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Abstract. The emergence of wireless communication technologies such as Dedicated Short-Range Communication 
(DSRC) has promoted the evolution of collision warning from simple ranging-sensor-based systems to cooperative sys-
tems. In cooperative systems, path prediction is a promising method for reflecting a driver’s intention and estimating 
the future position of vehicles. In this study, a short-term trajectory-modelling method is proposed to predict vehicle 
motion behaviour in the cooperative vehicular environment. In addition, a collision detection algorithm for winding 
roads is presented based on a model for determining the minimum distance of vehicles’ future trajectories. The coop-
erative collision avoidance system’s performance is analysed through simulation, providing useful theoretical insights 
into the effects of DSRC technology on vehicle collision avoidance in a curved road environment. 
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Introduction

Vehicle and road safety has long been a key issue for 
communities and governments. Daily, many road ac-
cidents occur, especially in curved road environments. 
On average, roadway curves experience five times more 
accidents than straight roadways (Lusetti et  al. 2008). 
On a curved road, it is difficult for a driver to observe 
oncoming vehicles, increasing the possibility of oppo-
site collisions. To avoid such collisions, many methods 
principally based on the exploitation of on-board sen-
sors (Amditis et al. 2010; Barth, Franke 2009; Bertolazzi 
et al. 2010; Tian et al. 2016) have been developed. How-
ever, in light of physical limitations such as limited range 
and field of view, a standalone sensor or several sensors 
installed in a vehicle cannot detect potential dangers if 
they are hidden by hills or other obstructions.

Typical cooperative collision-warning systems were 
studied by Huang and Lin (2013); Lytrivis et al. (2011); 
Polychronopoulos et  al. (2007), primarily based on a 
vehicle’s dynamic state obtained from radar tracking, 

camera-based processing, or a communication device. 
In the advanced cooperative path-prediction algorithm 
proposed in (Lytrivis et al. 2011), each vehicle can per-
ceive its neighbours’ positions, velocities, acceleration, 
headings, and yaw rate measurements through vehicle 
ad hoc networks. In addition, drivers can be periodi-
cally informed of the present and future statuses of their 
neighbours. Similarly, (Polychronopoulos et  al. 2007) 
proposed a hierarchical-structured algorithm to fuse 
traffic environment data to accurately predict the trajec-
tory of an ego-vehicle (vehicle equipped with sensors), 
allowing the active safety system to inform or warn the 
driver when critical situations occur. All abovemen-
tioned studies were based on updating the current state 
of a vehicle using motion models.

In recent years, inter-vehicle communications 
based on wireless technologies such as Dedicated Short-
Range Communication (DSRC) have paved the way for 
innovative applications in vehicle collision avoidance 
(Jaber et al. 2015; Liu, Khattak 2016; Tian et al. 2016). 
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The GM automobile research group proposed the Co-
operative Collision Warning (CCW) system (Sengupta 
et  al. 2007). In CCW, vehicles exchange information 
such as time, longitude, latitude, course, and velocity 
among neighbouring vehicles via wireless communica-
tion. For such systems, collision detection is paramount 
and the exchanged data are used to identify potential 
dangers. In research by Tu and Huang (2010), each vehi-
cle can adaptively broadcast its own calibrated motion-
state information via the DSRC-based protocol. Using 
this information, collision detection algorithms were de-
signed based on a model of determining the minimum 
distance of vehicles’ future trajectories. A previous study 
(Lin et al. 2000) addressed the on-board prediction of 
a motor vehicle’s path using the numerical integration 
of a linearized two-degree-of-freedom vehicle-handling 
model. Another important task of CCW is analysing the 
time to avoid collision. Tang and Yip (2010) analysed 
the timing of events and how they influenced collision 
avoidance strategies. They found that the warning strat-
egies for collision avoidance were constrained by the 
timing of events such as DSRC communication latency, 
detection range, road condition and driver reaction and 
deceleration rate. Using these events, they defined two 
collision avoidance timings: critical time to avoid colli-
sion, and preferred time to avoid collision.

The best way to avoid collision is to predict driver 
intent and estimate the positions of vehicles in advance. 
In the vehicular network environment, 360-degree 
awareness can be implemented using GPS and wire-
less communications, so there is a strong belief that the 
improvement of preventive safety applications and the 
extension of their operative range will be achieved by 
cooperative vehicular applications. As a driver’s inten-
tion generally does not change dramatically in a short-
time, certain consistencies in the driver’s inputs can be 
assumed. Therefore, path prediction based on the dy-
namic state of the vehicle can be achieved. Once path 
prediction is fulfilled, the algorithm can detect potential 
collisions and trigger different mechanisms to mitigate 
or avoid collisions.

Aside from viewing the rear end and overtaking 
and lane-changing situations on a straight road, the 
view of oncoming vehicles on a curved road is always 
the worst, as the vision of the driver is always blocked 
in such situations. Furthermore, unlike a straight road, 
on which a precise future path is easily obtained, the 
curvature of a road presents challenges in accurately 
predicting future trajectories. The main factors that af-
fect the Predicted Minimum Distance (PMD) and Pre-
dicted Time to Minimum Distance (PTMD) include the 
curvature of the road and the dynamic states of vehicles. 

In this paper, we will study these factors’ effects on 
the PMD and PTMD on a curved road. The remainder 
of this paper is organized as follows. In Section 1, the 
vehicle motion model and collision avoidance algorithm 
are presented. Simulation experiments to evaluate the 
performance of the proposed collision avoidance algo-
rithm are described in Section 2. Finally, conclusions 
and future work are discussed in the last section.

1. Collision Avoidance Algorithm

1.1. Overview of the Algorithm
The main object of the algorithm is to predict vehicles’ 
trajectories from the current state and to calculate the 
PMD and PTMD in order to determine when a collision 
may occur. First, the host vehicle continuously scans the 
surrounding road environment through periodic com-
munication. When the host vehicle detects an oncoming 
vehicle, path prediction to estimate the future positions 
of the host and detected vehicle over a discrete fixed-
time horizon is triggered. Meanwhile, a collision detec-
tion method is run to determine whether the PMD is 
below a pre-set threshold. It was shown in (Polychro-
nopoulos et al. 2009) that the reliable time horizon for 
path estimation is about 3–4 s in advance. The motion 
of a vehicle on a road is highly dynamic and estima-
tion is not reliable after a few seconds; therefore, neither 
predicted trajectory may necessarily extend to the colli-
sion area. Correspondingly, it is necessary to update the 
path-prediction and collision detection processes until 
the values of both vehicles on the y-axis have reached 
the same value at the same time (Fig. 1).

In the following sub-section, we will discuss the 
collision avoidance algorithm in detail. The algorithm 
contains two parts: vehicle motion prediction and colli-
sion detection. We assume that the dynamic status of the 
vehicles has been accurately detected using local sensors 
(e.g. CAN, GPS) and communication devices. 

1.2. Vehicle Motion Prediction
The successful perception of the current environment 
and accurate prediction of the future are the key issues 
for collision avoidance. On a curved road, drivers can-
not see oncoming vehicles directly in some regions and 
therefore it would be very helpful if the host vehicle 
could predict the future evolution of its neighbours on 
the road. Vehicle motion prediction is based mainly on 
updating the current state of a vehicle using a vehicle 

Fig. 1. Scenario of collision on curved road
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motion model. The future path can be estimated as:

X(k +1) = f (X (k)),  (1)

where: X (k), X(k +1) denote the state vectors of a vehi-
cle at time intervals k and k + 1, respectively. A detailed 
definition of function f can be found in Eq. (8).

In this paper, three motion models are used to esti-
mate the future path of a vehicle. The first is the Constant 
Acceleration (CA) model, which assumes that the accel-
eration of a vehicle is constant on both axes. The second 
is the Constant Turn Rate (CTR) model (Li, Jilkov 2003), 
which assumes that the yaw rate and speed of the vehicle 
remain constant over time. The third model is the CTR 
and Constant Tangential Acceleration (CTRA) model 
(Lin et al. 2000), which can be considered as a gener-
alization of the other two models. Although the CTRA 
model describes the true motion of vehicles in a more 
realistic manner, the amount of computation needed is 
larger than for the others. Additionally, as drivers will 
typically maintain a constant velocity and turn rate in 
the curved road situation, the CTR model is more ap-
propriate for estimating the future path in a curved road 
situation. 

In the following, we will analyse the CTR model 
to calculate future positions. The coordinate system we 
use in this paper is shown in Fig. 1. In this system, the 
y-axis points in the velocity direction and the origin is 
the initial position when the host vehicle started mov-
ing on the curved road. It is assumed that the estimated 
trajectory has a fixed number of predicted positions, 
defined as Npp. Without loss of generality, the time step 
T between two successive predicted scans is fixed and 
is usually set to 0.1 s. The algorithm is applied at every 
scan of the data sequence, performing a prediction for 
the next seconds with respect to the current vehicle co-
ordinate system. So the structure of the path is a set of 
path points, each of which has position and velocity at-
tributes, and the expression is given as follows:
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where: xp_i, _ ip xv are the position and velocity on the 
longitudinal axis, respectively; yp_i, _ ip yv  are the posi-
tion and velocity on the lateral axis; w is the yaw rate; 
k = 1, 2, …, n, denotes the k-th predicted point; n is the 
number of path points for each path, which sum to Npp.

In the CTR model, the vehicle is assumed to move 
with a constant turn rate and maintain constant tangen-
tial velocity, as shown in Eq. (3):

wk+1 = wk = w;
vk+1 = vk = v,  (3)

where: vk refers to the velocity of the vehicle in the tan-
gential direction, with constant magnitude but varying 
direction with time.

Based on the two basic assumptions listed above, 
the velocity of the vehicle can be analysed in terms of 
components that are defined from the velocity magni-
tude v and the heading angle j as:

vx = v ⋅ cos(j);
vy = v ⋅ sin(j),  (4)

where: w can be defined as d
dt
φ

w = , and we define j = 0, 
when the vehicle starts to move on the curved road. The 
location-prediction equations are derived as:
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where: x(k +1), y(k +1) is the predicted location of the 
vehicle at tk+1; x(k), y(k) is the location of the vehicle at 
tk; vx(t tx) is the velocity of the vehicle in x direction at 
t (tk ≤ t ≤ tk+1); vy(t tk) is the velocity of the vehicle in 
y direction at t (tk ≤ t ≤ tk+1).

The velocity equation is then:
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where:
( )1 cosa v T= ⋅ j + w⋅ =

( ) ( ) ( ) ( )cos sinx yv k T v k T⋅ w⋅ − ⋅ w⋅ ;

( )2 sina v T= ⋅ j + w⋅ =
( ) ( ) ( ) ( )sin cosx yv k T v k T⋅ w⋅ + ⋅ w⋅ ,

 where: T  = tk+1  – tk is the time interval between two 
sequential scans. The displacements of the host vehicle 
along the two axes are calculated as:
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where:
( ) ( ) ( )(1

1 sin xa x k T v k= + ⋅ w⋅ ⋅ −
w

( )( ) ( ))1 cos yT v k− w⋅ ⋅ ;

( ) ( )( )(2
1 1 cosa y k T= + ⋅ − w⋅ ×
w

( ) ( ) ( ))sinx yv k T v k+ w⋅ ⋅ .

Thus, the solution of the updated equation for this 
model can be given in the following form:
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where:
( ) ( ) ( )(1 sin xa x k T v k= + w⋅ ⋅ −

( )( ) ( ))1 cos yT v k− w⋅ ⋅ w ;
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( ) ( )2 cosxa v k T= ⋅ w⋅ −
( ) ( )sinyv k T⋅ w⋅ ;

( ) ( )( ) ( )(3 1 cos xa y k T v k= + − w⋅ ⋅ +
( ) ( ))sin yT v kw⋅ ⋅ w ;

( ) ( )4 sinxa v k T= ⋅ w⋅ +
( ) ( )cosyv k T⋅ w⋅ ;

( )5a k= w .
The initial state vector used for the host vehicle can 

be given as: 

( )0 0hx = ;
( )0 0hy = ;
( )0hxv v= ;
( )0 0hyv = ;
( )0h hw = w .                                                     (9)

The same motion model can be used for the on-
coming vehicle, but with the initial state vector having 
the following form: 

( ) 00o ox x= ;
( ) 00o oy y= ;
( )

0
0ox oxv v= ;

( )
0

0oy oyv v= ;
( )0o ow = w .                                                   (10)

1.3. Collision Detection 
Timely warning and reacting to a potential collision 
depend on two categories of information: (1) the space 
between two vehicles and their relative speed and posi-
tions; (2) the time it takes for the driver and the vehicle 
to avoid the danger (Tang, Yip 2010). We can derive the 
future trajectories of the host and oncoming vehicles in 
a discrete time series based on the model defined in the 
above subsection. In fact, ensuring the accuracy of the 
path prediction requires that the time span to predict 
the path cannot be too long. If this time is longer than 
4 s, the accuracy will decrease significantly because the 
estimate will deviate from the actual value dramatically. 
Therefore, we set tspan = Npp×T as 4 s, which is the fixed 
interval for detecting a potential collision when the host 
and oncoming vehicles move towards each other. We 
assume that at time Tpre the host vehicle predicts the 
future path of both vehicles to determine whether a con-
flict will occur. The parameters PMD and PTMD reflect 
the potential danger in space and time. In the detec-
tion interval [ , ]k pre pre spant T T t∈ + , the predicted posi-
tions of both vehicles are denoted as ph(tk) and po(tk), 
respectively. The

 
condition for repeating the detection 

process is when 
hp

y  is larger than 
op

y . If 
o hp py y> , 

there is no potential conflict between the vehicles within 
the next 4 s; therefore, we set Tpre  = Tpre  + 1 and re-
peat the above process. If 

o hp py y≤ , there is potential 
conflict and the detection time is defined as Tpred. The 
problem that must be addressed can be formulated into 
a minimization problem that calculates the minimum 
value of the relative distance of the two vehicles, which 

can be denoted as:

( ) ( ) ( )relative k h k o kd t p t p t= − ,  (11)

where: tk = k×T. 
Assuming that time [ , ]m pred pred spant T T t∈ + , we 

obtain the minimum value of the distance: 

( ) ( )
1,...,
min

pp
relative m relative kk N

d t d t
=

= .  (12)

Then, the values of the parameters PMD and 
PTMD are:

( )relative mPMD d t= ; 

m predPTMD t T= − .  (13)

If PMD < threshold, the algorithm will warn the 
driver to take action to avoid it. The detailed process 
is shown in the pseudo-code of the cooperative colli-
sion avoidance algorithm, which includes the following 
parameters:

 – w denotes the road width;
 – r1 denotes the ideal radius the host vehicle will 
follow;

 – r2 denotes the ideal radius the oncoming vehicle 
will follow;

 – X_h(k+1), X_o(k+1) denote the state of the host 
and the oncoming vehicle, respectively, at scan 
k+1;

 – X_h(k+1) = f(X_h(k)) refers to the model defined 
in Eq. (8);

 – isc is a mark to determine whether a potential 
collision has been detected.

_____________________________________________
Algorithm: Cooperative Collision Avoidance_____________________________________________
Input: r, v1, v2, threshold 
Output: warning strategy
Initialization:
r1=r+w/2, r2= r–w/2;
x_h(1)=0, y_h(1)=0;
x_o(1)=r1, y_o(1)=r2;
yawrate_h=v1/r1+delta;
yawrate_o=v2/r2;
X_h(1)=(x_h(1), y_(1), v1, 0)T;
X_o(1)=(x_o(1), y_o(1), 0, v2)T;
relativeDis(1)=||( x_h(1), y_h(1)),( x_o(1), y_o(1))||;
Npp=40, T=0.1;
Tpre=0, isc=0;
_____________________________________________
Program:
Do {

For k=1:1:Npp–1
X_h(k+1)=f(X_h(k));
X_o(k+1)=f(X_o(k));

relativeDis(k+1)=||(x_h(k), y_h(k)), (x_o(k), y_o(k))||;
End for
For m=1:1:Npp

If (y_h(m)>y_o(m))
isc=1;

Tpred=Tpre;
break;
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else
Tpre=Tpre+1;
X_h(1)=X_h(11);
X_o(1)=X_o(11);

End if 
End for

} While(isc=0)
For i=1:1:Npp

PMD=relativeDis(q)=min(relativeDis(i));
PTMD=Tpred+q*T;

End for
If(PMD<threshold) 

Warn the driver to steer;
End if
_____________________________________________

2. Simulation Experiments

This section describes several experiments performed to 
validate the proposed algorithm and analyse the influ-
encing factors of the PMD and PTMD. The method is 
simulated with MATLAB, and the algorithm runs in an 
Intel i5 CPU computer. In the simulations, we selected 
a quarter circle as the curved road situation (Fig. 1). We 
defined the value of the velocity as positive if its direc-
tion was consistent with the positive direction of both 
coordinate axes. Some initial values are given in Table 1.

Table 1. Initial values

Parameter
Value

Host vehicle Oncoming vehicle
x(0) [m] 0 157.25
y(0) [m] 0 162.50
vx(0) [m/s] 10 0
vy(0) [m/s] 0 –10
w(0) [rad/s] 0.0645 0.0634

In Fig. 2, we show the ideal situation when vehi-
cles drive on a curved road. The ideal assumption is that 
both vehicles will maintain a constant tangential velocity 
v and a constant yaw rate v/r and that they will drive 
along the curve. Vehicle collisions on a curved road oc-
cur when the yaw rate deviates from the ideal trajectory.

First, we validated the feasibility of the proposed 
detection method. From Fig. 3a, it is seen that at time 
9 s the proposed method predicted that the position on 
the y-axis would be greater than that of the oncoming 
vehicle, which implies that the vehicles would collide. 
For accurate collision warning, it is necessary to predict 
the most dangerous positions, at which the distance of 
one or more vehicles is lower than the threshold. In fact, 
collision occurs when vehicles overlap in both space and 
time; therefore, time is a crucial factor to be taken into 
consideration. As such, the intersection point in Fig. 3a 
does not necessarily denote a collision or dangerous point.  

Fig. 2. Ideal trajectories of both vehicles

Fig. 3. Collision detection: a – change in position along 
y-axis with time, b – change in position with time;  

c – change in relative distance with time
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In fact, from Fig.  3b the trajectories of the two vehi-
cles do not intersect, although their distance reaches a 
minimum value. Fig. 3c shows the variation of the rela-
tive distance of the two vehicles. From it we see clearly 
that the relative distance reaches a minimum value at 
t = 12.5 s, where the position is the PMD and the time 
is the PTMD.

Fig. 4 shows that the time Tpre when the PMD could 
be detected varied with the speeds of the host and the 
oncoming vehicles. Assuming that the speed of an on-
coming vehicle is constant, Tpre 

starts to decline with the 
speed of the host vehicle. This means that, by increasing 
the speed, we can detect the PMD earlier, although the 
host vehicle will also meet with the oncoming vehicle 
more quickly. 

From Table 2, it is seen that the value of PTMD 
is maintained at around 3.0 s when the speed changes 
from 30 to 60 km/h. Considering that the human reac-
tion time thum is 0.7–1.5 s (Chang et al. 2010), there is 
sufficient time for the driver to take an action such as 
steering to avoid the collision. Fig. 5 shows the change 

in the PMD with velocity; it is seen from this that the 
PMD increases with the velocity. 

Road curvature is another important factor that 
influences the PMD and PTMD. From Table 3, it is 
seen that the value of the PMD varies with the radius 
of curvature R, i.e. it is inversely proportional to R. This 
is because an increase in R, assuming that other con-
ditions such as velocity and yaw rate remain the same, 
corresponds to an increase in both the PTMD and Tpred. 

Table 2. PTMD at various speeds

vh [km/h]
vo [km/h] 30 40 50 60

30 3.1 3.0 3.5 3.3
40 3.0 3.4 3.1 3.2
50 3.4 3.1 3.1 3.3
60 3.1 3.1 3.3 3.6

Table 3. PMD, PTMD, and Tpred at different curvature radii

R [m] PMD [s] Tpred [s] PTMD [s]

100 5.0159 9 3.3

110 4.3986 9 3.3

120 3.9278 9 3.4

130 3.5387 9 3.4

140 3.2096 9 3.5

150 3.0471 9 3.6

160 2.8543 9 3.6

170 2.5920 9 3.7

180 2.4483 9 3.8

190 2.4494 9 3.9

200 2.2705 10 2.9

210 2.1016 10 3

Figs 6–8 show the relative distances of the vehicles, 
the velocity of the host vehicle along the x- and y-axes, 
and the trajectories of the host and oncoming vehicles, 
respectively. We will analyse the effect of communica-
tion (e.g. DSRC) on cooperative collision avoidance. The 
trajectories of the host and oncoming vehicles are shown 
in Fig.  6. In this group of pictures, we define Ppred as 
the position at which the future potential danger is de-
tected and Pact as the position at which the action (e.g. 
steering) to change the driving state comes into effect. 
To demonstrate the influence of communication, we as-
sume here that the oncoming vehicle drives at the ideal 
trajectory from Fig. 2. The ideal trajectory of the host 
vehicle is drawn as a purple line. Actually, at position 
Ppred the real trajectory of the host vehicle is offset from 
the ideal trajectory. A vehicle equipped with a DSRC de-
vice enters a changed driving state, as the DSRC is used 
to forecast potential danger, resulting in a moderating 
action that tends to steer the trajectory towards the ideal 
trajectory.

Fig. 4. Change in time Tpred with speed (vo represents the 
speed of the oncoming vehicle; vh represents the speed of the 

host vehicle)

Fig. 5. Change in PMD with speed (vo represents the speed 
of the oncoming vehicle; vh represents the speed  

of the host vehicle)
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Fig. 6 Trajectories of the host and oncoming vehicles:  
a – vhost = 30 km/h; b – vhost = 40 km/h;  
c – vhost = 50 km/h; d – vhost = 60 km/h

Fig. 7. Change in relative distance between the host and  
the oncoming vehicle over time: a – vhost = 30 km/h;  

b – vhost = 40 km/h; c – vhost = 50 km/h; d – vhost = 60 km/h
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In the experiments, we set a threshold to detect col-
lision: namely, the safe relative distance, which is calcu-

lated as 
40

0.94
200
h

safe
v

d
−

= + , where vh is the velocity of 

the host [ km/h]. From Fig. 6 it is seen that a vehicle with 
DSRC can identify a potential danger at the time Tpred 
and then take action to avoid it (e.g. steering). Consider-
ing the reaction time of the driver and the response time 
of the vehicle, the state of the vehicle changes at time 
Tact. However, the time PTMD is still enough to miti-
gate the danger because the value of the PMD is above 
the safe relative distance curve, as can be seen from the 
partial enlarged view of each picture in Fig. 6. 

The time needed to pull the vehicle to the ideal 
trajectory is seen in Fig. 7. This time, which is the time 
from Tact to the time when the red line splits from the 
blue line, is about 1.5 s. Thus, when the driver sees the 
danger, a moderate alteration will not be effective, result-
ing in the adoption of hard actions such as emergency 
steering, which is dangerous, especially on a curved 
road.

The change in velocity of the host vehicle with time 
is shown in Fig. 8. At time Tact, the velocities along both 
axes of the vehicle equipped with DSRC are modified 
from the previous curve for that the vehicle comes to 
change its trajectory to the ideal one to avoid the col-
lision. In terms of the coordinate system used in this 
paper, an increase of velocity along the y-axis means that 
the host vehicle is moving towards the oncoming vehicle 
while the velocity along the x-axis decreases to maintain 
a constant total velocity. To avoid a detected potential 
collision, it is necessary to pull the trajectory towards 
the ideal. Therefore, a strategy of allowing the vehicle to 
move in the tangential direction will keep the velocity 
along both axes constant for a while. With an increase in 
speed, the car moves more quickly towards the ideal tra-
jectory, as seen in Fig. 7. However, if the vehicle crosses 
the ideal trajectory, other dangers, such as collision with 
the road boundary, will occur; in this case, the velocity 
along the y-axis will increase and the velocity along the 
x-axis will decrease (Fig. 8b–d) to allow the trajectory of 
the host to approach the ideal trajectory.

Conclusions

On winding roads, it is difficult for a driver to observe 
oncoming vehicles, and the sensors installed in a vehi-
cle cannot detect potential dangers if they are hidden 
by obstructions. Wireless communication technologies 
have made vehicle-to-vehicle communication possible. 
Thus, active vehicle safety systems need not rely only 
on on-board sensors but also on communication with 
other vehicles via DSRC. This paper analysed collision 
detection on a curved road using a cooperative vehicle 
motion model, which considers the curvature of the 
road and the dynamic states of vehicles. Based on the 
model, we derive the future trajectories of the host and 
oncoming vehicles in a discrete time series, and present 
the cooperative collision avoidance algorithm. In several 
experiments, we analysed the effects of velocity and road 

Fig. 8. Change in the velocity of the host vehicle in  
both axes over time: a – vhost = 30 km/h; b – vhost = 40 km/h; 

c – vhost = 50 km/h; d – vhost = 60 km/h
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curvature on the PMD and PTMD. The results showed 
that the DSRC technology could help to warn a driver 
to avoid collisions earlier. In future work, we will take 
more parameters (e.g. GPS error, driver’s behaviour, etc.) 
into account, and analyse the performance based on the 
CTRA model.
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