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1. Introduction

Composite materials are widely used in aviation and 
space equipment; motor, railway and water transport; 
and other types of machinery because of the number 
of advantages in composite materials. They have rather 
high physical-mechanical characteristics, are resistant to 
the influences of corrosive environments, temperature, 
etc. The creation and use of composite materials has led 
to a wide range of research connected with their destruc-
tion, control, and diagnostic methods.

For research into the destruction of composite 
materials, we use the conception in which the material 
is presented as a fibre bundle model (FBM) (Coleman 
1958; Moreno et al. 1999; Kun et al. 2007; Kun, Her-
rmann 2000; Newman, Phoenix 2001). In such a mod-
el, it is supposed that the loss of the bearing capacity of 
composite material appears to be a consequence of the 
destruction of its fibres. And the destruction of compos-
ite material is considered to be the process of the consec-
utive destruction of its fibres or elements. Such assump-
tions are valid in the following cases. First, the matrix is 
flexible and less durable than the filler (fibre). Then the 
destruction of the matrix does not cause loss of bearing 
capacity of composite material; the filler stands the load. 
Second, the matrix is more durable than the filler. Then 
in case of elastic deformation, destruction starts from the 
fracture of the filler (formation of micro-cracks). Grad-
ual accumulation of fractures (micro-cracks) causes de-
struction of the composite material. That is why we do 
not examine the influence of the characteristics of the 
matrix or the surface of matrix-filler section in the pro-
cess of composite destruction.

Most theoretical and experimental research is de-
voted to the destruction of composite material under 
the conditions of uniaxial tension (Turcotte et al. 2003; 
Shcherbakov 2002; Guarino et al. 1998; Guarino, Gar-
cimartin 1999; Johanson, Sornette 2000). Research al-
lowed analytic expressions to be obtained for the number 
of fibres that remain in the evolution of the destruction 
of the composite material. We have also analysed the 
acoustic radiation that is built in the form of acoustic 
emissions (AE) accumulating energy speed changes. 
The correlations that are obtained characterise the pro-
cesses of destruction and acoustic radiation only in the 
approach to the full destruction of the material. At the 
moment of the destruction of the composite material, all 
research functions rupture. Such ambiguity does not al-
low a mathematic expression to be obtained for the de-
scription of the AE signal formed.

In articles articles (Filonenko et al. 2009a, 2010) 
models of AE signals by thermo-activated and predomi-
nantly mechanical destruction of composite material by 
a stretching load were developed. Models are formed 
on the FBM conception and the kinetics of the destruc-

tion process. The kinetic approach was also used in 
works (Babak et al. 2005, 2006; Filonenko et al. 2008). 
The models that were developed (Filonenko et al. 2009a, 
2010) allow changes in the regularities of acoustic radia-
tion characteristics under the influence of different fac-
tors (Filonenko et al. 2009b, 2011; Filonenko 2011) to be 
investigated, conforming to the results of experimental 
research.

At the same time, one more interesting point is 
analysis of the destruction of composite material by 
shear load. Such loads appear in products that work in 
conditions of cyclic and dynamic load, for example, fric-
tion units. Models for the research of processes of com-
posite material destruction under the influence of shear 
loads are examined in (Raischel et al. 2005, 2008; Kun 
et al. 2006, 2007, 2000; Herrmann et al. 2009; Pradhan, 
Chakrabarti 2006; Kun, Nagy 2008; Kovács et al. 2008; 
Reiweger et al. 2009). The models are formed under defi-
nite initial conditions. So, in works (Raischel et al. 2005, 
2008; Kun et al. 2006, 2007; Herrmann et al. 2009) it is 
supposed that fibres have similar sizes and are evenly 
distributed throughout the composite. By the apposition 
of shear to the composite material load, the fibres are de-
formed elastically and the distance between the planes of 
the attachment of the fibres does not change. It is con-
sidered that by such a load on the composite material, 
deformation and stress are equal on all fibres. Suppos-
ing that distribution of the threshold levels of bending 
and stretching deformation are independent, the authors 
of the aforementioned works obtained an expression for 
change in general stress on fibres in the process of their 
fracture in the following form 

 
= 

ε − ε − ε2 1[1 ( ( ))][1 ( ( ))]P q P f , (1)

where ε – deformation; , – density of 
probabilities of threshold levels under stretching and 
bending, respectively; ε2( ( ))P q , ε1( ( ))P f – functions of 
distribution; f ( ε ) and q ( ε ) – functions of fibre failure.

Expression (1) was got supposing that there are two 
independent ways of destruction or the ‘or rule’. The ‘or 
rule’ assumes that destruction of the fibre under the in-
fluence of share load takes place when its deformation 
of stretching or bending reaches the definite level ε1  or 
ε2 , that is the conditions of the following form are im-
plemented:

 

ε
≥

ε1

( )
1

f
, (2)

or

 

ε
≥

ε2

( )
1

q
.
 

(3)
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Let us write the functions for the failure of fibres in 
the following form:

f ( ε ) = ε ,  q ( ε ) = , (4)

where g is a coefficient that depends on the geometrical 
sizes of the fibre and modulus of elasticity E = 1.

For independent even distribution of threshold lev-
els ε1  and ε2  in the range of values ( ε1min ,  ε1max ) and 
( ε2min , ε2max ), according to (Raischel et al. 2005), ex-
pression (1) will have the following form:

( )( )
( )( )

ε − ε ε − ε
σ = ε

ε − ε ε − ε

( ) ( )1max 2max

1max 1min 2max 2min

f q
. (5)

According to the accepted model, if the initial num-
ber of fibres is 0N , then the quantity of fibres iN  that 
remains in the process of composite destruction can be 
described with the help of the following expression:

ε ε

ε ε
= ε ε ε ε∫ ∫

2max 1max
2 1 1 2

0 ( ) ( )
( , )i

q f

N
d d p

N
, (6)

so that it is defined by comparison of deformation with 
its boundary values f ( ε ) ≤ ε1 ≤ ε1max  and q ( ε ) ≤
ε2 ≤ ε2max .

In case of the independent fracture of fibres in the 
range of deformation on the intersection of the bounds 
[ ε1min ,  ε1max ] and [ ε2min , ε2max ], expression (6) will 
have the following form:

2max1max

0 1max 1min 2max 2min

( )( )i qfN
N

ε − εε − ε
=
ε − ε ε − ε

. (7)

Expressions (5) and (7) allow making calculations 
of stress and number of undestroyed fibres under the 
conditions of composite material deformation, when two 
processes of fibre destruction take place due to stretch-
ing and bending.

Obviously, destruction of fibres will be accompa-
nied by acoustic radiation. AE amplitude can be cal-
culated with the help of expression (7). Such a model 
will be elementary. It will allow the process of the for-
mation of acoustic radiation to be estimated effective-
ly and precisely, and then it can be compared with the 
process of the destruction of composite material fibres. 
We can also examine other cases of fibre destruction, 
for example, according to the rule of Mises or when 
threshold levels of destruction are described by Poisson 
distribution (Raischel et al. 2005, 2008; Kun et al. 2006, 
2007; Herrmann et al. 2009). We will confine ourselves 
to the examination of the model of acoustic radiation 
for a more specific case of the ‘or rule’, when distribu-
tion of threshold levels of destruction are independent 
and even with borders (0, 1). Thus, we shall take into 
consideration the kinetics of the evolution of composite 
destruction.

2. Results of research

While examining the composite material destruction 
let’s take into account all the conditions considered in 
works (Raischel et al. 2005, 2008; Kun et al. 2006, 2007; 
Herrmann et al. 2009). Let us suppose that a model of 
composite consists of 0N  fibres (components) of equal 
size, which are evenly distributed over its volume. We 
will consider that the matrix does not influence the pro-
cess of the composite bearing capacity loss. Let us sup-
pose that by application of shear load to the elements, 
they deform elastically. The distance between the planes 
of element fastening does not change. Providing there 
is such a composite material load, a bending moment 
and a stretching effect appear on its elements. We will 
consider that destruction of the elements in the model 
happens in consecutive order. Besides, the external load 
is redistributed evenly on the remaining elements, which 
are exposed to the same growing axial deformation. Let 
us assume that elements destruct when their deforma-
tion reaches a specific threshold level, so that destruc-
tion happens due to bending or stretching.

Let us suppose that deformation of composite ma-
terial happens with constant speed and is described with 
the help of the following expression:

, (8)
where α = const–speed of load.

Obviously, the destruction of composite material 
will be accompanied by the formation of acoustic radia-
tion. Let us take the conditions of formation of acoustic 
radiation as in work (Filonenko et al. 2010). We will as-
sume that destruction of each element of composite ma-
terial forms a single disturbance impulse. This impulse 
is spread over the material in the form of a displacement 
impulse that has no attenuation. The type of disturbance 
impulse is shown in Fig. 1, where 0A – amplitude value 
of single impulse of disturbance; δ – duration of impulse 
of disturbance. Let us consider that the duration of the 
impulse of disturbance δ  is small and much smaller 
than the time of the destruction of the model of com-
posite material. 

Fig. 1. Form of disturbance impulse during the destruction of 
composite material 
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Under such conditions, the resultant displacement 
will be determined by a number of disturbance impulses 
that are formed during some unit of time, and therefore 
it will be proportional to the speed of element destruc-
tion ( )D t . We will define the speed of element destruc-
tion ( )D t  in the following way:

= = −
0 0

( )( )1 1( ) iP dN tdN t
D t

dt dtN N
, (9)

where N0 – initial number of elements; PN – number of 
destroyed elements; iN – number of remaining elements.
In expression (9), we adopted the following sign:

= −0P iN N N .
According to the adopted conditions, destruction 

of each element takes place when there is some bound-
ary value of axial deformation. That is why the ampli-
tude of the disturbance impulse will depend on its size. 
The bigger the boundary value of axial deformation is, 
the bigger the amplitude of disturbance impulse will be, 
so that ε0( ) ~ ( )A t t  or = βε0( ) ( )A t t , where β – coeffi-
cient of proportionality. In general for the disturbance 
impulse, it is possible to write the following expression:

τ = τ0( , ) ( ) ( )A t A t a , (10)

where τ( )a – function that defines the form of the exci-
tation impulse.

Let us consider that function τ( )a  is equal for all 
disturbance impulses and has a single amplitude. Total 
displacement ( )U t , which is formed during time inter-
val ( − δ + δ/ 2,  / 2t t ), will be defined by the following 
integral: δ+

δ−

= τ + τ τ∫ 0
2

2

( ) ( ) ( ) ( )
t

t
U t A t a D t d . (11)

We made the assumption that the duration of distur-
bance δ  is much shorter than the time of the destruc-
tion process of all 0N  elements of the composite mate-
rial. That is why we can neglect changes in values ( )D t  
and 0( )A t  during the time interval ( − δ + δ/ 2,  / 2t t ). 
Then expression (11) can be written in the following way:

. (12)

Let us accept the sign . The numerical 

value  is defined by the form of a single disturbance 
impulse and has dimension of time. Taking into account 
(8), expression (12) can be written in the following way:

= α0( ) ( )U t u tD t , (13)

where 0 Su = βδ – constant value.

It is important to note that the use of a broadband 
sensor to register the AE signal on its output will repeat 
the disturbance impulse, which is described by expres-
sion (13). That is why we will talk about the AE signal.

For the calculation of the AE signal, it is necessary 
to define the speed of element destruction ( )D t . Let us 
examine two cases while making calculations.

The first case is when threshold levels ε1  and 2ε  are 
independent and have even distributions in the range of 
( ε1min , ε1max ) and ( ε2min , ε2max ) values. In this case, 
stress on the elements and the quantity of the remaining 
elements are described with the help of the expressions 
(5) and (7), respectively.

According to the accepted conditions, destruction 
of the elements takes place due to bending and stretch-
ing, and therefore it starts at the same period of time 
when 1mint = 2mint . Parameters min max,i it t  are deter-
mined from an expression in the following form:

ε
=

α
min

min
i

it , ε
=

α
max

max
i

it .

Taking into account (4) (accepted g  = 1) and (8), 
let us rewrite expressions (5) and (7) in the following 
form:

ε − αε −α
σ = α

ε −ε ε − ε

2max1max

1max 1min 2max 2min

tt
t , (14)

ε − αε −α
=
ε −ε ε − ε

2max1max

0 1max 1min 2max 2min

i tN t

N
. (15)

Then, according to (13), the time dependence of the 
AE signal in the process of the destruction of composite 
elements will have the following form:

+ −
= α

− −

1max 2max
0

1max min 2max min

2 31
( )

2 ( )( )

t t t t t t
U t u

t t t t
, (16)

where 1mint = 2mint = mint .
The expression (16) is accomplished from the mo-

ment t= mint  at time interval ( mint , 2mint ) if 2mint <
1mint  or at time interval ( mint , 1mint ) if 1mint < 2mint .

In Fig. 2 the results of modelling regularities in 
stress changes, quantity of (non-destroyed) elements 
that were left, and AE signal according to (14), (15) 
and (16) are given in relative units. In the plots (Fig. 
2), all the parameters of expressions (14), (15) and (16) 
are brought to dimensionless quantities. For curve 1 
(Fig. 2), the parameters that are included in expressions 
(14), (15) and (16) had the following values: α =100, 
ε1min = 5, ε1max = 30, ε2min = 5, ε2max = 20, 1mint = 0.05, 
1maxt = 0.3, 2mint = 0.05, and 2maxt = 0.2. Time was cal-

culated according to (8). For curve 2 (Fig. 2), the range 
of the top boundary values ε1  and ε2  was expanded: 
α = 100, ε1min = 5, ε1max = 40, ε2min = 5, ε2max = 30, 
1mint = 0.05, 1maxt = 0.4, 2mint = 0.05, and 2maxt = 0.3.
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a

b

c

Fig. 2. Dependences of stress changes (a), numbers of 
non-destroyed elements (b), and AE signal (c) in relative 
units in case of destruction of composite material by shear 
load. Deformation speed α =  100. For curve 1: ε1min =  5, 
ε1max = 30, ε2min = 5, ε2max = 20, 1mint = 0.05, 1maxt = 0.3, 
2mint =  0.05, and 2maxt =  0.2. For curve 2: ε1min =  5, 
ε1max = 40, ε2min = 5, ε2max = 30, 1mint = 0.05, 1maxt = 0.4, 
2mint = 0.05, and 2maxt = 0.3

In Fig. 2a, it can be seen that composite material 
destruction is characterised by the appearance of non-
linearity depending on the changes in stress. The chang-
ing dependence of non-destroyed elements continuous-
ly decreases (Fig. 2b). The destruction is accompanied 
by acoustic emission radiation (Fig. 2c). Obviously, 
the definition of the deflection from linearity of σ( )t  
is a difficult task, especially under the conditions of an 
experiment. But the AE signal appears at the moment 
when element destruction starts due to either stretching 
or bending. This means that AE is registered indepen-
dently of how the destruction happens; hence AE is an 
indicator of critical stress on the elements of the com-
posite material.

The results of modelling (Fig. 2) also show that, if 
there is constant increase in the speed of composite load 
and if the upper range of boundary values ε1  and ε2  is 
expanded, there is an increase in maximal stress value, 
time of the destruction process, and maximal amplitude 
of AE signal. This corresponds to the existing concepts 
of destruction mechanics and the accepted assumption 
about the dependence of the amplitude of the distur-
bance impulse on boundary deformation value.

The description of all these processes is simple. 
As research has shown, real AE signals have more dif-
ficult forms. They differ from the signals shown in Fig. 2. 
This is because of the more complicated redistribution 
of stress in composite material and because the kinetics 
of the process of the destruction of composite elements 
were not taken into account when describing the acous-
tic radiation.

Let us analyse the second case of the destruction 
of composite material, when threshold levels ε1  and 
ε2  have an independent, even distribution with bor-
ders (0, 1). We will take the same starting conditions for 
building this model of composite destruction. 

In light of the functions of failures f ( ε ) and q
( ε ), expression (4), expression (5) in article (Raischel 
et al. 2005) is modified give the following expression:

σ ε = ε − ε − ε( ) (1 )(1 )g , (17)

where g–a coefficient that depends on the geometrical 
sizes of the fibre (area of cross-section and length).

Expression (17) describes the dependence of equiv-
alent stress changes on the fibres during the process of 
composite destruction. The continuity of deformation ε  
over time is a condition of existence (17).

Let us assume that the deformation of a sample of 
the composite happens according to (8). Then expres-
sion (17) will be written in the following form:

σ = α −α − α( ) (1 )(1 )t t t g t . (18)

The application of axial deformation allows using 
the general expression for the change in the speed of the 
quantity of the residual fibres over time during the pro-
cess of destruction, which was examined in articles (Tur-
cotte et al. 2003; Shcherbakov 2002). This expression is 
also used in work (Filonenko et al. 2010) in a type of ki-
netic equation of the destruction of composite material.

= −υ σ( )dN N
dt

, (19)

where = −0 ( )ÐN N N t – quantity of the residual ele-
ments; 0N – initial quantity of elements; ( )ÐN t – quan-
tity of destroyed elements; υ σ( ) – speed of the destruc-
tion process, which depends on stress σ( )t .

According to kinetic theory (Malamedov 1970), 
starting from a moment in time 0t  that corresponds 
to the beginning of the destruction, the speed of the 



6 S. Filonenko et al. Destruction of composite material by shear load and formation of acoustic radiation

developing process increases according to exponential 
law, that is

σ −συ = υ 00
[ ( ) ( )]r t te , (20)

where υ0 , r – constants that depend on the physic-
mechanical characteristics of the composite material;
σ( )t – change in stress over time; σ 0( )t – threshold 

stress that corresponds to the start 0t  of destruction.
Expression (20) identifies the avalanche-like char-

acter of the process of the destruction of composite ma-
terial. 

Taking into account (18) and (20), expression (19) 
will have the following form:

α −α − α −α −α − α

= −υ0

0 0 0

x

[ (1 )(1 ) (1 )(1 )]
x

r t t g t t t g t

dN
N

e dt

. 
        

(21)

Before the moment in time t =  0t , the value ( )ÐN t  
is zero, that is 0( )ÐN t  = 0. Accounting for this and hav-
ing done integration (21), we will get an expression for 
the quantity of residual elements over time during the 
evolution of their destruction process. 

α − α − α − α − α − α
−υ ∫

= 0

0 0 0
0

0

[ (1 )(1 ) (1 )(1 )]

x

x

( )
t r t t g t t t g t

e dt
t

N t N

e

. (22)

Solution (12) in symbolic form is impossible. Con-
sequently, hereinafter we will make the analysis of reg-
ularities in the changes in the quantity of residual ele-
ments over time during the evolution of the destruction 
process using numerical solution (22).

Undoubtedly, the process of composite destruction 
will be accompanied by the formation of an AE signal. 
Let us take the same conditions for the formation of the 
AE signal as it is given above. In general the disturbance 
impulse will then be described with the help of expres-
sion (10). Its amplitude 0( )A t  will be determined by de-
struction stress, so that = ϑσ0( ) ( )A t t , where ϑ – coef-
ficient of proportionality. In light of (18), 0( )A t  can be 
written in the following form:

= ϑσ =ϑ α −α − α −

−α −α − α

0

0 0 0

( ) ( ) [ (1 )(1 )

(1 )(1 )]

A t t t t g t

t t g t
. (23)

As earlier, let us consider that function τ( )a  is 
equal for all impulses of disturbance and have a unit am-
plitude.

Total displacement ( )U t  that is formed during the 
time interval ( − δ + δ/ 2,  / 2t t ) will be defined by inte-
gral (12). Having taken the conditions examined above 

and having included the sign 

δ+

δ−

δ = τ τ∫
2

2

( )S

t

t

a d , we receive 

expression (12) with the following form:

= δ 0( ) ( ) ( )SU t D t A t , (24)

where D(t) = dN/dt - speed of the change in residual 
elements over time.

Having made differentiation (22), we get an expres-
sion for the speed of the change in the remained ele-
ments. 

0 0

0 0 0

0 0
0

0

x

[ (1 )(1 ) (1 )(1 )]
x x

[ (1 )(1 ) (1 )(1 )]0 .

x

( )
( )

 

t

t

r t t g t t t g t

r t t g t t t g t
e dt

dN t
D t N

dt

e

e

α −α − α −α −α − α

α − α − α − α − α − α
−υ ∫

= = υ

 
   (25)

In light of (23) and (25), expression (24) will then have 
the following form: 

α − α − α − α − α − α
−υ ∫

α −α − α −α −α − α

= υ α −α − α −

−α −α − α

0 0 0
0

1
20 0

1
20 0 0

0 0 0

0

[ (1 )(1 ) (1 )(1 )]

x

[ (1 )(1 ) (1 )(1 )]
õ x

x

( ) [ (1 )(1 ( ) )

(1 )(1 ( ) )]

 

 

t r t t g t t t g t
e dt

t

r t t g t t t g t

U t U t t g t

t t g t

e

e

 (26)

 .

where = ϑδ0 0 SU N –maximal possible displace-ment 
in case of instantaneous destruction of a pattern of the 
composite material consisting of 0N  elements.

Solution (26) in symbolic form is impossible. 
Hence, hereinafter we, using numerical solution (26), 
will analyse the regularities in the amplitude of AE sig-
nals as they change over time during the evolution of the 
destruction process.

From expressions (22) and (26), it can be seen that, 
if the destruction process is taking place, 

the quantity of the remaining elements and the 
characteristics of the AE signal depend on the quantity of 
initial elements, speed of the load, physical and mechan-
ical characteristics of the composite material, and geo-
metrical sizes of its elements. Let us model σ( )t , ( )N t  
and ( )U t  depending on α  with set values of physical 
and mechanical characteristics of the composite material 
and constant 0N value.

In Fig. 3, dependences of stress changing over time 
are shown, according to (18), in relative units for differ-
ent values of α . By calculation σ( )t  time is normed 
with the deformation time, which has a constant value 
( maxt ). Parameter α  is modified to a dimensionless 
quantity. Its values change from 50 to 150. The value of 
coefficient g  is taken to equal g  = 0.1. An increase in 
α  means an increase in deformation speed.
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Fig. 3. Dependence of stress changing over time, according 
to (18), for different values α : 1 – α1 = 50; 2 – α2 = 100; 3 –
α3 = 150. The value of parameter g is g = 0.1

Fig. 3 demonstrates that the increase in α  leads to 
a rise in the slope and causes changes in stress over time. 
At the same time, calculations show that the maximum 
value of stress remains the same. Depending on the load 
speed, it will take different periods of time to achieve a 
value of one and the same level of stress. For example, 
stress σ0 , which corresponds to the start of the destruc-
tion of the composite material, is reached at different pe-
riods of time (Fig. 3), and therefore for α1 <  α2  <  α3  
condition 01t >  02t  >  03t  is performed.

Let us model ( )N t  and ( )U t  according to (22) 
and (26) under the following conditions. Value α  is 50, 
100 and 150. Threshold stress of destruction (in relative 
units) for all values α  is σ0   =  0.06747508737865396. 
Values of destruction start time for speeds of deformation 
α1 = 50, α2 = 100 and α3 = 150 (Fig. 3) are 0t = 0.0015, 
01t = 0.0015, 02t = 0.00075, and 03t = 0.0005. Let us as-

sume that the value of parameter g  is equal to g = 0.1. 
The values of quantities υ0  and r, included in (22) and 
(26), were chosen due to the following reasons. Param-
eter r is connected with the sensitivity of the material to 
stress and characterises the dispersibility of its strength 
properties. For material with small dispersibility of 
characteristics, r  >>  1. Parameter υ0  characterises the 
strength of the lattice and up to a degree of the value cor-
responds to 1/ τ0 , where τ0 – period of oscillations of the 
atomic lattice, so that υ0  >> 1.

We will assume that the values of the given param-
eters are equal to: υ0 = 1000000 and r= 10000. All the 
parameters included in (22) and (26) will be modified to 
dimensionless quantities by modelling.

The dependences of changes in the quantity of re-
maining elements = 0( ) ( ) /N t N t N  for the accepted 
conditions in relative units are shown in Fig. 4. Depend-
ences ( )N t  persistently decrease. Together with the in-
crease in α~ , we can see a growth in the decrease in re-
ceived dependences, displacement of destruction start 

0t  to lower values, and increase in the duration of the 
destruction process (Fig. 4). The starting time of destruc-
tion decreases in proportion to the increase in composite 
material load speed.

a

b

c

Fig. 4. Dependences of change in the quantity of elements 
remaining over time according to (22), in relative units during 
destruction of composite material by shear load. Values α : a –
α1 = 50, b – α2 = 100, c– α3 = 150. υ0 = 1000000, r = 10000, 
σ0 = 0.06747508737865396, g = 0.1. Start time of destruction: 

a – 01t = 0.0015, b – 02t = 0.00075, c – 03t = 0.0005

Dependences of changes in the amplitude of the AE 
signals for the accepted conditions in the form of graph-
ics =( ) ( ) / oU t U t U  in relative units are shown in Fig. 5. 
From this it can be seen that AE signals have a fast in-
crease in amplitude on the leading edge and relaxed de-
crease in amplitude on the trailing edge.

With the increasing in α , we can observe displace-
ment of the start time of AE signal formation, which cor-
responds to the moment the destruction of the composite 
material 0t  starts. Under such conditions, the amplitude 
of AE signals increases and compression in time takes 
place; AE duration therefore decreases (Fig. 5). Besides, 
an increase in deformation speed leads to the transfor-
mation of the form of the AE signal. Its form gradually 
approaches the signal of a triangle waveform.



8 S. Filonenko et al. Destruction of composite material by shear load and formation of acoustic radiation

a

b

c

Fig. 5. Dependence of change in amplitude of AE signals 
over time according to (26) in relative units during the 
destruction of composite material by shear load. Values α : a –
α1 = 50; b – α2 = 100; c – α3 = 150. υ0 = 1000000, r = 10000, 
σ0 = 0.06747508737865396, g = 0.1. Start time of destruction: 

a– 01t = 0.0015; b – 02t = 0.00075; c – 03t = 0.0005

Regularities of changes in the curves of remain-
ing elements over time and the signals being formed are 
caused by the fact that together with the increase in α , 
in consideration of the kinetic process, the speed of the 
destruction of the elements of composite material rises, 
so that the quantity of elements that are destroyed per 
unit of time increases. This change in the destruction 
process causes a decrease in its time and an increase in 
its intensity. In regards to the destruction process, the 
duration of the AE signals being formed is much shorter 
than the duration of the AE signals that were received for 
a simple model of composite destruction by shear load.

3. Conclusions

We made a very simple description of the formation of 
AE signals during the destruction of composite material 
by shear load. On the qualitative level, it has been shown 
that it is practically impossible to define the beginning 
of the composite destruction process by shear load ac-

cording to the dependence of changes in axial stress 
over time. At the same time, as research has showed, 
AE signals appear directly at the starting point of the 
destruction of composite material. Registration of AE 
signals during composite material load can be used to 
determine the point at which maximum acceptable load 
is reached.

Actual AE signals differ from modelled ones, how-
ever. This happens because in a simple model gradual, 
rather slow destruction of composite material was as-
sumed.

We described acoustic radiation while taking into 
account the more difficult character of the redistribu-
tion of stress during composite destruction by shear 
load. While describing acoustic radiation, we made an 
accounting of the kinetic aspect of the destruction pro-
cess. It is shown that the change in the curve of the re-
maining elements over time continually declines. The 
continuity of the destruction process is accompanied by 
the formation of a continuous AE signal. The AE signal 
is characterised by accelerating increase leading edge of 
the amplitude and gradual fall on the trailing edge. It is 
shown that an increase in the speed of the deformation 
of composite material causes a reduction in the amount 
of time the destruction process takes place because of 
the increasing speed of its development. This process 
of composite material destruction is accompanied by a 
steeper drop in the curves of the remaining elements. A 
change in the characteristics and shape of the AE signal 
takes place. An increase in amplitude, decrease in du-
ration, and transformation of the form of the AE signal 
into a triangle waveform can be observed. All results re-
ceived conform to existing conceptions concerning the 
influence of deformation speed on the process of the de-
struction of materials, including composite materials.

This theoretical research is the basis for creating a 
model of resultant AE signal during dynamic loading of 
products. The model obtained in this article will be veri-
fied in laboratory tests involving the diagnosis of friction 
units.
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