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Abstract. Ground vibration tests (GVT) are a typical source of data for flutter prediction. In this paper, a simple, low-
cost method to calculate flutter is presented. In this method, measured frequencies, mode shapes of an airplane are 
used and, additionally, the theoretical mass model of it.  
If the theoretical mass model is used, it is possible to calculate generalized masses of modes and cross mass couplings 
between them. The mass couplings of normal modes should be zero. Orthogonalization is correction of the mode 
shapes to lead the couplings to zero. The possible orthogonalization methods are presented in chapter 2. 
Based on eigenmodes of airplane configuration during GVT, it is possible to determine the eigenmodes of the same 
free airplane after a relatively small mass change, i.e. for another mass distribution that was not investigated by GVT. 
In the procedure presented in chapter 3, it is assumed that geometric and stiffness properties do not change.  
The methodology was used in the own flutter calculation software that is useful for flutter prediction of light 
airplanes and sailplanes. 
 
Keywords: aerodynamic flutter, ground vibration test, normal modes, mass model, orthogonalization, alteration of 
the mass distribution. 

Nomenclature: 

s – number of DOF of theoretical mass model of airplane 

[µ] – mass matrix of dimension of s x s (origin mass distribution) 

[µ'] – mass matrix after variation of airplane mass distribution 

n – number of measured modes of elastic airplane 

N – number of displacement modes of airplane treated as a rigid body 

n+N – number of all modes of airplane 

{ϕi} – column matrix of i-th mode shape (i = 1,...,n) of elastic airplane (also called ”elastic mode shapes”) 

{ϕ'i} – column matrix of i-th mode shape (i = 1,...,n) of elastic airplane after scaling or orthogonalization 

{ψj} – column matrix of j-th mode shape (j = 1, .. N) of airplane treated as a rigid body (”rigid  mode shapes”) 

[T] = [{ϕ1},{ϕ2},...,{ϕn}] – matrix of elastic mode shapes 

[R] = [{ψ1},{ψ2},...,{ψN}] – matrix of rigid mode shapes 
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s – number of DOF of theoretical mass model of airplane 

[Q] = [ T | R ] – matrix of all mode shapes of dimension of s x (n+N) 

[M] – modal mass matrix of dimension of (n+N) x (n+N) 

[MRR] = [R]T [µ] [R] – rigid body mass matrix of dimension of N x N 

[K] – modal stiffness matrix of dimension of (n+N) x (n+N) 

[E] – projection matrix of dimension of (n+N) x n 

[I] – unitary matrix   

 
1. Introduction 
 

Aerodynamic flutter is an unsteady phenomenon 
with the interaction of mass, stiffness and aerodynamic 
forces. Methods to numerically predict flutter are often 
based on calculated or measured normal modes of a free 
airplane and simple or more advanced models of 
unsteady aerodynamics.  

Classic methods of flutter analysis are linear and use 
normal modes as generalized DOFs. The flutter equation 
with this assumption can be transformed to an algebraic 
real or complex matrix equation of low range. The results 
of flutter calculation contain the critical flutter speed (for 
damping equal to zero), flutter frequency, and the flutter 
mode shape (as a complex column matrix) of existing 
flutter modes. 

Ground vibration test (GVT) is a typical source of 
data for flutter prediction. At the beginning of classic 
GVT, the airplane to be tested is fitted with sensors (pick-
ups) and supported by elastic suspension. To simulate the 
conditions of free flight, the highest normal frequency of 
the suspended airplane treated as a rigid body should be 
less than one-third of the lowest normal frequency of the 
normal mode, in which exists the structural elastic 
potential energy. 

During classic GVT the structure is harmonically 
excited in several points. The frequency of the 
enforcement and the distribution of these forces are 
selected to drive the structure as near to resonance as 
possible. The frequency, the damping coefficient, the 
generalized mass, and the mode shape measured under 
resonance were treated as the successive normal vibration 
parameters of the structure. The GVT results are 
a complete set of the measured normal vibration with 
frequencies up to an upper frequency that can be 
determined based on maximal dive speed, length of 
aerodynamic chords, and the critical value of the Strouhal 
number.  

The results of GVT are useful in the airplane design 
and certification processes: 
1. To prove simplified flutter criteria NASA Report 45 

(conservative and valid for conventional low-speed 
airplanes only). 

2. To verify the theoretical computational FEM dynamic 
model by comparing measured and calculated normal 
vibration (the flutter calculation is provided based on 
the FEM-model, for example in the Nastran

1). 

                                                 
1Trademarks are in italics: 

NASTRAN is a registered trademark of NASA. MSC/NASTRAN 

is an enhanced, proprietary version developed and maintained 
by MacNeal Schwendler Corporation. 

3. To perform flutter calculation in which the measured 
frequencies and mode shapes of normal vibrations are 
used directly.  

The second method of flutter analysis is typical, but 
the last way is very attractive, especially for small air-
planes, because it is credible, relatively rapid, and inex-
pensive (FEM-software is not necessary and the models 
are relative small and easy to prepare). In this case, the 
generalized masses can be measured or calculated based 
on theoretical mass model and measured mode shapes.  

The presented method of flutter computation based 
on GVT results of an airplane and theoretical mass model 
of it.. From our own experience, we know that when 
manually operating light airplanes and sailplanes this 
theoretical model of mass distribution should also contain 
the masses of most important parts of the control system: 
control wheels, sticks, push-rods, bob-weights, etc. 

Measurements of generalized masses are not 
necessary, but these results can be used for comparison. 
Besides measured modes, theoretically generated rigid 
body modes and some unmeasured but existing control 
surface modes are taken into account. 

In the next chapter, the orthogonalization methodo-
logy is presented. Orthogonalization is some correction of 
the measured mode shapes. The frequencies are not 
change. 

To reduce costs, GVT is performed only for one or a 
few of the mass configurations of an airplane. Based on 
the eigenmodes of an airplane configured, as it would be 
for a GVT, it is possible to determine the eigenmodes of 
the same airplane after relative small mass changes, i.e. 
for another mass distribution that was not investigated by 
the GVT. In the procedure presented in chapter 3, it is 
assumed that geometric and stiffness properties do not 
change.  

2. Orthogonalization of mode shapes 

The possession of a theoretical mass model makes it 
possible to calculate the generalized masses of the mode 
defined above and the cross mass couplings between 
them: 

[M] = [Q]T [µ] [Q].  

The mass couplings matrix [M] should be diagonal 
(i.e. normal modes should be [µ] - orthogonal), but as a 
result of measurement errors and errors in the theoretical 
mass model, it is generally full. Only the rigid body mo-
des cannot be orthogonal, because its frequencies are the 
same (equal to zero). 

For this reason, the measured mode shapes should be 
orthogonalized. Orthogonalization is some correction of 
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the mode shapes to lead the mass couplings to zero 
between measured modes.  

For convenience, all mode shapes can be scaled:  
 

{ϕi'} = {ϕi} / ({ϕi}
T [µ] {ϕi}) 1/2,  i = 1, ..., n; 

{ψj'} = {ψj} / ({ψj}
T [µ] {ψj}) 1/2,  j = 1, ..., N, 

 
so after scaling the mass couplings matrix should be 
diagonal. The scaling will be the process before orthogo-
nalization and also after each orthogonalization step. 

Generally, here it is assumed that the mode shapes 
after orthogonalization, [Q'], can be a superposition of all 
mode shapes before orthogonalization, [Q]: 

 
[Q'] = [Q] [G]. 

[Q'] should be [µ] - orthogonal, so 
[G]T [M] [G] = [I]. 

 
This expression that determines the [G] matrix is 
ambiguously even if we assume that it should be close to 
unitary matrix and mode shape changes should be as 
small as possible. It is necessary to make the auxiliary 
assumptions presented below. For each assumption exists 
a separate kind of orthogonalization. Mutual orthogonal-
ization of rigid modes 

 
For convenience we can select the rigid body modes, 

[R'], as [µ] - orthogonal: 
[R'] = [R] [U], 

where [R] and [R'] denotes the rigid body vectors before 
and after orthogonalization and [U] contains the 
eigenvectors of the rigid body mass matrix: 

[MRR] = [R]T [µ] [R]  = [U] diag(m1, ..., mN) [U]T . 

Trivial orthogonalization 

The simplest kind of orthogonalization is when the 
modal mass couplings are omitted. It is the normal practi-
ce when orthogonalization is not performed. 

Orthogonalization with respect to other mode shapes 

The orthogonalization of mode L with respect to 
another invariable mode m is done by this expression: 

{ϕL'} = {ϕL} - {ϕm} ({ϕm}T [µ]{ϕL}). 
This kind of orthogonalization should be used only 

for the orthogonalization of measured modes with respect 
to rigid body modes or other exact modes that will not be 
further orthogonalized. 

Gram-Schmidt mutual orthogonalization 

In this method of orthogonalization, the [G] matrix 
is determined from the Banachiewicz-Cholesky triangular 
decomposition of matrix [MTT] = [T]T [µ] [T]. The 
sequence of vector modes selected for orthogonalization 
is significant because the first mode will be not changed, 
the second one is orthogonalized only with respect to the 
first, and so on. 

Weighted proportional mutual orthogonalization 

In weighted proportional orthogonalization, it is 
assumed that: 

[G] = diag(α1, ..., αL) [S],  
where L is the number of mode shapes selected for this 
step of orthogonalization, αi (i = 1,.., L) are weights, and 
[S] is a symmetric matrix, that:  

[S] = (diag(α1, ..., αL) [MTT] (diag(α1, ..., αL)) -1/2 

The main value of the square root of the matrix can 
be performed after a transformation of matrix [MTT] to 
spectral form. 

In practice, we use a few orthogonalization steps. In 
the first step, all measured modes are orthogonalized with 
respect to rigid body modes and often also with respect to 
selected control surface modes. Next we select the groups 
of the measured modes that should be orthogonalized 
mutually. Finally, all measured modes are orthogonalized 
by Gram-Schmidt mutual orthogonalization. We use the 
measured modes after orthogonalization in the flutter cal-
culation as the normal modes of the investigated airplane. 

Orthogonalization of measured modes can eliminate 
suspension errors and friction effects in the modes with 
deflection of control surfaces. The use of orthogonali-
zation improves the flutter calculation results. In many 
cases, the critical flutter speed calculated with orthogona-
lization is lower than it is without orthogonalization. 
 
3. Determination of normal modes of free 
airplane after mass changes 

 
The normal modes of a free airplane after (relatively 

small) mass alterations can be determined based on its 
normal modes for original mass distribution. For this 
purpose, we assume that the small vibration of free 
airplane after mass variation can be expressed as: 

{x(t)} = {ϕ'i} e iω t = [ T | R ] {q} e iω t,  

where {q} is a column matrix of modal coordinates to be 
found, and [T] (dimension of s x n) and [R] (dimension of 
s x N) are matrices that contain (as columns) the 
[µ] - orthonormal mode vectors of n normal vibration and 
N motion of the airplane treated as a rigid body. The 
matrices [T], [R] and [µ] are known and refer to the 
airplane before the mass variation.  

The solution {q} should satisfy the equation: 
(-ω 2[M'] + [K]) {q} = 0, 

with: 
[M'] =  [T| R]T [µ'] 

[T | R] 
– modal mass matrix after mass 

variation 

[K] = (2π)2
 diag 

(f1
2
, ..., fn

2
, 0, ..., 0) 

– modal stiffness matrix with N-
dimensional singular subspace 
(this matrix is not changed) 

 
and condition of zero momentum in free flight: 

[R]T [µ'] {x} = 0,      i.e.     [R]T [µ'] [ T | R ] {q} = 0. 
To solve this equations we use the ideas of prof. 

Miron Nowak and obtain the eigenproblem of the 
symmetric, positively defined matrix [E]T [K] [E] of 
dimension n x n: 

ω 2 {qD} = [E]T [K] [E] {qD} 
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(ω 2 – eingenvalue, {qD} - eigenvector). 
The normal frequencies and normal modes of the 

airplane after mass variation are:  
f 'i = ω i / 2π,       {ϕ'i} = [T | R] [E] {qDi} . 

The [E] projection matrix of the dimension of (n+N) 
x n contains as columns any orthonormal basis of space 
of the elastic modes of the airplane after mass change. 
The orthogonality in this case is defined as: 

[E]T [T | R]T [µ'] [T | R] [E] = [I]. 
To determine matrix [E], the columns of [T] matrix 

should be orthogonalized (with the mass matrix [µ'], not 
[µ]!) using an arbitrarily selected orthogonalization 
method mentioned in chapter 1. The [E] matrix can be 
found as a matrix that previously consists of the unitary 
matrix of the dimension of n x n and a null rectangular 
matrix of the dimension of N x n. In this form, the matrix 
refers to situation before any mass alteration, i.e  [µ'] = 
[µ] (the columns of [T] matrix are [µ] - orthonormal). 
Next the [E] matrix collects all changes of [T] matrix 
during the [µ']-orthogonalization of it, i.e. after mass 
change. 

This method can be used to eliminate the influence 
of suspension masses added to an airplane during a GVT 
and to take into account the mass of fuel, changes of the 
mass balance of control surfaces, addition or change of 
external stores, etc. 

A practical application of this methodology is the 
POSTM.EXE program 

 
4. Conversion of GVT results and flutter 
calculation flow diagram 

 
The mode shape measured under resonance should 

be transformed to calculate displacements connecting 
with the DOF of all elements of the mass model. It will 
also determine the displacements of aerodynamic ele-
ments. 

Airplanes are usually symmetrical, so the basic 
assumption is the symmetry of the object of the vibration 
tests. The eigenmode shapes of ideally symmetrical 
objects are either symmetric or anti-symmetric. The mass 
model of a symmetrical airplane can contain the right (for 
example) half of structure.  

To transform the GVT results to the required form, 
we use the POSTR.EXE program (see diagram below), 
which converts symmetrical and anti-symmetrical modes 
separately using symmetrization of the sensor indications. 
The sensors are located on both sides of the plane of 
symmetry of the tested object. That means that when the 
unsymmetrical vibration mode shape of the object has 
been received as the result of the test, both symmetrical 
and anti-symmetric parts may be isolated on its basis. 
This program interpolates the normal displacements and 
twist angles of the main airplane assemblies treated as 
beams (wing, each flap and aileron, fin, stabilizer, eleva-
tor, and rudder) along the span of it. It also determines the 
displacements connecting other DOFs of the mass model: 
the movement of wing/tail parts in its chord plane and 
displacement of stiff assemblies treated as a rigid body 
(engine, external stores, control wheel, stick). 

For the purposes of the program, it has been 
assumed that during the vibration tests the airplane is 
fitted with one-axial sensors located approximately 
symmetrically with respect to the aircraft’s plane of 
symmetry. The mayority of the sensors should be 
localized so that they measure the vibration component 
normal to the lifting surface chord plane. The indications 
of it are used to determine aerodynamic forces and a 
portion of kinetic energy. The remaining sensors should 
be placed so that on the basis of their indications it is 
possible to determine all other degrees of freedom of the 
computational mass model.  

The RYSR program can see the GVT results. This 
program has the capability of optionally correcting pick-
up indications if the real measure direction of pick-up is 
not the same as nominal. 

The transformation of GVT results to the form 
required by the flutter calculation system is provided by 
the POSTR program, which does the following: 
• Symmetrisation of measured mode shapes (it is 

assumed that the airplane is symmetric, so its normal 
modes are either symmetric or anti-symmetric); 

• Linear approximation of indications of pick-ups 
localized on successive section of wing, stabilizer, or 
control surface in flow direction; 

• Interpolation of mode shapes along each element 
span using the spline functions; 

• Calculation of mode shape vectors {ϕi}, i = 1, ... n in 
the generalized coordinates compatible with the mass 
model, i.e. mass matrix [µ]; 

• Automatic creation of rigid body modes 
(translational and rotational modes of the airplane 
treated as a stiff body) {ψi}, i = 1, ... N. The rigid 
body vectors are defined as [µ] - orthogonal, (i.e. the 
matrix {ψi}

T [µ] {ψj} is diagonal) for convenience;  
• Determination of generalized masses mii , modal 

mass matrix mij = {ϕi}
T [µ] {ϕj}, and couplings of 

measured modes with rigid body modes, mi (n+j) = 
{ϕi}

T [µ] {ψj},   i = 1, ... n, j = 1, ... N; 
• Optional, multi-step orthogonalization (see chapter 

2) of measured modes (normal modes should be [µ] - 
orthogonal, i.e. the modal mass matrix should be 
diagonal). 
The converted vibration modes are recorded in a 

*.z12 file, which is useful for UBAHR and FLATH 
programs. The UBAHR program records the *.wsi, *.wcz 
and *#.wpo files used later to animate the vibration mode 
shapes (both normal modes and flutter modes) in the 
RYSH.EXE program. In this description * means any 
character string, and # means any natural number (in this 
case, a normal mode number). The names of “case.*” 
output files are automatically created on the basis of the 
file name case.dpr, which is the main data file for used in 
the POSTR program. 

The FLATH.EXE program makes flutter calculations 
using classical aerodynamic strip theory and the V-g 
method of solving flutter equation It uses the results of 
either POSTR or POSTM programs. 
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APRSC*.das
*.was

 *.z8

 POSTH  POSTM  POSTR

*.wam

 *.z9
APRMH*.dam

 *.dcz

 *.dsi

 *.dre

GVT - results:

 *.dpt
*.dpm

 *.dpr

 *.z12  *.z12  *.z12  *.z14

 xo r

 UBAHR  *.dfl

 *.dub

 *.z15

*.wub

 *.wcz

 *.wsi

*.wpo

normal modes
     for plot

 *.z17

(optional)

  SOWY

(sorting)

 xo r

  FLATH

   RYSH  *.dre

*.wpo

 *.dre

 *.dre

(correction)

Legend:

   flow

   optional flow

   program

file (typical name extension)

 
 

Fig 1. The flutter calculation flow diagram: 
 

Programs used to calculate flutter based on GVT results 

(in alphabetical order): 

APRSC.EXE – geometric definition and (not used here) 
stiffness data approximation – FORTRAN 77; 

APRSM.EXE – approximation of mass distribution – 
FORTRAN 77. (This program is not often used 
because usually all mass data are defined as discrete 
masses); 

FLATH.EXE – flutter calculation using Theodorsen’s 
strip aerodynamic theory for airfoil with (optional) 
control surface with (optional) tab, V-g method 
(K-method) of flutter equation solution, FORTRAN 
77, Microsoft Fortran Compiler, v.3.3 with library 
flatippt.lib in MS-Pascal and Assembler. A version 
compiled by the GNU Fortran Compiler also exists 
(Nowak 1972 ; Nowak et al. 1976; The … 1976); 

GVT2TAU.EXE – a program that contains the capacity of 
APRSC, POSTR, UBAHR programs and others – 
FORTRAN 77, GNU FORTRAN Compiler (Chajec 
2004); 

POSTH.EXE – natural vibration calculation based on 
geometry, stiffness, and mass distribution – 
FORTRAN 77. (For this purpose, we currently use 
MSC.Nastran rather than POSTH.) (Nowak et al. 
1976; The … 1976); 

POSTM.EXE – bnatural vibration calculation based on 
(calculated or measured) natural vibration for 
alternate mass model (after a small alteration of 
mass distribution) of the same airplane (stiffness 
data without change), see chapter 3 – FORTRAN 77 
(Chajec 1989); 

POSTR.EXE – natural vibration calculation based on 
results of ground vibration test (GVT) and 
theoretical model of mass distribution; with 
orthogonality proof and, if necessary, optional 
orthogonalization of measured modes  (Baruch 
1980; Chajec 1980-1982; Chajes et al. 1985; Chajec 
1989); three methods of orthogonalization are 
possible; see chapter 2–FORTRAN 77. –Turbo 

Pascal v.6. A similar program for the proof, 
correction, animation and plot of GVT results has 
the name RYSR.EXE; 

SOWY.EXE – ordering of flutter results (also from *.f06–
file from MSC.NASTRAN), damping versus speed V, 
and frequency versus V diagrams with optional 
vectors of flutter modes draw; V can be true (TAS) 
or equivalent (EAS) air speed; Turbo Pascal v.6; 

UBAHR.EXE – vibration mode calculation postprocessor 
– FORTRAN 77. 
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The programs APRSC.EXE, POSTR.EXE and 

FLATH.EXE (included in the JG2-system) were made by 
a group led by prof. Miron Nowak in IPPT PAN, 
Warszawa (Institute of Fundamental Technological 
Research, Polish Academy of Sciences, Warsaw) with 
some modifications made in PZL-Mielec (Chajec 1999). 

The APRSC, POSTR and UBAHR programs were 
included in the program GVT2TAU.EXE (Chajec 2004). 
Data file type (more important, in alphabetical order): 

*.das – geometry and stiffness data for APRSC.EXE-text 
file; 

*.dgt – text data for GVT2TAU.EXE. This data includes 
*.das, *.dpr, *. dub and *.dfl data files; 

*.dfl – text data for FLATH.EXE and UBAHR.EXE 
(geometry of aerodynamic surfaces, selected 
numbers of natural vibration); 

*.dpm – text data for POSTM.EXE (containing data of 
concentrated masses); 

*.dpr – text data for POSTR.EXE (data of concentrated 
masses, geometry of pick-ups/sensors/in ground 
vibration test, orthogonalization data); 

*.dsi – topology (connection for mode shape drawing) of 
pick-ups/sensors/in GVTtext file; 

*.dcz – coordinates of pick-ups in GVT – text file; 
*#.dre – indications (real and imaginary parts of 

accelerations similar to displacements) of pick-ups–
for each measured modes numbered # one text file; 

*.dub – complementary data for UBAHR.EXE (auxiliary 
very small text file); 

*.wsi – topology (connection for mode shape drawing) of 
plot nodes – text file, result of UBAHR.EXE; 

*.wcz – coordinates of plot nodes – text file, result of 
UBAHR.EXE; 

*#.wpo – displacements of plot nodes in calculated 
vibration modes – text files, results of UBAHR.EXE; 

*.wub – synthetic results of UBAHR.EXE: frequency, 
modal damping, and generalized mass for each 
natural vibration mode – text file; 

*.z8 – geometry and stiffness database (result of 
APRSC.EXE)  – text file; 

*.z12 – interpolated results of natural vibration calcula-
tion – binary file; 

*.z14 – modal mass matrices before, during and after or-
thogonalization – text files; 

*.z15 – unsorted or sorted results of flutter calculation 
(text file, with each record containing: reduced 
frequency as a parameter for the K-method, and for 
every flutter eigenvalue: speed, frequency and 
damping); 

*.z17 – results of flutter calculation-flutter modes – text 
file. 

 
 
 
 

5. Application 
 

We use this low cost flutter calculation system to 
carry out the flutter calculation of general aviation 
airplanes, ultralight airplanes, and sailplane. Normally we 
use the simple classic V-g flutter calculation method with 
Theodorsen’s strip aerodynamic theory. In this case, the 
calculations are very rapid and inexpensive.  

These methods were used as the main methods in the 
EASA-certification of the I-23 airplane, in the prelimi-
nary flutter calculation of the M 28 Skytruck (the certifi-
cation of this airplane was based on flutter calculations in 
the MSC. Nastran system), and to receive the permit for 
in-flight flutter tests of the following: EM-11C Orka 
(both versions: classic and T – tailplane), M21 Dromader 
Mini, M24 Dromader Super airplanes and SZD-55, PW-5 
Smyk, Swift S-1, MDM-1 Fox sailplanes. It was also 
used in the flutter investigation of the JK-05 Junior 
ultralight.  

As an example, the flutter calculation results of the 
I-23 carbon/glass composite piston airplane for four 
persons are presented here. The flutter mode shape V is 
shown on the next page. 

The critical flutter speed was increased as a result of 
moving the balancing mass from rudder root to rudder 
tip. 

It is also possible to use the measured (and numeri-
cally transformed and improved) modes to calculate the 
dynamics of a free, elastic airplane with more advanced 
unsteady aerodynamic models, including the 3D fluid 
mechanics method. For example, the transformed GVT 
results of the I-23 airplane were used in TAURUS, and 
CESAR European projects with 3D unsteady aerodyna-
mic models (Chajec 2004). 
 
6. Conclusion 

 
The classic methods of flutter analysis are based on 

theoretical geometry, mass, and stiffness model. In this 
case, it is possible to take into account in the flutter 
calculation any changes in the aircraft. The model should 
be adequate for real structures, so construction of them is 
very time consuming and expensive.  

The calculation of flutter based on GVT results is 
more realistic, relatively inexpensive, and robust, but 
concerns only the tested configuration of an airplane.  

The flutter calculation method presented here 
provides the possibility to numerically take into account 
in the GVT results the variation of the mass distribution 
of the airplane being tested. The method is cost efficient, 
consumes relatively little time, and can be used in 
practice to certify light aircraft and sailplane. The mass 
alteration magnitude is limited by the modal approach 
that was used. 
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Configuration during GVT, before 
improvement of rudder mass balance 

Configuration after improvement of rudder 
mass balance (mass at rudder tip) 

 

 

Fig 2. Results of anti-symmetric flutter calculation of I-23 airplane. The modal structural damping coefficients were not included 
 

 
 

Fig 3. The V flutter mode before improvement of rudder mass balance 

V 

V 

V 

V 

V 
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FLATERIO SKAIČIAVIMAS REMIANTIS DAŽNUMINIŲ BANDYMŲ REZULTATAIS IR TEORINIU MASIŲ MODELIU 
 
W. Chajec 
 
S a n t r a u k a 
 
Dažnuminiai bandymai žemėje yra tipinis informacijos šaltinis flaterio skaičiavimui. Šiame straipsnyje pateikiamas paprastas ir pigus flaterio 
skaičiavimo metodas. Šiame metode naudojamos lėktuvo išmatuotų dažnuminių modų formos ir teorinis lėktuvo masių modelis. 
Naudojant teorinį masių modelį galima apskaičiuoti apibendrintas modų mases ir masių ryšius tarp jų. Normalinių modų masių ryšys turi būti lygus 
nuliui. Ortogonalizavimu koreguojamos modų formos, siekiant ryšius sumažinti iki nulio. Galimi ortogonalizavimo metodai pateikti antrame skyriuje. 
Remiantis lėktuvo laisvųjų svyravimo modomis, gautomis dažnuminių bandymų žemėje metu, galima nustatyti kitokio masių pasiskirstymo įtaką 
laisvųjų svyravimų modoms. Procedūroje, pateiktoje trečiame skyriuje, manoma, kad geometrinės ir standumo savybės nesikeičia. 
Ši metodologija buvo panaudota savoje programinėje įrangoje flateriui skaičiuoti, kurią galima naudoti lengvų lėktuvų ir sklandytuvų flaterio 
skaičiavimui. 
 
Reikšminiai žodžiai: aerodinaminis flateris, dažnuminiai bandymai žemėje, normalinės modos, masių modelis, ortogonalizavimas, masių 
išsidėstymo pokytis. 
 

 




