Published Apr 12, 2017
Gorkem Gulhan Huseyin Ceylan Halim Ceylan


Transit planning scenarios may lead to the different Objective Function (OF) values since each scenario has different transit travel times, frequencies and fleet sizes. Change on those variables leads to the different accessibility values for each route set. Therefore, the actual performance of a route set may be unforeseen since the accessibility values are out of evaluation criteria. This study tries to generate techniques, which handle the relation between accessibility and transportation in the scope of public transit. The accessibility measures, which have direct relation with land use and transportation, are utilized in transit route set decision. Accessibility measures have been utilized in the decision-making process of transit network design. Conventional OFs, which are used to determine the most effective route sets are combined with accessibility based OFs and the decision-making process of transit network design is strengthened. In this context, the effects of accessibility measures in decision-making process of transit network design have been represented on an 8-node example transit network. The results showed the accessibility measures could effectively improve the planners’ decision accuracy.


Download data is not yet available.



transit network design, potential accessibility, utility-based accessibility, spatial interaction, transit assignment, multi-criteria decision-making

Axhausen, K. W.; Smith, R. L. 1984. Evaluation of heuristic transit network optimization algorithms, Transportation Research Record 976: 7–20.

Ben-Akiva, M.; Lerman, S. R. 1979. Disaggregate travel and mobility choice models and measures of accessibility, in
D. A. Hensher, P. R. Sopher (Eds.). Behavioural Travel Modelling, 654–679.

Benenson, I.; Martens, K.; Rofé, Y.; Kwartler, A. 2010. Public transport versus private car GIS-based estimation of accessibility applied to the Tel Aviv metropolitan area, The Annals of Regional Science 47(3): 499–515. https://doi.org/10.1007/s00168-010-0392-6

Bhat, C.; Handy, S.; Kockelman, K.; Mahmassani, H.; Chen, Q.; Weston, L. 2000. Accessibility Measures: Formulation Considerations and Current Applications. Research Report 4938-2. Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, US. 29 p. Available from Internet: https://ctr.utexas.edu/wp-content/uploads/pubs/4938_2.pdf

Bielli, M.; Caramia, M.; Carotenuto, P. 2002. Genetic algorithms in bus network optimization, Transportation Research Part C: Emerging Technologies 10(1): 19–34. https://doi.org/10.1016/S0968-090X(00)00048-6

Burns, L. D. 1979. Transportation, Temporal, and Spatial Components of Accessibility. Lexington Books. 152 p.

Cancella, H.; Mauttone, A.; Urquhart, E. M. 2015. Mathematical programming formulations for transit network design, Transportation Research Part B: Methodological 77: 17–37. https://doi.org/10.1016/j.trb.2015.03.006

Ceder, A. 2007. Public Transit Planning and Operation: Theory, Modeling and Practice. CRC Press. 644 p.

Ceder, A. 2002. Urban transit scheduling: framework, review and examples, Journal of Urban Planning and Development 128(4): 225–244. https://doi.org/10.1061/(ASCE)0733-9488(2002)128:4(225)

Ceder, A. 2001. Operational objective functions in designing public transport routes, Journal of Advanced Transportation 35(2): 125–144. https://doi.org/10.1002/atr.5670350205

Chien, S.; Schonfeld, P. 1998. Joint optimization of a rail transit line and its feeder bus system, Journal of Advanced Transportation 32(3): 253–284. https://doi.org/10.1002/atr.5670320302

Chien, S.; Yang, Z. 2000. Optimal feeder bus routes on irregular street networks, Journal of Advanced Transportation 34(2): 213–248. https://doi.org/10.1002/atr.5670340204

Chien, S.; Yang, Z.; Hou, E. 2001. Genetic Algorithm Approach for Transit Route Planning and Design, Journal of Transportation Engineering 127(3): 200–207. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:3(200)

Coello Coello, C. A.; Lamont, G. B.; Van Veldhuizen, D. A. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer. 800 p. https://doi.org/10.1007/978-0-387-36797-2

Costa, Á.; Markellos, R. N. 1997. Evaluating public transport efficiency with neural network models, Transportation Research Part C: Emerging Technologies 5(5): 301–312. https://doi.org/10.1016/S0968-090X(97)00017-X

Curtis, C. 2011. Integrating land use with public transport: the use of a discursive accessibility tool to inform metropolitan spatial planning in Perth, Transport Reviews 31(2): 179–197. https://doi.org/10.1080/01441647.2010.525330

Dalvi, M. Q.; Martin, K. M. 1976. The measurement of accessibility: some preliminary results, Transportation 5(1): 17–42. https://doi.org/10.1007/BF00165245

Desaulniers, G.; Hickman, M. D. 2007. Public transit, Handbooks in Operations Research and Management Science 14: 69–127. https://doi.org/10.1016/S0927-0507(06)14002-5

Geurs, K. T.; Ritsema van Eck, J. R. 2001. Accessibility Measures: Review and Applications. Evaluation of Accessibility Impacts of Land-Use Transportation Scenarios, and Related Social and Economic Impact. RIVM Report 408505 006. National Institute of Public Health and the Environment. Bilthoven. The Netherlands. 265 p.

Geurs, K. T.; Van Wee, B. 2004. Accessibility evaluation of land-use and transport strategies: review and research directions, Journal of Transport Geography 12(2): 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005

Gulhan, G.; Ceylan, Hu.; Baskan, O.; Ceylan, Ha. 2014. Using potential accessibility measure for urban public transportation planning: a case study of Denizli, Turkey, Promet – Traffic&Transportation 26(2): 129–137. https://doi.org/10.7307/ptt.v26i2.1238

Gulhan, G.; Ceylan, Hu.; Özuysal, M.; Ceylan, Ha. 2013. Impact of utility-based accessibility measures on urban public transportation planning: a case study of Denizli, Turkey, Cities 32: 102–112. https://doi.org/10.1016/j.cities.2013.04.001

Hansen, W. G. 1959. How accessibility shapes land use, Journal of the American Institute of Planners 25(2): 73–76. https://doi.org/10.1080/01944365908978307

Hobeika, A. G.; Chu, C. 1979. Equilibration of supply and demand in designing bus routes for small urban areas, Transportation Research Record 730: 7–13.

Ibarra-Rojas, O. J.; Delgado, F.; Giesen, R.; Muñoz, J. C. 2015. Planning, operation, and control of bus transport systems: a literature review, Transportation Research Part B: Methodological 77: 38–75. https://doi.org/10.1016/j.trb.2015.03.002

Israeli, Y.; Ceder, A. 1995. Transit route design using scheduling and multiobjective programming techniques, Lecture Notes in Economics and Mathematical Systems 430: 56–75. https://doi.org/10.1007/978-3-642-57762-8_5

Kuah, G. K.; Perl, J. 1989. The feeder-bus network-design problem, Journal of the Operational Research Society 40(8): 751–767. https://doi.org/10.1057/palgrave.jors.0400806

Kuah, G. K.; Perl, J. 1988. Optimization of feeder bus routes and bus‐stop spacing, Journal of Transportation Engineering 114(3): 341–354. https://doi.org/10.1061/(ASCE)0733-947X(1988)114:3(341)

Lei, T. L.; Church, R. L. 2010. Mapping transit‐based access: integrating GIS, routes and schedules, International Journal of Geographical Information Science 24(2): 283–304. https://doi.org/10.1080/13658810902835404

List, G. F. 1990. Toward optimal sketch-level transit service plans, Transportation Research Part B: Methodological 24(5): 325–344. https://doi.org/10.1016/0191-2615(90)90007-L

Marwah, B. R.; Umrigar, F. S.; Patnaik, S. B. 1984. optimal design of bus routes and frequencies for Ahmedabad, Transportation Research Record 994: 41–47.

Mavoa, S.; Witten, K.; McCreanor, T.; O’Sullivan, D. 2012. GIS based destination accessibility via public transit and walking in Auckland, New Zealand, Journal of Transport Geography 20(1): 15–22. https://doi.org/10.1016/j.jtrangeo.2011.10.001

Pattnaik, S. B.; Mohan, S.; Tom, V. M. 1998. Urban bus transit route network design using genetic algorithm, Journal of Transportation Engineering 124(4): 368–375. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(368)

Pitot, M.; Yigitcanlar, T.; Sipe, N.; Evans, R. 2006. Land use & public transport accessibility index (LUPTAI) tool – the development and pilot application of LUPTAI for the Gold Coast, in 29th Australasian Transport Research Forum, 27–29 September 2006, Gold Coast, Queensland, Australia, 1–18. Available from Internet: http://atrf.info/papers/2006/2006_Pitot_Yigitcanlar_Sipe_Evans.pdf

Ramirez, A.; Seneviratne, P. 1996. Transit route design applications using geographic information systems, Transportation Research Record: Journal of the Transportation Research Board 1557: 10–14. https://doi.org/10.3141/1557-02

Tom, V. M.; Mohan, S. 2003. Transit route network design using frequency coded genetic algorithm, Journal of Transportation Engineering 129(2): 186–195. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(186)

Van Nes, R.; Hamerslag, R.; Immers, B. H. 1988. Design of public transport networks, Transportation Research Record 1202: 74–83.

Wirasinghe, S. C. 1980. Nearly optimal parameters for a rail/feeder-bus system on a rectangular grid, Transportation Research Part A: General 14(1): 33–40. https://doi.org/10.1016/0191-2607(80)90092-8

Wirasinghe, S. C.; Hurdle, V. F.; Newell, C. F. 1977. Optimal parameters for a coordinated rail and bus transit system, Transportation Science 11(4): 359–374. https://doi.org/10.1287/trsc.11.4.359

Yan, S.; Chen, H.-L. 2002. A scheduling model and a solution algorithm for inter-city bus carriers, Transportation Research Part A: Policy and Practice 36(9): 805–825. https://doi.org/10.1016/S0965-8564(01)00041-6

Yin, Y.; Miller, M.; Ceder, A. 2005. Framework for deployment planning of bus rapid transit systems, Transportation Research Record: Journal of the Transportation Research Board 1903: 11–19. https://doi.org/10.3141/1903-02