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Abstract. The article shows the variation of stopping distance as a function of deceleration and velocity change derived from the 
standard Newtonian equations for assumed constant acceleration. Note that the time to stop is equal for all three triangular 
deceleration-time pulses but that the stopping distances are not. Minimum stopping distance is achieved with a rectangular pulse, and 
hence it is the most desired pulse shape from a consideration of deceleration from maximum velocity at a given deceleration level in 
the shortest possible distance. 
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Introduction 
Crashworthiness technology can be extended beyond 

simple concepts by simulation of the crash phenomena. 
Additional sets of impact conditions may appear critical 
for certain specific systems, and these require 
examination as well. Analytical models, scale models, and 
full-scale tests may simulate these conditions.  

Complex interactions of crash, inertial, and 
structural forces, which contribute to the structural 
distortion and the acceleration environment experienced 
in a crash, can be observed [1]. Dissipation of the 
potential and kinetic energy of the aircraft can be studied 
for conditions that exist in the crash sequence. Structural 
distortion with subsequent ruptures, volumetric 
reductions, and penetration of occupied spaces can be 
assessed and estimates of the acceleration levels on 
critical components and occupants obtained. 

In terms of fidelity, the dynamic testing of full-scale 
structures most closely approximates actual crash 
conditions, especially if the components of velocity and 
impacted surface conditions can be realistic simulated in 

the early design stages of a new aircraft; full-scale testing 
is untimely and costly. In fact, the testing of full-scale 
airframes has been confined to the development of 
technology rather than the development and improvement 
of design. 

 

1. Dissipation of kinetic energy during 
impact 

Relationships among the kinetic quantities of 
position, velocity, and acceleration form the basis for the 
study of dynamic phenomena. 

By Newtonian Law, force (F) is a product of a mass 
(m) and an acceleration (a): 

,
dt
dvmmaF ==  (1) 

where v is velocity and 
t is  time. 
From equation (1), we get: 
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.
ds
dvmv

dt
ds

ds
dvmF ==  (2) 

Multiplying F by elementary shift (ds) and 
integrating in the change limits of a shift, we get: 
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A shift in kinetic energy 2

2
1 mvT =  is equal to 

work ∫=
2

1

S

S
FdsW . 

Then using the equation (3), when a speed descends 
from 0v  to v during impact (after impact speed is equal to 
zero), we can note: 

∫ −=
S

mvmvFds
0
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0 2
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2
1

 (4) 

An ideal impact is shown at Fig 1. At Fig 1b we see 
a force and shift change dependence. 

 

Fig 1. Kinetic energy descending during impact  
a – chart of an impact; 

b – a force and a shift interdependence. 

At Fig 1b, hatched area is quantity of the kinetic 
energy before shift 1s , that is 
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But during impact, a complicated process takes 
place and the absorption of energy depends on a shift 
decrement. We can look at the structure system like at a 
foam or a honeycomb [3]. 

An ideal schema for the porous composite of 
deformation is shown in the Fig 2. 

An area under force and shift shows an energy 
absorption quantity: 

“1” – elastic zone; 
“2” – plastic zone; 
“3” – bounced aircraft zone. 
If we know an aircraft slippage distance on the 

ground till stopping, 

2
02

1 mvFs =  (5) 

where, 

m
Fsv 2

0 =  (6) 

When an aircraft is moving slowly on a horizontal 
surface, force is 

GF µ=  (7) 

where µ  is a frictional coefficient and 
G is weight. 
Then speed 

sg
gG

GSv µ
µ 2

/
2

0 ==  (8) 

where g – freewheeling dip of acceleration. 
A change of work and kinetic energy, when speed is 
0=fv , are evaluated like: 

[ ]2
0

2

2
1 vv

g
GGs f −=− µ  (9) 

 

Fig 2. Force and shift interdependence of porous composite 
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From this 

sgvv f µ22
0 −=  (10) 

and 

sgvv f µ22
0 −=  (11) 

But a slippage is not horizontal, and then speed is: 

( )θθµµ sincos22
0 ±−= sgvv f  (12) 

where θ  - a corner with horizontal (for slippage 
uphill the sign + applies; for slippage downhill, the – 
sign). 

For example, slide distance of an airship is 350 m, 
residual speed is km/h80=fv , and frictional 

coefficient is 7,0=µ . Evaluating speed ( 0ν ) by the 

formula (11), we get km/h2600 =v . 

2. Stopping distance 
Subject to change of speed, a medium deceleration 

of an airship may be formulated as: 

sLgvv f 222
0 =−  (13) 

where s is stopping distance and 
L  is  medium deceleration. 
Then stopping distance is: 

Lg
vv

s f

2

22
0 −

=  (14) 

According to this formula, we can notionally find a 
stopping distance till crash. Calculation data is listed at 
figure 3. 

 

Fig 3. Stopping distance and time interdependence of speed 
change and deceleration level 

A rate of deceleration may be rectangular, triangular 
or have an another form [2]. Rate of deceleration with a 
triangular form is shown in Fig 4. 

 

Fig 4. Rate of deceleration with a rectangular form 

Here 

avt /0= ,   asv 22
0 = ,   

a
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Rate of deceleration with a triangular form is shown 
in Fig 5. 

 

Fig 5. A deceleration rate of triangular form 
a – sag till zero time; 
b – level till zero time 

In Fig. 5 a, computational dimensions are noted as: 
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In Fig. 5 b, computational dimensions are noted as: 
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Rate of deceleration with a symmetrical triangular 
form is shown in Fig 6. 

 

Fig 6. Rate of deceleration with a symmetrical triangular form 

In Fig 6 a, computational dimensions are noted as: 
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When speed is final, 0=tv , the characteristics of 
the rate of deceleration various forms are calculated thus. 

When deceleration rate is rectangular (Fig 7). 

Term   
gL
vt 0= ; 

Deceleration 
gs

vL
2

2
0= ; 

Stopping distance 
gL
vs

2

2
0=  or 

2

2gLts = . 

 

Fig 7. Rate of deceleration with a rectangular form 

When the rate of deceleration is triangular form No 
1 (Fig 8): 
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gL
vt 02

= ; 

Deceleration 
S
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Stopping distance 
L
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6
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Fig 8. Rate of deceleration with a triangular form (No 1) 

When the rate of deceleration is triangular form No 
2 (Fig 9): 

Term   
gL
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= ; 

Deceleration 
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vL

2
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Stopping distance 
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vs

2
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4
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Fig 9. Rate of deceleration with a triangular form (No 2) 
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Fig 10. Rate of deceleration with a triangular form (No 3) 

Term   
gL

v,
t 0571

= ; 
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v,L
2
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= ; 
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v,s
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= or  

   
π
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Fig 11. Rate of deceleration with a half-sine form 

A dependence of the following equations is shown 
in the Fig 12. 

In Fig 12 we can see that stopping distance is 
shortest when a rate of deceleration has a rectangular 
form. 

 

 

Fig 12. The dependences of the velocity, the deceleration and the distance on the time 
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Conclusions 
1. The time to stop aircraft is possible in the three 

deceleration-rate forms: triangular, rectangular, and 
half-sine. 

2. Minimum stopping distance is achieved with the 
rectangular pulse and hence it is the most desired 
pulse shape from a consideration of deceleration 
from maximum velocity at a given deceleration level 
in the shortest possible distance. 
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