org/10.3311/PPtr.9544 

Derbel, O.; Peter, T.; Zebiri, H.; Mourllion, B.; Basset, M. 2013. 
Modified intelligent driver model for driver safety and 
traffic stability improvement, IFAC Proceedings Volumes 
46(21): 744–749. 
https://doi.org/10.3182/20130904-4-JP-2042.00132 

Drake, J. S.; Schofer, J. L.; May, A. D. 1967. A statistical analy-
sis of speed-density hypotheses in vehicular traffic science, 
Highway Research Record 154: 112–117.

Drew, D. R. 1968. Traffic Flow Theory and Control. McGraw-
Hill Inc. 467 p.

Ge, H. X.; Cheng, R. J.; Li, Z. P. 2008. Two velocity difference 
model for a car following theory, Physica A: Statistical Me-
chanics and its Applications 387(21): 5239–5245. 
https://doi.org/10.1016/j.physa.2008.02.081 

Greenberg, H. 1959. An analysis of traffic flow, Operations Re-
search 7(1): 79–85. https://doi.org/10.1287/opre.7.1.79 

Greenshields, B. D. 1935. A study of traffic capacity, Highway 
Research Board Proceedings 14: 448–477. 

Gumz, F.; Török, Á. 2015. Investigation of cordon pricing in 
Budakeszi, Periodica Polytechnica Transportation Engineer-
ing 43(2): 92–97. https://doi.org/10.3311/PPtr.7579 

Helbing, D.; Tilch, B. 1998. Generalized force model of traf-
fic dynamics, Physical Review E: Covering Statistical, Non-
linear, Biological, and Soft Matter Physics 58(1): 133–138. 
https://doi.org/10.1103/PhysRevE.58.133 

Herty, M.; Klar, A. 2003. Modeling, simulation, and optimi-
zation of traffic flow networks, SIAM Journal on Scientific 
Computing 25(3): 1066–1087. 
https://doi.org/10.1137/S106482750241459X 

Holden,  H.; Risebro, N. H. 1995. A mathematical model of 
traffic flow on a network of unidirectional roads, SIAM 
Journal on Mathematical Analysis 26(4): 999–1017. 
https://doi.org/10.1137/S0036141093243289 

Kesting, A. 2008. Microscopic Modeling of Human and Auto-
mated Driving: Towards Traffic-Adaptive Cruise Control: 
Doctoral Thesis. Faculty of Traffic Sciences, Dresden Uni-
versity of Technology, Germany. 218 p.

Kesting, A.; Treiber, M.; Schönhof, M.; Helbing, D. 2008. Adap-
tive cruise control design for active congestion avoidance, 
Transportation Research Part C: Emerging Technologies 
16(6): 668–683. https://doi.org/10.1016/j.trc.2007.12.004 

Lakatos, I. 2015. Development of a new method for comparing 
the cold start- and the idling operation of internal com-
bustion engines, Periodica Polytechnica Transportation En-
gineering 43(4) 225–231. https://doi.org/10.3311/PPtr.8087 

MacNicholas, M. J. 2008. A simple and pragmatic represen-
tation of traffic flow, in Symposium on the Fundamental 
Diagram: 75 Years (Greenshields 75 Symposium), 8–10 July 
2008, Woods Hole, MA, US, 1–17.

Mahnke,  R.; Kaupužs, J. 1999. Stochastic theory of freeway 
traffic, Physical Review E: Covering Statistical, Nonlinear, 
Biological, and Soft Matter Physics 59(1): 117–125. 
https://doi.org/10.1103/PhysRevE.59.117 

Molina, J. 2005. Commande de l’inter-distance entre deux vé-
hicules: Thèse pour obtenir le grade de docteur. Institut 
National Polytechnique de Grenoble, France. 164 p. (in 
French).

Newell, G. F. 1961. Nonlinear effects in the dynamics of car 
following, Operations Research 9(2): 209–229. 
https://doi.org/10.1287/opre.9.2.209 

Paveri-Fontana, S. L. 1975. On Boltzmann-like treatments for 
traffic flow: a critical review of the basic model and an al-
ternative proposal for dilute traffic analysis, Transportation 
Research 9(4): 225–235. 
https://doi.org/10.1016/0041-1647(75)90063-5 

Péter, T. 2012. Modeling nonlinear road traffic networks for 
junction control, International Journal of Applied Math-
ematics and Computer Science 22(3): 723–732. 
https://doi.org/10.2478/v10006-012-0054-1 

Peter, T.; Bokor,  J.; Strobl, A. 2013. Model for the analysis of 
traffic networks and traffic modelling of Győr, IFAC Pro-
ceedings Volumes 46(25): 167–172. 
https://doi.org/10.3182/20130916-2-TR-4042.00023 

https://doi.org/10.1103/PhysRevE.58.5429
https://doi.org/10.3846/16484142.2014.895959
https://doi.org/10.3182/20130916-2-TR-4042.00026
https://doi.org/10.1080/18128602.2011.556680
https://doi.org/10.1016/0191-2615(95)00008-2
https://doi.org/10.1109/ITSC.2012.6338774
https://doi.org/10.3311/pp.tr.2012-2.02
https://doi.org/10.3311/PPtr.9544 
https://doi.org/10.3182/20130904-4-JP-2042.00132
https://doi.org/10.1016/j.physa.2008.02.081
https://doi.org/10.1287/opre.7.1.79
https://doi.org/10.3311/PPtr.7579
https://doi.org/10.1103/PhysRevE.58.133
https://doi.org/10.1137/S106482750241459X
https://doi.org/10.1016/j.trc.2007.12.004
https://doi.org/10.3311/PPtr.8087
https://doi.org/10.1103/PhysRevE.59.117
https://doi.org/10.1287/opre.9.2.209
https://doi.org/10.1016/0041-1647(75)90063-5
https://doi.org/10.2478/v10006-012-0054-1
https://doi.org/10.3182/20130916-2-TR-4042.00023


Transport, 2018, 33(2): 489–501 501

Péter, T.; Fazekas, S. 2014. Determination of vehicle density of 
inputs and outputs and model validation for the analysis of 
network traffic processes, Periodica Polytechnica Transpor-
tation Engineering 42(1): 53–61. 
https://doi.org/10.3311/PPtr.7282 

Péter, T., Lakatos, I.; Szauter, F. 2015. Analysis of the complex 
environmental ımpact on urban trajectories, in ASME 2015 
International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference, 
2–5 August 2015, Boston, Massachusetts, US, 9: 1–7 htt-
ps://doi.org/10.1115/DETC2015-47077

Pipes, L. A. 1967. Car following models and the fundamen-
tal diagram of road traffic, Transportation Research 1(1): 
21–29. https://doi.org/10.1016/0041-1647(67)90092-5 

Prigogine, I.; Herman, R. C. 1971. Kinetic Theory of Vehicular 
Traffic. Elsevier. 100 p.

Rakha, H.; Gao, Y. 2010. Calibration of Steady-State Car-Fol-
lowing Models Using Macroscopic Loop Detector Data. Final 
Report VT-2008-01. Virginia Tech Transportation Institute, 
US. 24 p.

Tettamanti, T.; Milacski, Z. Á.; Lőrincz, A.; Varga, I. 2015. It-
erative calibration method for microscopic road traffic sim-
ulators, Periodica Polytechnica Transportation Engineering 
43(2): 87–91. https://doi.org/10.3311/PPtr.7685 

Török, Á; Kiss, Á; Szendrő, G. 2015. Introduction to the road 
safety situation in Hungary, Periodica Polytechnica Trans-
portation Engineering 43(1): 15–21. 
https://doi.org/10.3311/PPtr.7510 

Treiber, M.; Hennecke, A.; Helbing, D. 2000a. Congested traffic 
states in empirical observations and microscopic simula-
tions, Physical Review E 62(2): 1805–1824. 
https://doi.org/10.1103/PhysRevE.62.1805 

Treiber,  M.; Hennecke,  A.; Helbing, D. 2000b. Microscopic 
simulation of congested traffic, in D. Helbing, H. J. Herr-
mann, M. Schreckenberg, D. E. Wolf (Eds.). Traffic and 
Granular Flow’99: Social, Traffic, and Granular Dynamics, 
365–376. https://doi.org/10.1007/978-3-642-59751-0_36 

Underwood, R. T. 1961. Speed, volume and density relation-
ship, in B. D. Greenshields, H. P. George, N. S. Guer-
in,  M.  R. Palmer, R. T. Underwood (Eds.). Quality and 
Theory of Traffic Flow: a Symposium. Bureau Highway Traf-
fic, Yale University, 141–188.

Van Aerde, M. W. 1995. Single regime speed-flow-density 
relationship for congested and uncongested highways, in 
74th Annual Meeting of the Transportation Research Board, 
22–28 January 1995, Washington, DC, US, 1–26.

Wang, H.; Ni, D.; Chen, Q.-Y.; Li, J. 2013. Stochastic modeling 
of the equilibrium speed–density relationship, Journal of 
Advanced Transportation 47(1): 126–150. 
https://doi.org/10.1002/atr.172 

https://doi.org/10.3311/PPtr.7282
https://doi.org/10.1115/DETC2015-47077
https://doi.org/10.1115/DETC2015-47077
https://doi.org/10.1016/0041-1647(67)90092-5
https://doi.org/10.3311/PPtr.7685
https://doi.org/10.3311/PPtr.7510
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1007/978-3-642-59751-0_36
https://doi.org/10.1002/atr.172

