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carried out in idealised conditions. The simulation revealed the dependence of absolute error on the vertical air speed 
component and the aircraft’s aerodynamic parameters.
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1. Introduction

Automatic control systems of aircraft have evolved in the 
21st century. Thanks to this process, active UAV produc-
tion and research of use in various scientific fields has 
started (Chiesa, Corpino et al. 2007).

One of the most important features of UAV flight is 
ultimate flight distance and ultimate flight time. In normal 
aircraft these features depend on the internal power supply 
capacity and aerodynamic characteristics of the aircraft. 
One of the ways to enhance the flight time or distance of 
autonomous aircraft is to use external energy sources.

Research concerning the use of external energy 
sources to provide power for aircraft flight is current-
ly being carried out. This research has already brought 
practical results. Other research (Allen 2005; Langelaan 
2008; Noth et al. 2006.; Woolsey 2005; Boslough 2002) 
also looks into the possibility of using external energy 
sources. 

Autonomous machines that use external energy 
sources give practical results for the research of astro-
nomical objects and oceans; these machines are ex-
tremely helpful for the environment, border security, 
and monitoring tasks. Rising airflow is a viable external 
power source that can be taken advantage of by aircraft.

Research Daniel J. Edwards investigates the use of 
thermals in an autonomous control system. These stud-
ies also have practical results (Edwards 2008). Under 
suitable weather conditions for thermal flow, the experi-
mental autonomous aircraft flew 1.5 hours and travelled 
48 kilometres without using any inner power source (Ed-
wards 2008). Another work (Hazard 2010) investigates a 
method for sensing thermal flow by using Kalman’s filter. 
Other research (Briliuk, Starovoitov 2002; Soldatova, Se-
menov 2006) affirms that it is appropriate to perform the 
identification tasks by using computer systems that can 
work as an artificial neural network system (ANN).

Studies concerning the use of artificial neural net-
work system in aviation are currently being carried out. 
One work (Kharchenko, Alexeiev 2010) researches the 
use of ANN for increasing flight safety.

It is worth noting that artificial neural networks 
certainly act differently than biological neural networks. 
The structure of biological neurons has a more sophisti-
cated mathematical model. The number of elements in 
the network may reach tens of billions. That is eight or 
nine times more than in artificial neural networks. Arti-
ficial neural networks are therefore worth consideration 
only as a polynomial function that is capable of provid-
ing regression and classification tasks (Kallan 2001).

We can hypothesise that the use of parallel comput-
ing systems can efficiently perform identification and 
prediction tasks that can help to find and to use ther-
mal airflows in a more efficient way. For this situation, 
the aircraft’s navigational system can obtain data from 

an artificial neural system in real time. In order to ex-
perimentally prove the above hypothesis, the flight of an 
aircraft has been simulated, using a glider’s principles of 
flight. The simulation is used to determine whether it is 
possible for ANN to find thermal airflows by using the 
aircraft’s measuring equipment to detect the thermal. 

2. Methods

In order to eliminate uncertainty, the flight was simulat-
ed in idealised flight conditions: an aircraft flight simu-
lation with established parameters and without transi-
tional dynamics of flight processes. During this flight, 
the aircraft uses the flight principles of a glider and is 
flying at a constant speed. Complete velocity vector an-
gle from the horizontal line matches the gliding angle 
(Lasauskas 2008). It was also decided that the stabiliser, 
trunk and keel of the aircraft do not affect resistance 
and take-off coefficient values. Such a decision is based 
on simplifying and idealising the aforementioned factors 
that influence flight. 

The mathematical model of aircraft flight consists 
of several components. Aircraft aerodynamic data is 
needed to simulate flight dynamics. The aircraft’s aero-
dynamic parameters are influenced by the geometry and 
aerodynamic profile of the wing and flight speed. On the 
basis of the geometry of the aircraft, flight speed, and 
gas/fluid dynamic parameters of the air, it is possible to 
calculate the aerodynamic parameters of the aircraft (La-
sauskas 2008). 

This data was collected with the use of the QFLR5 
computer program based on XFLR5 (XFLR… 2011). 
The simulation was determined by these aerodynam-
ic parameters of the aircraft: the dependence of the lift 
force coefficient on the coefficient of drag force, the de-
pendence of the lift force coefficient on the wing’s angle 
of attack, and the dependence of the quality factor on the 
angle of attack of the wing (Fig. 1). 

This data was used to calculate the gliding angle and 
the complete speed vector for the specific aircraft model, 
which is influenced by specified air parameters (for ex-
ample, vertical air flow).

Fig. 1. Aircraft data and coordinate system
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During the simulation, the value of angle of attack 
varied from –1 to 5 degrees. Such changes in the angle of 
attack were chosen because the change in angle of attack 
causes a change in flight speed and a change in the Rey-
nold’s number. The value of the Reynold’s number was 
123096 when the angle of attack was –1 degree, 56221 
when the angle of attack was 1 degree, and 47113 when 
angle of attack was 5 degrees.

During the flight simulation at different speeds, 
current error will not affect the performance of the arti-
ficial neural network, because the training of ANN uses 
flight data with the same errors as the simulation experi-
ment. The artificial neural network’s task is to identify 
the value of the rising flow component from the flight 
trajectory function.

By changing elevator position, you can change the 
angle of attack of the aircraft wing. According to the po-
lar obtained by using QFLR5, aerodynamic characteris-
tics were determined depending on the alpha of the an-
gle of attack. 

Gliding angle is determined by this equation:
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where θ  is gliding angle, X is aerodynamic resistance 
force, Y is aerodynamic lift force, K is coefficient of per-
formance, CD is coefficient of resistance force, and CL is 
coefficient of lift force.
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Where G is the weight of the aircraft, S is the area of the 
aircraft aerodynamic planes, and HSV  is the horizon-
tal component of aircraft air speed (Thomas, Miligram 
1999).

The vertical component of aircraft speed, YV , is de-
termined by this equation:
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Aircraft gliding angle and air speed change depend-
ing on the angle of attack. Air speed is composed of ver-
tical and horizontal components. By adding a random 
value to the vertical component of the air speed, you can 
simulate the impact of rising and descending air flows on 
aircraft flight (Lasauskas 2008; Thomas, Miligram 1999).

After dynamic simulation of autonomous aircraft 
flight, artificial neural network initialisation is carried 
out, and that means it is necessary to set the random core 
elements to the pre-designed structure of the artificial 
neural network. The next step is the creation of the in-

put parameters of the artificial neural network. The input 
data set consists of the data from the simulation of the 
flight dynamics: vertical air speed, horizontal air speed, 
aircraft angle of attack, and aircraft flight angle.

The hyperbolic tangent creates non-linear depend-
ence between input and output data of the artificial neu-
ron (Briliuk, Starovoitov 2002). If you replace the hyper-
bolic tangent with any linear function, you will get linear 
prediction model (Soldatova, Semenov 2006).

Every element of the artificial neural network con-
sists of the scalar vector of the input signal multiplied 
by the weight factor (which is argument of activation of 
hyperbolic function).

( ) tanh( )af a A S= , (4)
where ( )f a  is the value of the hyperbolic tangent’s ac-
tivation function and aS  is argument of hyperbolic tan-
gent’s activation function.

There are algorithms that are well suited for single-
layer artificial neural network training: the ‘teacher and 
scholar’ method by F. Rosenblatt, Widrow-Hoff ’s train-
ing method (Briliuk, Starovoitov 2002).

In order to simulate the process, the ‘teacher and 
scholar’ algorithm was chosen, because rising air veloc-
ity and its affect on the dynamics of the flight parameters 
of the aircraft were known in advance. Two training data 
sets were provided: a set that contains training data and 
a set that contains result control data. Training data in-
cludes the aircraft’s speed vector, angle of attack, and oth-
er calculated dynamic parameters of flight. Result con-
trol data includes the aforementioned information plus 
the vertical speed of the thermal flow.

To determine relative error, output data of the ANN 
and vertical thermal flow speed were used. 
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xδ  is relative error of measurement of the thermal flow 
expressed as a percentage, kX  is faulty identification of 
the vertical component of the vector of the thermal flow 
vector, and tX  is correct identification of the vertical 
component of the vector of the thermal flow. Relative 
error was found after iteration of 500 data inputs to the 
ANN. During every iteration the ANN resolved the full 
training cycle. This method was chosen in order to re-
duce the influence of the ANN’s unsuccessful training 
phase on the simulation results.

3. Results of computational experiment

The artificial neural network is free from feedback and 
consists of several layers (Fig. 2).

The input layer does not change input data. The 
hidden layer is for data processing. The output layer con-
sists of one neuron and is intended to extract output data 
into a vector. During simulation of aircraft aerodynamic 
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Fig. 2. Structure of the artificial neural network
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parameters and flight dynamics, the data necessary to 
create input vectors for the ANN was received. This data 
has the form of flight polar (Figs 3–6).

During the test, the neural network was composed 
of 64 neurons in the input layer. The input layer neurons 
have a unit transfer function. If it is needed, the func-
tion of the activation of the input layer neurons can be 
changed if input data scaling is changed. There is only 
one output neuron. Its 64 synapses are connected to the 
input layer neurons. The function of the activation of the 
output neuron is hyperbolic tangent.

The ANN input vector is aircraft full speed, aircraft 
ground speed, aircraft vertical speed, angle of attack, aer-
odynamic quality factor, and gliding angle.

Fig. 3. Dependence of lift coefficient on the coefficient of 
resistance force

Simulation of the artificial neural network was car-
ried out in a coherent framework for calculation. This 
framework is very similar to IBM’s computing machine 
architecture. We simulated the parallel computing sys-
tems in the artificial neural network-based simulation. 
The program algorithm is written in C++ programming 
language using standard mathematical libraries.
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Fig. 4. Dependence of lift force on the angle of attack
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Cl/Cd

22

20

18

16

14

12

10

8

6

4

2

0
Alpha

-4.0 -2.0 0.0 2.0 4.0 6.0 8.0



Aviation,  2011, 15(3): 57–62 61

The artificial neural network produces output of the 
time sequence from –1 to +1. The activation functions 
of the hyperbolic tangents of the artificial neurons cause 
the appearance of these values. If the output data of the 
ANN is positive, that means that the vertical speed of 
the thermal flow is positive, and if the output data of the 
ANN is negative, that mean that thermal flow is negative 
or its value is zero. The closer the value is to zero, the less 
likely the ANN correctly detected the presence of rising 
thermal flow.

The simulation showed that the artificial neural 
network-based identification system could successfully 
detect rising or descending thermal flow. The hyperbolic 
tangent activation function creates ANN output value 
that ranges between –1 to +1. It was decided that the 
ANN could use only integer digits (1 and –1) in order 
to determine thermal flows, because at these values the 
ANN can recognize the presence of rising thermal flow 
with 100% accuracy. The output values of the ANN be-
tween –1 and 1 are considered to be errors and consid-
ered to be situated in the zone of uncertainty. Sub-zero 
values of the vertical speed of the thermal flow create 
ANN output data that is in the zone of uncertainty.

The experiment showed that the size of the area of 
uncertainty is not fixed and varies depending on the an-
gle of attack of the aircraft wing (Fig. 6) and the value of 
the vertical speed component.

The flight dynamics of the aircraft depend on the 
angle of attack of the wing and aerodynamic features of 
the aircraft. So we suggest that when the speed of the 
thermal flow approaches zero, the artificial neural net-
work changes the threshold of sensitivity, below which a 
false identification is possible.

The simulation helped to find the margin of error of 
rising thermal flow in these situations: the vector of the 
input values of the ANN belongs to the value domain, 
vertically rising thermal flows have a positive speed, and 
vertically rising thermal flow have a negative speed, and 
an intersection of the aforementioned sets of data (data 
of positive and negative speed) exists (Figs 7–10).

Fig. 6. Dependence of zones of uncertainty on angle of attack
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Fig. 7. Statistical margin of error detection of thermal flow 
when angle of attack is –0.5 degree
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Fig. 8. Statistical margin of error detection of thermal flow 
when angle of attack is 0.0 degrees
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Fig. 9. Statistical margin of error detection of thermal flow, 
when the angle of attack is 1.0 degree
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In the future, it is appropriate to examine whether 
the use of a more complex artificial neural network is 
possible for not only recognition of the thermal flows but 
for prognosis of the appearance of a thermal flow.

4. Conclusions

During the simulation an artificial neural network mod-
el, which implements the authentication function has 
been realised in practice.

Artificial neural network performs functions corre-
sponding to total energy variometer functions.

The ANN determines the speed of descending air-
flow outside the zone of uncertainty with 100% accuracy.

If the vertical air speed component is close to zero, 
the artificial neural network-based identification algo-
rithm enters a zone of uncertainty. The value of the iden-
tification starts to fluctuate on the negative or positive 
side of zero.

The size of the zone of uncertainty is not fixed and 
varies depending on the aircraft’s aerodynamic param-
eters and dynamic parameters.

The maximum size of determination uncertainty 
zone for thermal flow is 0.6 m/s.

The zone of uncertainty is not symmetric with the 
zero values of the vertical speed of the thermal flow and 
depends on the parameters of the aircraft’s flight dynam-
ics and aerodynamic parameters. The existence of this 
asymmetry requires further investigation
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KYLANČIO ORO SRAUTŲ NUSTATYMAS 
DIRBTINIAIS NEURONŲ TINKLAIS

J. Stankūnas, I. Suzdalev 

Santrauka. Straipsnyje nagrinėjamas kylančio oro srauto apti-
kimas naudojant dirbtinių neuronų tinklus. Dirbtinių neuronų 
tinklų įėjimo duomenys yra gaunami iš orlaivio navigacinės 
įrangos. Dirbtinių neuronų tinklų išėjimo duomenys kylančio 
arba besileidžiančio oro srauto įvertinimas vykdomas realiuoju 
laiku. Modeliuojama idealizuotomis sąlygomis. Modeliuojant 
nustatyta santykinės paklaidos priklausomybė nuo oro srauto 
greičio vertikaliojo sando dydžio ir aerodinaminių orlaivio 
parametrų.

Reikšminiai žodžiai: kylančio oro srautas, modeliavimas, 
dirbtinių neuronų tinklai, orlaivio skrydžio dinamika, orlaivio 
aerodinamika, navigacijos sistemos.
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