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Abstract. Calculation results for 11 different finite span wings are presented. Calculations were made by a combination of a 
numerical solution of lifting line theory with a technique developed to evaluate nonlinear section lift data. Aerodynamic coefficients 
for these wings are compared to the research results of other authors and to experimental data.  
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Introduction 
Aerodynamic coefficients were determined for 11 

different finite span wings. Comparisons to experimental 
data and to with results of calculations of other authors 
are presented. The calculations were made by a 
combination of the Vortex Step Method with a technique 
developed to evaluate nonlinear section lift data. Results 
include various flow conditions from Re=4000 for a 
straight plate to Re=2,7x106 for a swept wing. Wings 
were chosen according to available experimental data. 

Review of methods using non-linear section 
lift data for calculation of lift and drag force 
along a wing span 

Prandtl’s Lifting Line Theory is the basis for most 
methods used to calculate change of lifting force of flat, 
low sweep angle and moderate and high aspect ratio 
wings. Tani developed the first successful technique in 
1934 for handling nonlinear section lift-curve slopes in 
the formulation of Prandtl’s Lifting Line Theory [17]. 
This method was made popular by the 1947 NACA 
(National Advisory Committee for Aeronautics) report of 
Sivells and Neely that provides a detailed description of 
the method for unswept wings with arbitrary planform and 
airfoil lift-curve slopes [15]. They apply this method for 
analysis of wings up to stall, i.e., until a wing angle of 
attack at any section on the wing has Cl equal to Clmax. 

Numerical solutions of Prandtl’s Lifting Line 
Theory were also developed and are still in use. The most 
well known works using these methods are the research of 
McCormick and Anderson et al. [8, 1]. The method is 
also reflected in resent research of W. F. Phillips and D. 
O. Snyder [13].  

The research of Mutteperl] and Weisinger [19] made 
a base for the so-called Finite-Step Method or Vortex 
Step Method, which also was developed from Prandtl’s 
Lifting Line Theory. Later Campbell and Blackwell 
simplified their method [10, 4, 3]. These methods 
presented the first attempts to couple sectional (two-
dimensional) viscous results with inviscid wing (three-
dimensional) theory. The most resent research reflecting 
their work has been made by Barnes J.P. [2]. He presents 
the Semi-Empirical Vortex Step Method, which includes 
empirical adjustments in lifting line position and shape. 

Piszkin and Levinsky] developed a nonlinear lifting-
line method based in part on the iterative method 
originally conceived by Tani [14, 17]. Their method 
differs from Prandtl’s classical LLT in the 
implementation of the boundary condition. Tseng and Lan 
developed an entirely different approach to the use of 
nonlinear section data [18]. In their method, the reduction 
at any given wing section is determined by the difference 

between the potential flow solution and the viscous Cl 
from the nonlinear section Cl-α curve. 

In all methods using nonlinear section data the, main 
objective is that for the final solution of the three-
dimensional flow, the Γ distribution across the span is 
consistent with the distribution of the effective α for each 
section, and the Cl and Cm for each section is consistent 
with the effective α for that section and the section Cl-α 
and Cm-α data. Mukherjee R., Gopalarathnam A., and 
Kim S W. [9] achieve that condition by finding the 
effective reduction in the camber distribution for each 
section along the span.  

Another possibility to take into account is the non-
linear section data in wing calculation presented in the 
research of K. Jacob [6]. His method combines an 
inviscid 3d-lifting surface theory with a 2d-airfoil theory 
that includes boundary layer calculations and a 
displacement model for rear separation 

In this research the vortex step method, which 
differs from the methods mentioned above by the 
nonlinear section data implementation technique, was 
used. Here an idea of E. Lasauskas was developed into a 
separate method for wing lift and drag force calculation 
using nonlinear section characteristics [7]. 

Model of a finite wing 
The wing model used is described in reference [11]. 

The method combines numerical solution of lifting line 
theory and a special approach to evaluate nonlinear 
section lift data. The iterative procedure allows wing lift 
at critical and post critical angles of attack to be predicted 
for the wings with moderate sweep and high aspect ratios.  

Results 
Figures 1 to 4 present calculation results of a 

rectangular flat plate of aspect ratio three at two different 
Reynolds numbers. Experimental results, presented in 
reference, were used as a section data [12]. These results 
were obtained in a low-speed, low-turbulence wind tunnel 
with a test section of 61 x 61 cm. Aluminium end plates 
were mounted in the test section. All wings tested were 
held at quarter-chord point, and a streamlined covering 
covered the sting. The gaps between the wing and the end 
plates were adjusted to approximately 0.8 mm. 
Uncertainty in the angle of attack was determined to be of 
0.2 – 0.3 deg and 6% for CL and CD. 

Figures 1 and 2 present lift and drag for a 
rectangular wing of a flat plate at Reynolds number 8000. 
Here it could be found that calculated curve presents the 
effect of finite wingspan compared to two-dimensional 
case. The results obtained are very close to the 
experimental results presented in ref. [12]. 
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Fig 1. Lift coefficient of a flat plate rectangular wing of aspect 

ratio 3, at Re=80000. For calculation, section experimental 
results were used 

 

Fig 2. Lift-drag characteristics for a flat plate rectangular wing 
with aspect ratio 3 at Re=80000. For calculation, section 

experimental results were used 

Figures 3 and 4 present the results for the same wing 
at Reynolds number 14000. It should be mentioned that 
the method itself does not account for the effect of the 
Reynolds number on the calculated wing characteristics. 
Here the change in the Reynolds number is evaluated in 
the 2D (sectional) characteristics, what means that a wing 
could be calculated for any Reynolds number for which 
2D data is available. Compared to the results at Re=8000, 
bigger differences are noticed between calculated and 
experimental results. However, the lift curve slope over 5 
degrees of angle of attack is still very close. 

 

Fig 3. Lift coefficient of a rectangular wing of aspect ratio 3 at 
Re=140000. For calculation, section experimental results were 

used 

 

Fig 4. Lift-drag characteristics for a rectangular wing with 
aspect ratio 3 at Re=140000. For calculation, section 

experimental results were used 

The following Figures 5-8 present another 
calculation attempt for a rectangular wing at ultra-low 
Reynolds numbers. Results are presented for several 
airfoils used for a wing of aspect ratio 7.25. Since 
experimental results were not available for such airfoils at 
Re=4000, section calculation results were made by means 
of X-FOIL [5]. As can be seen from the figures, 
calculation results are quite far from the experimental 
results, which are presented in ref. [16]. 
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Fig 5. Lift coefficient of FX 63-137 rectangular wing AR=7.25 
at Re=4000. X-FOIL calculation results were used as 2D 

section data 

Such a situation was expected and is explained by 
the possibilities of X-FOIL. For such low Reynolds 
numbers X-FOIL cannot give suitable section 
characteristics. 

 

Fig 6. Lift coefficient of NACA 0006 rectangular wing with 
AR=7.25 at Re=4000. X-FOIL calculation results were used as 

2D section data 

 

Fig 7. Lift coefficient of NACA 0009 rectangular wing with 
AR=7,25 at Re=4000. X-FOIL calculation results were used as 

2D section data 

 

Fig 8. Lift coefficient of NACA 0012 rectangular wing with 
AR=7.25 at Re=4000. X-FOIL calculation results were used as 

2D section data 

The results presented above make a proposal for 
more thorough research in the application of the method 
in the area of low Reynolds numbers. Due to lack of 
experimental data, it is not available at present time. 

Figure 9 presents other calculation results for a 
rectangular wing with the use of X-FOIL sectional data. 
Here the results are compared with the results found by K. 
Jacob and with experimental results [6]. 
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Fig 9. Lift-drag characteristics for a NACA 2412 rectangular 
wing with AR=5 at Re=2.7x106. X-FOIL calculation results 

were used as 2D section data 

As seen in Figure 9, there is good agreement 
between calculated and experimental results up to CLmax, 
but beyond it the experiments show a rapid decrease in 
lift. As this airfoil at calculated conditions develops a 
short bubble near the nose, this may be caused by the 
disappearance of the bubble [6]. Comparing the 
calculation results it is evident that the calculated lift 
curve slope is slightly higher than that obtained by K. 
Jacob, which results in higher CLmax. As previous research 
shows, the problem is in the different section data used 
[11]. K. Jacob used experimental section data whereas X-
FOIL results were used in the present research. With the 
same source of section data, both methods present very 
close results. Such a situation can be noticed in figures 10 
and 11, where the same experimental data were used by 
both methods.  

Figure 11 presents the wing sweep evaluation 
results. Here calculation results for non-tapered NACA 
4415 wing with 20 deg. of sweep back are presented. 
Close agreement with K. Jacob’s results should be 
noticed. 

 

Fig 10. Lift-drag characteristics for a NACA 4415 rectangular 
wing with AR=6.2 at Re=2.1x106. Experimental results were 

used as 2D section data 

For the clarity here the difference from Klaus 
Jacob’s method should be explained. Jacob [6] uses the 
following, which is different from that one used in the 
present method, procedure to calculate the effective angle 
of attack [11]. 

Induced flow angles for each wing section are 
computed with 3-d lifting surface theory. Effective angle 
of attack is determined in that way: 

ααα ∆−= ge  

Here: 
∗∗∗ ∆−+∆⋅=∆ ααα )1( FF ; F=0.33 

d−
∗∗∗ −=∆ 2)(ααα  

d−
∗∗∗∗∗∗ −=∆ 2)(ααα  

Whereas induced angles of attack of the 3-d flow 
∗α  and ∗∗α are calculated from the system of linear 

equations based on the 3-d lifting surface theory, 2-d 
angles of attack are calculated in the following manner: 

πα 2/)()( 2 mld CC −=−
∗ ; 

πα 2/)8()( 2 mld CC +=−
∗∗  

 

Fig 11. Lift-drag characteristics for a NACA 4415 not tapered 
swept wing (20 deg.) with AR=6.2 at Re=2.1x106. 

Experimental airfoil results were used as 2D section data 

Conclusions 
1. Despite some results obtained for a flat plate at very 

low Reynolds numbers, the limits of the calculation 
method used depends on the availability of reliable 
section data. 

2. Low Reynolds number experimental data is needed 
in order to evaluate the capabilities of the method at 
a very low Reynolds numbers. 

3. For the moderate and high aspect ratios of 
rectangular wings the method provides results that 
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agree with the calculation results of K. Jacob and 
with experimental results. 

4. Agreement with Jacob’s results appears in the 
calculation of a sweptback wing, but comparison 
with experimental results is needed in order to 
evaluate the reliability of such results. 
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