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Abstract. A cracked blade non-linear dynamic analysis was performed, taking into account contact interaction 
between crack sides. The contact-induced non-linear problem was solved by using the harmonic balance method. 
Accuracy and computational efficiency are demonstrated by comparing the results with the time integration of the 
system’s motion equation Problem size reduction was performed using system fixed-interface method. They suppose 
that a crack forms an interface between two sub-structures and use a relative degree of freedom to describe the 
motion of crack sides. The influence of centrifugal forces was investigated in order to understand the necessity of 
problem non-linear formulation depending on crack location and frequency of rotation.  

 
Keywords: cracked blade, contact, harmonic balance method, frequency response function, eigenfrequency. 

 
1. Introduction 

 
In a majority of the works in the field of cracked 

blade dynamic analysis, the presence of a crack is 
simulated by a reduction in the stiffness of a structure 
leading to a reduction in natural frequencies and 
correspondingly a shift in resonances at frequency 
response function construction. The crack models used in 
these analyses are divided into two categories, supposing 
stiffness to be constant or changing with excitation 
frequency and applied external loading:  

− open crack models–linear statement, stiffness is 
maintained constant during analysis; 

− opening and closing or breathing crack models–

non-linear statement, stiffness is changed 
depending on external loading conditions (Laine 
et al. 2006, Cheng et al. 1999).  

As it was said, generally, open crack models are 
used because of their simplicity and because they provide 
important diagnostic signa such as natural frequency 

decrease. Then it can be used for the identification of the 
presence of cracks in the blade, which is a very 

challenging task and is in the scope of both industry and 
scientific circles.  

 
2. Non-linear cracked blade model 
 

In our work, we will deal with a three-dimensional 
cracked blade model with the following geometrical and 
material properties:  

−−−−    thickness–4 mm; 
−−−−    height–80 mm; 
−−−−    wideness–30 mm; 
−−−−    twisting angle–30°; 
−−−−    Young’s modulus–2e11 Pa,  
−−−−    Poisson’s ratio–0.3  
−−−−    material density–7.8e3 kg/m3; 
−−−−    external force amplitude–0.2N. 
A finite-elements model of a cracked blade (fig. 1 b) 

was created in order to extract mass and stiffness matrices 
for their following utilization in dynamic analysis. 
Application of external excitation forces is shown in 
figure 1 b. Forces are applied at points of the blade tip: at 
the leading and trailing edges. 

 

             
a                                                                                                b 

Fig 1. a—cracked blade finite-elements model, b—cracked blade model subjected to dynamic response analysis 
 

Since excitation period does not always coincide 
with the response of the crack, the last approach seems to 
be more practical to use. 

In most cases, analytical solutions of such dynamical 
systems are practically impossible to obtain. Thus, some 
numerical techniques must be applied. Firstly, systems 
are discretized as a set of non-linear ordinary differential 
equations with high dimension. Then traditional direct 

time integration methods are applied. However, this 
process is extremely time-consuming. In order to 
overcome this problem, the harmonic balance method is 
widely used (Chengwu et al. 2007, Liu et al. 2006, Von 
Groll et al. 2001). Now, we present in a short form the 
application of the harmonic balance method. In the non-
linear case, the equation of system motion is expressed 
by: 
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        ξ nlMu+C u+Ku+F (u)=F(t),�� �                     (1) 

where M – mass matrix, K – stiffness matrix, Cζ – 
damping matrix, u – displacements vector, Fnl – non-
linear force vector, F – external excitation time-varying 
periodic force vector. The damping matrix is calculated 
on the base of the structural damping ratio ξ and stiffness 
matrix as C Kζ ξ=  

Then we are searching for the u(t) in the form of the 
truncated trigonometric series of k=1, …, N harmonics: 

 

              0
1 1

( ) cos sin ,
N N

k k
k k

u t a a k t b k tω ω
= =

= + ∑ + ∑     (2) 

 
where a0, ak, bk – Fourier series coefficients, ω – 
excitation frequency. 

If we put equation (2) to (1) the last would be 
changed to: 

 
                          Aũ + b(ũ) = C                             (3) 

 
where A is diagonally symmetric in the block matrix: 
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where b – non-linear member, C – external excitation 
force vector and ũ – vector of Fourier series coefficients.    

Non-linear solution requires taking into account 
system non-linearity, in our case non-linear contact force 
between two nodes. The governing equation (3) 
represents by itself the system of non-linear equations to 
which some linear transformation could be applied for 
implementation of a Newton-type iterative method of 

non-linear algebraic equation systems solution (Chengwu 
et al. 2007). 

The representation of non-linear force is one of the 
most important tasks in any non-linear analysis and in the 
harmonic balance method. In our case, we have some 
non-linear degrees of freedom (relative vertical 
displacements between contact nodes). To determine the 
contact force, the Lagrange multipliers or penalty 
methods could be utilized (Kucher et al. 2007). The 
easiest way is to use the penalty method to approximate 
this force by the following expression: 

               

   ,
2

nl nl

nl nl

u u
F k

 + 
= ⋅ 

 
            

 
where knl – penalty stiffness and unl –  non-linear DOF 
displacement. Penalty stiffness value should be chosen to 
provide minimum penetration in the contact zone.  

The disadvantage of the approximation of the non-
linear force when it crosses zero should be mentioned. So 
then unl=0, /

nl nl
F u∂ ∂ → ∞ . 

Since calculation of the Jacobean will be theoretically 
unattainable and in order to avoid this problem, the 
smoothing function should be applied. In the work of D. 
Chengwu et al., the tangent function was used for 
smoothing. We applied it with some modification and 
have gotten the next expressio: 

 

   
1

(arctan( ) ) ,
2nl nl nl nlF k su u
π

π
= −             (4) 

 
where s – coefficient, the sufficiently high level of which 
is required to accurately represent force-displacement 
relationship smoothing (Fig 2). 

And even in such a case some problems with lack of 
convergence of solutions can appear. This is mostly 
caused by the level of the penalty stiffness coefficient. In 
order to overcome these problems, Lagrange multipliers 
should be used since they allow the use of a sufficiently 
lower value of penalty stiffness. 
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       a                                                                                  b 

Fig 2. Non-linear force smoothing representation: a – at different values of s coefficient and fixed knl = 1010 N/m,  
b – at different values of penalty stiffness knl and fixed s = 1010 
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3. System reduction methods 
 

When doing an analysis of vibration performances 
of a structure with essentially high accuracy required, we 
meet the problem of enormous number of DOFs taking 
part in the solution procedure. For example, the three-
dimensional model of the blade can have up to 60,000 
DOFs, which leads to computational problems in 
calculation time expenses and memory shortage. The 
only solution is to reduce the size of the system by using 
one of the existent reduction methods and reduction 
methods based on system sub-structuring. The main 
advantages of such approaches are: partition of the object 
being analysed on some independent sub-structures, 
modification of a sub-structure without influencing the 
rest, and the ability to work with one sub-structure in the 
case of a number of identical sub-structures (e.g. cyclic 
symmetry). The most known procedures of system 
reduction are: the Guyan reduction, fixed interface sub-
structuring method of Craig-Bampton, and free interface 
sub-structuring method of Mac Neal (Craig et al. 1968). 

In figure 3 a, cracked blade model sub-structuring is 
presented. The location of the crack forms an interface 
between the two sub-structures. The lower sub-structure 
is restrained at the root section and the upper one is free 
at both ends. To continue with model size reduction, both 
fixed and free interface methods were implemented with 
the aim to choose the most applicable.  

It should be noted that in this case we do not have 
classical sub-structuring, because these parts are not fully 
independent. Some DOF remain shared between the 
upper and lower sub-structures of the blade. These DOF 
are relative displacement between contact nodes (Fig 3 
b). 

With the aim to facilitate calculation processes for 
each contact pair defined previously as the set of two 
nodes, one node is selected arbitrarily to be the reference 
of the displacement observation of the other node. Thus, 
the relative displacement can be introduced as: 

                              i i i

rel obs ref
u u u= − ,                          (5) 

where the subscripts ref and obs refer to the reference and 
the observed nodes respectively and the i-th index 
corresponds to the i-th contact pair. 

 

 
    a                                                                                                b 

Fig 3. a – cracked blade model sub-structuring, b – relative displacements between contact nodes 

 
4. Non-linear solution by harmonic balance 

method 
 

Both non-linear and linear solutions are 
reconstructed in the time domain by the inverse Fourier 
transformation and shown for: relative vertical 

displacement between two coinciding contact nodes 
(crack point) and excitation force application node 
horizontal displacement (tip point).  

Crack location variants are schematically shown in 
figure 4, supposing it to be either on the leading or 
trailing edges or on both edges (symmetric cracks). 

            
       a                                                 b                                               c 

Fig 4. Crack location variants in the blade  
a – crack on trailing edge, b – crack on leading edge, c – symmetric cracks 



Aviation, 2008 12(3): 66–79  
 

 - 70 -

From the results of contact interaction simulations 
we can see the representation of the presence of contact 
force. The set value of penalty stiffness is enough to 
avoid penetration, and non-linear force approximation (4) 
allows us to precisely simulate system non-linearity.  
Five harmonics were retained in this case at excitation 
frequency, which is close to the first resonance 
frequency. 

The number of harmonics is very critical at two 
sides. Firstly, it increases solution time since system size 
depends on it and, secondly, it is necessary to have their 
required number to properly describe non-linear 
displacement change over time.  

The solutions of problems for a 2-mm crack located 
either on the trailing or leading edge are presented in 
figures 5 and 6. 
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a                                                                                         b 

Fig 5. System response in the time domain at the crack point (crack size 2 mm, ω = 3500 rad/sec):  
a – trailing edge crack, b – leading edge crack 
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a                                                                                           b 

Fig 6. System response in the time domain at the tip point (crack size 2 mm, ω = 3500 rad/sec):  
a – trailing edge crack, b – leading edge crack 

 
From the results of the solution of the cracked blade 

model in the time domain with an introduced crack of 2 
mm length on the trailing edge, it is seen that the 
influence of presence crack on blade tip response is 
almost invisible (Fig 5 a, Fig 6 a). It is also based on the 
results of modal analysis, which shows the minimum 
shift in the first eigenmode frequency for such case. For 
the case in which the crack is located on the leading edge, 
we have a visually detectable difference between both 

linear and non-linear solutions (Fig 5 b, Fig 6 b) because 
of the higher level of stiffness reduction.  

After having considered the smallest crack size, we 
will go on to examine the influence of a crack on blade 
dynamic response increasing crack length up to 4 mm 
(Figs 7, 8). Solutions at the crack and tip points will also 
be presented for the case of symmetrically located cracks 
(Figs 9, 10). 
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a                                                                                        b 

Fig 7. System response in the time domain at crack point (crack size 4 mm, ω = 3500 rad/sec):  
a – trailing edge crack, b – leading edge crack 
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a                                                                                         b  

Fig 8. System response in the time domain at the tip point (crack size 4 mm, ω = 3550 rad/sec):  
a – trailing edge crack, b – leading edge crack 
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a                                                                                     b  

Fig 9. System response with symmetric cracks in the time domain at the crack point (crack size 2 mm, ω = 3550 rad/sec):  
a – crack located on trailing edge, b – crack located on leading edge  
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a                                                                       b 

Fig 10. System response with symmetric cracks in the time domain at the tip point (ω = 3550 rad/sec):  
a – crack size 2 mm, b – crack size 4 mm 

 
In the case of the response in the time domain of the 

cracked blade with cracks of 4 mm, it is evident that the 
influence of this size crack is stronger than the 2-mm 
crack (Figs 7, 8). The number of contact pairs through the 
crack thickness is two (external and internal). This allows 
more accurate description of the displacements between 
crack sides in dynamics.  

Analyzing the results of the response of the cracked 
blade with symmetric cracks, we can see that it is mostly 
influenced by the leading edge crack partition, and even a 
crack size of 2 mm becomes more or less visible (Figs 9, 
10). 

It is also necessary to emphasize that considerable 
difference between the non-linear model solution and 
linear model solution for some crack location cases does 
not reflect the real difference in amplitudes. This 
generally results from resonance shift because the 
excitation frequency is not far from the first eigenmode 
frequency of the linear or non-linear models. The 
contraposition in the time-history of relative 
displacements between crack sides for two blade faces is 
caused by an excited natural mode. In our case, the forces 
applied at two tip points (figure 1 b – leading and trailing 
edge force points) excites the first bending mode of the 
blade, and frequency points are located in the range of 
this mode, inducing such difference. 

 
5. Comparison of harmonic balance and 

direct integration method 
 

In order to validate the results of the use of the 
harmonic balance method, they were compared with the 
results of the direct integration of the system motion 
equation. For high-dimensional structures, the procedure 
of finding a solution is very time consuming; it was 
therefore decided to use a two-dimensional model for 
such numerical tests. 

In our case, the cracked structure is simulated by a 
flat plate that has dimensions of 0.1 m.*0.1 m. and is 
restrained at the bottom line (Fig 11 a).  The presence of 
a crack in the structure was simulated by introducing an 
additional node creating a contact pair. The external load 
was applied to the top right corner of the plate as the 
point force with amplitude of 100 N and excitation 
frequency of 2100 rad/sec, which is close to the first 
eigenfrequency of the cracked plate model (2300 
rad/sec).  

Firstly, cracked blade dynamic response simulations 
supposing contact between the sides of the crack were 
fulfilled by the finite elements method (Fig 11 b).   
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a                                                                                     b 

Fig 11. a – Simplified two-dimensional model of the cracked structure, b – Time-history of the relative vertical displacement 
between crack tips in ANSYS 
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Interaction of the cracked interface was modelled by 
a node-to-node contact element with the use of the 
penalty method. The normal penalty level was accepted 
as 1011 N/m. In the work of O. Kucher et al., the solution 
of the same system was calculated by the direct 
integration method (Kucher et al. 2007). For the 
simulation of contact, two methods were applied: the 
Lagrange multipliers method and the penalty method. In 
the present work, the Lagrange multipliers method was 
used for comparison with the harmonic balance method.  

It is necessary to point out that, for getting a steady-
state solution by direct integration of the equation of 
system motion, the time interval of the integration should 
be sufficiently big. It is also important for the time step to 
be small enough to obtain an accurate solution. 

In figure 12 the solutions of the system motion 
equation using both harmonic balance and direct time 
integration approach are presented. They confirm that the 
harmonic balance method is more effective in terms of 
time, because it is enough to have the time interval equal 
to the excitation period. For the direct integration 
approach, solution time interval is much bigger. 

It should also be stressed that, as was said before, 
the response period is not always equal to the period of 
external excitation. In this case, the results of the 
harmonic balance method will be different from time 
integration results. Response period multiplication can 
also appear. 
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c                                                                                     d 

Fig 12. Non-linear solution by HB method and direct integration approach: 
 a – at the crack point, b – at the crack point (zoom), c – at the tip point, d – at the tip point (zoom) 

 

6. Frequency response function of the non-

linear cracked blade model 
 

The construction of the frequency response function 
of the cracked blade model was performed for the same 
cases as the simulation of system response in the time 
domain. The cracked blade model is presented in figure 1 
b and crack location schemas are presented in figure 4. 
Comparison of the frequency response was fulfilled by 
linear cracked, non-linear cracked and linear uncracked 

blade models. The frequency range covered the first three 
eigenmodes: the first and second bending modes and first 
torsion mode. As we did not know exactly the 
eigenfrequencies of the cracked blade model because of 
crack induced non-linearity, frequency discretisation was 
done around eigenmode frequencies of the linear cracked 
and uncracked models. Because of this, the resonances 
picks of the non-linear model sometimes appear to be not 
smooth and with amplitude a bit lower than it should be.  
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In the previous chapter we dealt with system 
solution, in particular frequency point (in our case, 3500 
rad/sec), having initialized the non-linear procedure by 
linear approximation. Such an approach is suitable in the 
frequency diapasons situated far from resonance, where 
the difference between linear and non-linear solutions is 
barely visible, whereas in the resonance area such 
initialization can lead to a longer convergence process or 
even to its lack of convergence. To tackle this problem, 
as initialization for a particular frequency point the non-

linear solution obtained at the previous point was used . 
Another measure for dealing with solution non-
convergence involves frequency continuation approaches 
in which the next frequency point is searched by 
prediction on the base of a polynomial approximation 
(Von Groll et al. 2001). 

In a way that is analogous to the solution of the 
problem in the time domain (section 4), we will start by 
examining the smallest crack size of 2 mm (Fig 13). 
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Fig 13. Cracked blade frequency response function (crack size 2 mm): a – trailing edge crack, b – trailing edge crack (zoom 
around first eigenfrequency), c – leading edge crack, d – leading edge crack (zoom around first eigenfrequency) 

 
 

Frequency response for a cracked blade with a crack 
of 2 mm reflects said in the previous chapter: such crack 
size can have visible influence only for leading crack 
case. When crack is located on trailing edge its effect 
became more or less observable for fourth higher order 
eigenmodes.  

The results demonstrate that a crack of this size can 
be considered the minimum able to be identified. The 

ability to detect cracks could possibly be weaker when a 
cracked blade is considered within the frameworks of the 
bladed disk model.  

Next, the case of the 4-mm crack will be simulated 
(Fig 14). Phase change at force application points will 
also be shown (Fig 15).  
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Fig 14. Cracked blade frequency response function (crack size 4 mm): ): a – trailing edge crack, b – trailing edge crack (zoom 
around first eigenfrequency), c – leading edge crack,  

d – leading edge crack (zoom around fourth eigenfrequency) 
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Fig 15. Cracked blade response phase change (crack size 4 mm): a – trailing edge crack, b – leading edge crack 
 

Looking at cracked blade response phase change, we 
can see sufficient difference between the cracked and 
uncracked solutions (Fig 15). It is only notable in the case 
of the 4 mm crack, and with a smaller value the diffe-
rence is almost unobservable.   

In addition to crack locations on the trailing or 
leading edges, the case of symmetric crack is shown in 
figures 16–18. The location of cracks is presented in 
figure 4 c. The response of the system to such cracks is 
mostly influenced by cracks located on the leading edge.
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a                                                                                              b 

Fig 16. Cracked blade frequency response function (symmetric crack, crack size 2 mm): a – full frequency range,  
b – zoom around first eigenfrequency 
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a                                                                                                     b 

Fig 17. Cracked blade frequency response function (symmetric crack, crack size 4 mm): a – full frequency range,  
b – zoom around first eigenfrequency 
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Fig 18. Cracked blade response phase change (symmetric crack): a – crack size 2 mm, b – crack size 2 mm 
 

From the simulation of the cracked blade frequency 
response supposing the presence of two symmetrically 
located cracks, we can derive that this case is more severe 
for the structure. Even at the presence of 2-mm cracks, 

their influence became evident and is mostly due to the 
effect of leading edge crack.  

From all simulation cases, we can see that the 
response of the non-linear cracked blade model has an 
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intermediate location between the responses of the linear 
cracked and uncracked blade models. 

 
7. Effect of centrifugal forces on non-

linearity of cracked blade  
 

Determining the effect of centrifugal forces is quite 
a challenging task in the attempt to represent accurately 
all physical phenomena associated with bladed disc 
dynamics and to improve the non-linear cracked blade 
model used in forced response predictions. The 
significance of incorporating the effect of centrifugal 
forces in the analysis of cracked blades is demonstrated 
by their influence on the vibration response of the non-
linear cracked blade model. Some numerical examples 
serve to confirm the theoretical predictions and successful 
implementation that will increase confidence in the 
proposed model.  

By definition, an inertial reference frame is a 
coordinate system defined by non-accelerated motion 
with constant direction and velocity. An approximation of 
the frame, in which Newton’s laws of motion are valid, is 
a system with fixed coordinates in the rotating earth 
(Goldstein 1980). A non-inertial reference frame is a 
coordinate system that is accelerating: changing its 
direction and/or velocity. Many turbomechanical 
components, such as bladed discs, are exposed to the 
effects of forces resulting from rotation and acting on the 
system in a rotating (non-inertial) reference frame.  

In contrast to rotordynamics, the effects of the 
Coriolis forces are usually excluded from the vibration 
analysis of bladed discs because it is assumed that they 

are of negligible value. In the case of bladed disk 
vibration, this fact is commonly attributed to the belief 
that Coriolis forces usually do not change natural 
frequencies, mode shapes, or other dynamic properties of 
bladed disks sufficiently. It should be noted that for all 
mode shapes except those with dominant 0 or 1 nodal 
diameter components, all bending moments are balanced, 
so that there is no significant interactive energy transfer 
between the bladed disk and the supporting shaft. This is 
the feature that generally enables the analysis of the 
bladed disk vibration to be made in isolation from the 
supporting structure.  

In our case, the investigation of the effect of 
centrifugal forces will be performed in following manner. 
As was mentioned before, the centrifugal force acts in the 
radial direction during the rotation of a bladed disk. In the 
uncoupled cracked blade model, centrifugal force will 
form a gap between the sides of a crack. This gap can be 
accepted as the initial opening of the crack during its 
breathing process. The initial value of the gap will 
depend on: 

− crack size; 
− crack location (trailing edge, leading edge); 
− amplitude of external loading; 
− rotation frequency of rotor.  

In figure 19, the results of the simulation of crack 
initial opening are presented for different frequencies of 
rotation. In order to perform this task, the finite-elements 
model of the cracked blade used for the application of the 
harmonic balance method was used The solution is 
shown for all contact pairs, supposing the presence of a 4-
mm crack on both the trailing and leading edges. 
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  a                                           b 

Fig 19. Initial crack opening due to the effect of centrifugal forces: a – trailing edge crack, b – leading edge crack 
 

The data from figure 19 will then be used to 
calculate the dynamic response of cracked blades using 
the harmonic balance method. Initial gap values are 
substituted in the equation of contact force approximation 
(4). Then the harmonic balance procedure is solved, 
taking into account a gap. We present a simulation of 
cracked blade response at different gap values with fixed 
excitation frequency (Figs 20–22). In this case, we will 

change the engine order of excitation in order to provide 
constant excitation frequency, change gap value, and at 
the same time, rotor frequency Ω.   

For all simulation cases, excitation frequency of 
3500 rad/sec was maintained constant while varying the 
engine order of excitation and rotor frequency. 
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Fig 20. Non-linear solution at initial crack opening (Ω=10 Hz): a – trailing edge crack, b – leading edge crack 
 

0 0.5 1 1.5 2

x 10
-3

-4

-2

0

2

4
x 10

-7

Time, sec

External contact pair

1-st contact pair
2-nd contact pair

0 0.5 1 1.5 2

x 10
-3

-2

0

2

4
x 10

-7

Time, sec

Internal contact pair

3-rd contact pair
4-th contact pair

  

0 0.5 1 1.5 2

x 10
-3

-5

0

5

x 10
-6

Time, sec

External contact pair

1-st contact pair
2-nd contact pair

0 5 10 15

x 10
-4

-5

0

5

x 10
-6

Time, sec

Internal contact pair

3-rd contact pair
4-th contact pair

 
a                                          b 

Fig 21. Non-linear solution at initial crack opening (Ω=30 Hz):  a – trailing edge crack, b – leading edge crack 
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Fig 22. Non-linear solution at initial crack opening (Ω=50 Hz): a – trailing edge crack, b – leading edge crack 
 

Main conclusion, which can be made after analyzing 
the results presented in figures 20–22, is that taking into 
account centrifugal forces effect leads to useless non-
linear formulation of the cracked blade dynamic 
behaviour. Such a phenomenon is observed with the 
increase in rotor frequency. It becomes visible earlier for 

a trailing edge crack due to its smaller opening level in 
comparison with initial crack opening. At the same time, 
for a crack on the leading edge, crack-induced non-
linearity should be taken into account at all rotor 
frequencies.  
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The simulation performed above is very important in 
the point of view of computation time expenses because it 
allows using a cracked blade linear model in some range 
of rotor frequency change. 

 
8. Conclusions 

 
The presented study was dedicated to the 

presentation of a cracked blade non-linear model and its 
solution by the application of the harmonic balance 
method. 

The cracked blade non-linear dynamical model was 
created using the harmonic balance method in 
conjunction with the contact approach of the simulation 
of the crack breathing process. This model allows us to 
describe cracked behaviour at any loading amplitude and 
excitation frequency. The influence of centrifugal forces 
was also simulated. It was concluded that the initial 
opening of a crack due these forces leads to the 
uselessness of crack non-linear representation. 

In general, some factors were derived from the 
analyses when compared with uncracked blades 

− eigenmode frequency reduction; 
− increase in tip response amplitude. 
It should be noted that the frequency response of 

cracked blades, taking into account non-linearity, stands 
in an intermediate position between the linear cracked 
blade response and the response of an uncracked blade. 
This fact can cause the deterioration of cracked blade 
detection, especially if the non-linear model is included in 
the global bladed disk dynamic model. 

Moreover, additional factors affecting the ability to 
detect the presence of cracks must be included in the 
further development of the bladed disk model. The most 
harmful is blade mistuning, bringing uncertainty to the 

dynamic analysis of the system and making cracked blade 
behaviour similar to mistuned blades. 
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MENTELĖS SU ĮTRŪKIMU NETIESINĖ DINAMIKOS ANALIZĖ 

 

M. Kulyk, O. Kucher, V. Kharyton, J.-P. Laine, F. Thouverez 

 
S a n t r a u k a 
 
Mentelės su įtrūkimu netiesinė dinamikos analizė atlikta įvertinant įtrūkimo kraštų kontaktinę sąveiką. Netiesinis uždavinys sprendžiamas harmoninės 
analizės metodu. Tokio metodo rezultatų tinkamumas ir efektyvumas demonstruojamas lyginant su sistemų dinaminių lygčių skaitinio sprendimo 
rezultatais. Sprendžiamo uždavinio eilė mažinama kraštų fiksavimo metodas. Šiuo atveju buvo laikoma, kad plyšys suformuoja ribą tarp dviejų 
konstrukcijos dalių ir plyšio ribų kitimo aprašymui naudojamos santykinės koordinatės. Buvo ištirta išcentrinių jėgų įtaka netiesiniam formulavimui, 
priklausomai nuo plyšio padėties ir kampinio greičio. 
 
Reikšminiai žodžiai: mentelė su plyšiu, kontaktas, harmoninio balanso metodas, amplitudės – dažnio charakteristika, savasis dažnis. 
 
 

 




