Share:


Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes

    Andrzej Chudzikiewicz Affiliation
    ; Roman Bogacz Affiliation
    ; Mariusz Kostrzewski Affiliation
    ; Robert Konowrocki Affiliation

Abstract

The aim of this paper is to demonstrate the possibilities of estimating the track condition using axle-boxes and car-bodies motions described by acceleration signals. In the paper, the results presented indicate the condition of tracks obtained from the preliminary investigation on the test track. Furthermore, the results from the supervised runs (on Polish Railway Lines) of Electric Multiple Unit (EMU-ED74) with the prototype of track quality monitoring system installed on-board are described. As Track Quality Indicator (TQI) algorithm, used in the mentioned prototype, a modified Karhunen–Loève transformation is used in preliminary preparation of acceleration signals. The transformation is used to extract the principal dynamics from measurement data. Obtained results are compared to other methods of evaluating the geometrical track quality, namely methods, which apply the synthetic coefficient Jsynth and five parameters of defectiveness W5. The results from the investigation showed that track condition estimation is possible with acceptable accuracy for in-service use and for defining cost-effective maintenance strategies.

Keyword : railway track monitoring, wheel/rail interaction, track quality indicator, acceleration signals, experimental investigation, track degradation

How to Cite
Chudzikiewicz, A., Bogacz, R., Kostrzewski, M., & Konowrocki, R. (2018). Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes. Transport, 33(2), 555–566. https://doi.org/10.3846/16484142.2017.1342101
Published
Feb 22, 2018
Abstract Views
86
PDF Downloads
62
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Allotta, B.; D’Adamio, P.; Marini, L.; Meli, E.; Pugi, L.; Rindi, A. 2015. A new strategy for dynamic weighing in motion of railway vehicles, IEEE Transactions on Intelligent Transportation Systems 16(6): 3520–3533. https://doi.org/10.1109/TITS.2015.2477104

Bogacz, R.; Czyczuła, W.; Konowrocki, R. 2014. Influence of sleepers shape and configuration on track–train dynamics, Shock and Vibration 2014: 1–7. https://doi.org/10.1155/2014/393867

Bogacz, R.; Grzyb, A.; Tokaj, P. 2011. Monitorowanie stanu pojazdu i toru na podstawie pomiaru przyspieszeń na korpusach łożysk zestawu kołowego, Czasopismo Techniczne 4(2-M): 11–23 (in Polish).

Bogacz, R.; Konowrocki, R. 2012. On new effects of wheel–rail interaction, Archive of Applied Mechanics 82(10): 1313–1323. https://doi.org/10.1007/s00419-012-0677-6

BRSSOS Ltd. 2015. Track Monitoring. BRSSOS Ltd., UK. Available from Internet: http://www.brssos.co.uk/track-monitoring.html

D’Adamio, P.; Marini, L.; Meli, E.; Pugi, L.; Rindi, A. 2016. Development of a dynamical weigh in motion system for railway applications, Meccanica 51(10): 2509–2533. https://doi.org/10.1007/s11012-016-0378-2

DGSI. 2016. Track Monitoring System. DGSI, Mukilteo, WA, US. Available from Internet: http://www.slopeindicator.com/instruments/tilt-trackmonitor.php

Glösmann, P.; Kreuzer, E. 2006. Track–monitoring of wheel–rail–systems, PAMM: Proceedings in Applied Mathematics and Mechanics 6(1): 303–304. https://doi.org/10.1002/pamm.200610133

Grzyb, A. 1986. Analytical method of a rail vehicle smooth running estimation, Rail Vehicles: Selected Problems 41: 31–44.

Huang, W.; Zhang, W.; Du, Y.; Sun, B.; Ma, H.; Li, F. 2013. Detection of rail corrugation based on fiber laser accelerometers, Measurement Science and Technology 24(9). https://doi.org/10.1088/0957-0233/24/9/094014

Kobayashi, M.; Naganuma, Y.; Nakagawa, M.; Okumura, T. 2008. Digital inertial algorithm for recording track geometry on commercial shinkansen trains, WIT Transactions on The Built Environment 103: 683–692. https://doi.org/10.2495/CR080661

Kojima, T.; Tsunashima, H.; Matsumoto, A. 2006. Fault detection of railway track by multi-resolution analysis, WIT Transactions on The Built Environment 88: 955–964. https://doi.org/10.2495/CR060931

Konop, J.; Konowrocki, R. 2013. On evaluation of the wheelsets-track interaction quality in railway engineering, Machine Dynamics Research 37(4): 61–70.

Kostrzewski, M.; Konowrocki, R. 2014. Ocena stanu wybranych odcinków toru testowego z wykorzystaniem wskaźnika jakości toru, Pojazdy Szynowe 2: 1–17 (in Polish).

Lee, J. S.; Choi, S.; Kim, S.-S.; Park, S.; Kim, Y. G. 2012. A mixed filtering approach for track condition monitoring using accelerometers on the axle box and bogie, IEEE Transactions on Instrumentation and Measurement 61(3): 749–758. https://doi.org/10.1109/TIM.2011.2170377

Madejski, J. 2004. Autonomous track geometry diagnostics system, Journal of Materials Processing Technology 157–158: 194–202. https://doi.org/10.1016/j.jmatprotec.2004.09.029

Madejski, J.; Grabczyk, J. 2002. Continuous geometry measurement for diagnostics of tracks and switches, in Proceedings of the International Conference on Switches: Switch to Delft 2002, 19–22 March 2002, Delft, Netherlands, 20 p.

Meli, E.; Pugi, L. 2013. Preliminary development, simulation and validation of a weigh in motion system for railway vehicles, Meccanica 48(10): 2541–2565. https://doi.org/10.1007/s11012-013-9769-9

Melnik, R.; Kostrzewski, M. 2012. Rail vehicle’s suspension monitoring system – analysis of results obtained in tests of the prototype, Key Engineering Materials 518: 281–288. https://doi.org/10.4028/www.scientific.net/KEM.518.281

Metrom Rail. 2016. SenTrack™ Track Monitoring System. Metrom Rail Corporate, IL, US. 4 p. Available from Internet: http://metrom-rail.com/filebin/images/products/pdf/SenTrack_Track_Monitoring_System.pdf

Molodova, M.; Li, Z.; Dollevoet, R. 2011. Axle box acceleration: measurement and simulation for detection of short track defects, Wear 271(1–2): 349–356. https://doi.org/10.1016/j.wear.2010.10.003

Molodova, M.; Li, Z.; Núñez, A.; Dollevoet, R. 2014. Automatic detection of squats in railway infrastructure, IEEE Transactions on Intelligent Transportation Systems 15(5): 1980–1990. https://doi.org/10.1109/TITS.2014.2307955

Montandon, J.; Mager, G. 1984. Les contrôles non destructifs appliqués aux organes du matériel roulant de la S.N.C.F., Revue Générale des Chemins de Fer 103: 69–76.

Mori, H.; Tsunashima, H.; Kojima T.; Matsumoto, A.; Mizuma, T. 2010. Condition monitoring of railway track using in-service vehicle, Journal of Mechanical Systems for Transportation and Logistics 3(1): 154–165. https://doi.org/10.1299/jmtl.3.154

Naderi, H.; Mirabadi, A. 2006. Railway track condition monitoring using FBG and FPI fiber optic sensors, in The Institution of Engineering and Technology International Conference on Railway Condition Monitoring, 2006, 29–30 November 2006, Birmingham, UK, 198–203.

Naganuma, Y.; Kobayashi, M.; Nakagawa, M.; Okumura, T. 2008. Condition monitoring of Shinkansen tracks using commercial trains, in 4th IET International Conference on Railway Condition Monitoring (RCM 2008), 18–20 June 2008, Derby, UK. https://doi.org/10.1049/ic:20080321

Naganuma, Y.; Sato, Y. 1999. Practical use of TRASC on track state confirming cars, in WCRR’99: World Congress on Railway Research, 19–23 October 1999, Tokyo, Japan.

Oukhellou, L.; Aknin, P.; Perrin, J.-P. 1999. Dedicated sensor and classifier of rail head defects, Control Engineering Practice 7(1): 57–61. https://doi.org/10.1016/S0967-0661(98)00163-4

RST Instruments. 2014. Track Monitoring System. RST Instruments Ltd., Maple Ridge, BC, Canada 1 p. Available from Internet: http://www.rstinstruments.com/Brochures/Track-Monitoring-System-ICB0036F.pdf

Sato, Y.; Miwa, M., 2000. Measurement and analysis of track irregularity on super-high speed train – TRIPS, International Journal of Heavy Vehicle Systems 7(1): 22–33. https://doi.org/10.1504/IJHVS.2000.004449

Stenström, C.; Parida, A.; Lundberg, J.; Kumar, U. 2015. Development of an integrity index for benchmarking and monitoring rail infrastructure: application of composite indicators, International Journal of Rail Transportation 3(2): 61–80. https://doi.org/10.1080/23248378.2015.1015220

T&T Sistemi srl. 2009. Railway Track Quality System. T&T Sistemi srl, Italy. Available from Internet: http://tetsistemi.com

Tsunashima, H.; Naganuma, Y.; Matsumoto, A.; Mizuma, T.; Mori, H. 2012. Condition monitoring of railway track using in-service vehicle, in X. Perpinya (Ed.), Reliability and Safety in Railway, 333–356.

Tsunashima, H.; Naganuma, Y.; Matsumoto, A.; Mizuma, T.; Mori, H. 2011. Japanese railway condition monitoring of tracks using in-service vehicle, in 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing (RCM 2011), 29–30 November 2011, Derby, UK, 1–6. https://doi.org/10.1049/cp.2011.0587

Weston, P. F.; Ling, C. S.; Goodman, C. J.; Roberts, C.; Li, P.; Goodall, R. M. 2007. Monitoring lateral track irregularity from in-service railway vehicles, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 221(1): 89–100. https://doi.org/10.1243/0954409JRRT64

Weston, P.; Roberts, C.; Yeo, G.; Stewart, E. 2015. Perspectives on railway track geometry condition monitoring from in-service railway vehicles, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility 53(7): 1063–1091. https://doi.org/10.1080/00423114.2015.1034730

Yu, K.; Lai, C.-C.; Wu, C.; Zhao, Y.; Lu C.; Tam, H.-Y. 2014. A high-frequency accelerometer based on distributed bragg reflector fiber laser, IEEE Photonics Technology Letters 26(14): 1418–1421. https://doi.org/10.1109/LPT.2014.2326558

Zhai, W.; Liu, P.; Lin, J.; Wang, K., 2015. Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h, International Journal of Rail Transportation 3(1): 1–16. https://doi.org/10.1080/23248378.2014.992819

Send mail to Author


Send Cancel