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Abstract. This paper presents a comparative analysis of linear and non-linear problems of plate dynamics. By expressing the internal 

friction coefficient of the material by power polynomial ...2
02010 +++= εγεγγγ , we assume const== 0γγ  for a linear 

problem. When at least two polynomial terms are taken, a non-linear problem is obtained. The calculations of resonance amplitudes 

of a rectangular plate yielded 3 per cent error: a linear problem yields a higher resonance amplitude. Using the Ritz method and the 

theory of complex numbers made the calculations. Similar methods of calculation can be used in solving the dynamic problems of 

thin-walled vehicle structures. 
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Introduction 

 
Most parts of a vehicle body consist of a light frame 

covered with thin-walled shells and plates. The dynamic 

loads that develop during operation cause the vibration of 

these structures. Though the dynamic problems of shells  

 

and plates have been discussed in many papers, some 

issues require special consideration [1, 2, 6, 8–11, 13]. 

The dissipation of oscillational energy in material is 

usually expressed by the logarithmic decrement ( )0εδ  or 

the internal friction coefficient ( )0εγγ = , in which 0ε  is 

the amplitude of deformation. The relationship between 
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them can be expressed simply as πγδ = . As shown by 

experimentally obtained tables and graphs, this function 

is a monotonically rising curve. Rarely, ( ) const=0εδ  or 

is a curve with several extremums [1]. 

Assuming ( ) const=0εδ , we get a linear problem 

and the calculations are simplified to a large extent. This 

allows relatively easy solution of a wide range of 

interesting problems [2, 6, 8, 9]. The error of linear 

analysis can be determined only by comparing the 

calculation results. The present paper aims to provide at 

least partial solution to this problem. 

 

Formulation of the problem 

 
The investigation is based on E. S. Sorokin’s 

hypothesis, combined with some elements of non-linear 

analysis [14]. 

By applying methods of approximating functions, 

the experimentally determined relationship ( )0εγγ =  can 

be expressed by the power polynomial 

...2
02010 +++= εγεγγγ , where iγ  are constants. 

When one term, 0γγ = , of the polynomial is taken, 

we will get a linear solution of linear analysis. When two 

or more terms are taken, a non-linear solution is obtained. 

The results yielded by the aforementioned two 

approaches are compared. 

Forced oscillations of a rectangular plate are 

considered. A variation oscillation equation is obtained 

by applying Hamilton’s principle. The Ritz method and a 

theory of complex numbers are used to solve the problem 

[3–5, 7]. 

 

Solution of linear and non-linear problems 

 
Hamilton’s principle applied to a system of forces, 

including inelastic forces, can be expressed by a variation 

equation as follows: 

( )
2

1

1 0d S T i V W d t

τ

τ

δ γ= − + + =  ∫ , (1) 

in which T and V are kinetic and potential energy of the 

system, W is the work of external forces, γ  is a damping 

coefficient, ( )12 ττ −  is a short time interval, and t is 

time. By expressing the terms of the equation in a 

complex form, we get ti
eTT

ω2
0= , ti

eVV
ω2

0= , and 

ti
eWW

ω2
0= . Since 02 ≠ti

e
ω , we get the following 

expression from equation (1): 

 

( )0 0 01 0T i V Wδ γ− + + =   .  (2) 

 

The solution to the equation can be in the form of three 

variables of the function: 

 

( ) ( )0, , , i t
w x y t w x y e

ω= .  (3) 

 

The function of the oscillation form ( )yxw ,0  can 

be expressed as follows: 

 

( ) ( ) ( ) ( )y,xa...y,xay,xay,xw kkΦΦΦ +++= 22110 . (4) 

 

in which ( )yxk ,Φ  denotes the basic functions known. 

In this way, equation (2) is replaced with an 

equation system of particular derivatives of the 

coefficients ka : 

 

( )0 0 01 0
k

T i V W
a

δ
γ

δ
− + + =   , (5) 

 

in which k=1, 2, …, n. 

In the case of a rectangular isotropic plate, when 

010 εγγγ += , we get 

 

∫ ∫=
a b

dxdyWhT
0 0

0
2

0 ωµ ,    

 

( ) ( ){

( )

( ) }
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0 0
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                 1 ,

h a b
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h
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i V i

i

i dxdydz

γ σ ε γ γ ε

σ ε γ γ ε

τ ε γ γ ε

−

+ = + + +  

 + + + + 

 + + + 

∫ ∫ ∫

 (6) 

 

FWFW 00 = ,     

 

in which µ  is the mass of the plate unit area; 2h is plate 

thickness, 0F  is the amplitude of the excitation force, 

and Fw  is force point displacement. 

Beam functions are chosen as the basic functions for 

a rectangular plate. Let us consider the first type of 

oscillation of the plate supported around the periphery. In 

this case, we have 

 

( ) .sinsin, 10
b

y

a

x
ayxW

ππ
=   (7) 

 

Substituting expression (7) in formula (6) and 

performing some mathematical operations, we get: 

 

2
1

2

0
4

a
abh

T
ωµ

= ,    
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100 aFW = ,     
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where 
( )

33

222

1
ba

ba
K

+
= , 








+++=

33552
abbab

a

a

b
K

νν
,  

 

and 

( )

3

2

2

3 1

Eh
D

ν
=

−
. 

 

The values obtained are inserted in equation (5): 

 
4 42

2 2 21 1
1 1 0 1

1

4
32
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4 4 4

0.
3

DK DKh ab
a a i a

a

DhK
i a F a

π πδ µ ω
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− + =



 

 

By solving the equation, we obtain 

 

1 2

1 2
0 1 12

1 1

2
1

H
a

hK
i a

p K

ω
γ γ

=
   

− + +   
   

, 

 

in which 
hab

DK
p

µ

π 1
4

2
1 =  and 

1
4

02

DK

F
H

π
= . 

 

By developing complex amplitude into the indicator 

form ti
eaa

ω
011 = , we obtain the oscillation amplitude as 

follows: 

 

01
2

2

1 2
0 1 012

1 1

2
1

H
a

hK
a

p K

ω
γ γ

=

   
− + +   

   

,  (8) 

 

It can be seen that the unknown amplitude 01a  is found 

in the right and in the left parts of the expression (8). 

Therefore, in this case, we have a non-linear equation that 

can be used to plot a resonance curve rather than a 

formula. 

The vibration phase is the amplitude function: 
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It can be clearly seen that a non-linear solution is 

obtained if at least two polynomial ( )0εγγ =  terms are 

taken. 

Let us further consider a rectangular plate to 

compare linear and non-linear solutions quantitatively. 

For this plate ba = , 
21

4

a
K = , 

( )
42

12

a
K

ν+
= ,  

 

( )
2

1

2 12

a

h

K

hK ν
α

+
== , and 

( )
34

22
0

4

13

Eh

aF
H

π
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= . 

 

To plot a resonance curve, equation (8) is solved 

with respect to 
1

1

p

ω
 in the following way: 

 

( )2
01102

01

2

1

1 1 a
a

H

p
αγγ

ω
+−±= .  (10) 

 

In case of resonance, when 11 p=ω , the following 

equation is obtained from (10): 

 

0010
2
011 =−+ Haa γαγ .   (11) 

 

The solution of the equation yields the resonance 

amplitude: 

 

1

1
2
00

01
2

4

αγ

αγγγ H
a res

+±−
= .  (12) 

 

In the case of a linear problem, 0γγ =  and 01 =γ , 

and from the equation (11) we get 

 

0
01

γ

H
a res =∗

.   (13) 

 

Numerical examples 

 
Let us consider some particular data used in 

calculation: the material is steel Cm3 under static axial 

deformation and after 24-hour ageing, 5102 ⋅=E Mpa, 

30.=ν , 3
0 10271 −⋅= .γ , 231 .=γ ; the plate is 

0101 ..aa ×=×  m, 31005 −⋅= .h  m; the excitation force 

amplitude 100 =F N [12]. 

The calculation results are as follows: 

 

139201 .a res = , 205201 .a res =∗ , %.a 08301 =∆ , 

 

i.e. a linear solution yields an error of %.083 . 
To plot the resonance curves with a specified 

change, the resonance amplitude is decreased and the 

respective values for the relationship 
1

1

p

ω
 are calculated 

by using formula (10). In a linear problem, 01 =γ  is 

assumed in formula (10). 

The data obtained in the calculation are presented in 

table 1 and graphically shown in figure 1. 
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01a , mm 

1

1

p

ω

01a , mm 

0F , N 

Table 1. Resonance curve calculation data 

 

110 εγγγ +=  

01a , 

mm 
2.205 2.139 1.6 1.2 0.8 0.4 0.1 

- 1.0 1.00059 1.00097 1.00163 1.00345 1.01394 

1

1

p

ω
 

- 1.0 0.99941 0.9990 0.99836 0.99654 0.98586 

0γγ =  

1.0 - 1.0006 1.00098 1.00163 1.00341 1.01391 

1

1

p

ω
 

1.0 - 0.99932 0.9990 0.99836 0.9965 0.9858 

 

The relationship between the resonance amplitudes 

and the excitation force amplitude was calculated by the 

formulas (12) and (13). The calculation results are 

presented in table 2 and graphically shown in figure 1. 
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Fig 1. Graphs of resonance amplitudes: resa01 , when 

010 εγγγ += , 
∗

resa01 , when 0γγ =  

 

Table 2. The calculation data on the relationship between 

resonance amplitudes and excitation force 

 

0F , N 0 5 10 15 20 25 30 

resa01 , 

mm 
0 1.080 2.139 3.125 4.135 5.096 6.001 

∗
resa01 , 

mm 
0 1.102 2.205 3.307 4.409 5.512 6.614 

 

Conclusions 

 
The solution of a linear problem of plate oscillation 

yields a higher value and may be considered the first 

iteration of calculation. 

When at least two terms of the polynomial ( )0εγ  are 

taken, the resonance amplitude is decreased by more than 

3 per cent. 

The solution of the non-linear problem shows the 

dependence of the angle on the amplitude phase (8). 

In the non-linear problem, as in the linear one, the 

relationship between resonance amplitude and excitation 

force is close to linear (Fig 2). 
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Fig 2. The relationship between resonance amplitudes and the 

excitation force 
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