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Abstract. Airline seat inventory control is about "selling the right seats to the right people at the right time". In this paper, the 
problem of determining optimal booking policy for multiple fare classes in a pool of identical seats for multi-leg flights is considered. 
During the time prior to departure of a multi-leg flight, decisions must be made concerning the allocation of reserved seats to 
passengers requesting space on the full or partial spans of the flight. It will be noted that in the case of multi-leg flights the long-haul 
passengers are often unable to obtain seats because the shorter-haul passengers block them. For large commercial airlines, efficiently 
setting and updating seat allocation targets for each passenger category on each multi-leg flight is an extremely difficult problem. 
This paper presents static and dynamic models of airline seat inventory control for multi-leg flights with multiple fare classes, which 
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allow one to maximize the expected contribution to profit. The dynamic model uses the most recent demand and capacity information 
and allows one to allocate seats dynamically and anticipatorily over time. 

Keywords: aircraft, transportation, data, model-based control, optimization. 

Introduction  

It is common practice for airlines to sell a pool of 
identical seats at different prices according to different 
booking classes to improve revenues in a very 
competitive market. In other words, airlines sell the same 
seat at different prices according to different types of 
travelers (first class, business, and economy) and other 
conditions. The question then arises whether to offer seats 
at a relatively low price at a given time with a given 
number of seats remaining or to wait for the possible 
arrival of a higher paying customer. Assigning seats in the 
same compartment to different fare classes of passengers 
in order to improve revenues is a major problem of airline 
seat inventory control. This problem has been considered 
in numerous papers. For details, the reader is referred to a 
review of yield management and perishable asset revenue 
management by Weatherford et al. and a review of 
relevant mathematical models by Belobaba [17, 3]. For a 
comprehensive and up-to-date overview of the area we 
refer to McGill and van Ryzin, which contains a 
bibliography of over 190 references [13]. 

A common approach to dealing with the 
aforementioned problem is to assume that lower-fare 
customers book before higher-fare customers (cf. 
Belobaba; Brumelle; Brumelle; Curry and Wollmer). 
Since customers from different fare classes do not 
necessarily arrive in the order of increasing fares, 
Robinson considered a somewhat more general case in 
which the customers of any given fare class remain 
clustered but the order of such clusters may not match 
that of the increasing fares [15]. In practice, customers 
from different fare classes arrive concurrently rather than 
sequentially. Therefore, this case cannot be ignored. By 
using a dynamic programming approach, Gerchak et al. 
dealt with a dynamic model of two fare classes in which 
customer demand is assumed to follow a discrete time 
stochastic process [8]. The assumption allows concurrent 
arrivals of customers requesting different fare classes. 
Gerchak et al. show that the optimal decision policies can 
be reduced to a moderate set of critical values. This result 
plays an important role in eliminating the need for storing 
a large amount of data. Alstrup et al. developed an 
overbooking model for two fare classes at SAS and 
demonstrated an optimal booking policy [1]. Hersh and 
Ladany studied an intermediate stop problem and 
developed a policy for allocating seats to passengers 
flying full or partial spans [9]. Intuitively, the cancellation 
distribution is assumed to be binomial (e.g., Alstrup; 
Ladany and Hersh). However, the binomial cancellation 
distributions do not ensure an efficient result to the multi-
fare-class overbooking problem [6]. Thus, a simplified 
version of the multi-fare-class seat inventory control 
problem assumes that there will be no cancellations. 
Under the assumption that there are neither no-shows by 
accepted customers nor cancellations of booking, seat 

inventory problems with multiple fare classes have 
received a significant amount of attention (e.g., Lee; 
Brumelle and Robinson). Using an approach similar to 
that proposed by Gerchak et al., Lee and Hersh 
investigated a multiple fare class’s seats allocation 
problem and showed that the booking policy can be 
represented using either a set of critical booking 
capacities, or critical decision periods [11].  

The problem described here is usually considered in 
three stages according to increasing difficulty. First is the 
one-leg problem, which deals with one airplane for one 
takeoff and landing and ignores the potential revenue 
impact of other links of the passengers' itineraries. Second 
is the multi-leg problem, which deals with one airplane 
having multiple takeoffs and landings (still ignoring the 
impact of other links). The third is the origin-destination 
network (OD network) problem, which considers many 
airplanes having many takeoffs and landings on a routing 
network. 

This paper deals with the problem of optimal airline 
seat inventory control under the following assumptions: 
(i) Multi-leg flight: In multi-leg flight seat inventory 
control, the complete flight offered by the airline is 
optimized simultaneously. One way to do this is to 
distribute the revenue of a multi-leg flight over its 
passenger origin-destination (OD) combinations and 
apply seat inventory control to the individual OD 
combinations. Seats for each OD combination are 
reserved and offered at several fares according to 
different types of travelers (first class, business, and 
economy). Assigning seats in the multi-leg flight to 
different passenger OD and fare class combinations is a 
major problem of multi-leg flight seat allocation. We seek 
an optimal policy that maximizes total expected revenue; 
(ii) Independent demands: The demands for the different 
passenger OD and fare class combinations are 
stochastically independent; (iii) Low before high 
demands: The lowest fare reservations requests arrive 
first, followed by the next lowest, etc., for each passenger 
OD combination; (iv) No cancellations: Cancellations, 
no-shows, and overbooking are not considered; (v) 
Limited information: The decision to close a fare class is 
based only on the number of current bookings; (vi) 
Nested fare classes: Any fare class can be booked into 
seats not taken by bookings in lower fare classes (for the 
same OD combination).  

Thus, the problem of finding an optimal airline seat 
inventory control policy for multi-leg flight with multiple 
fare classes, which allows one to maximize the expected 
profit of this flight, is one of the most difficult problems 
of air transport logistics. On the one hand, one must have 
reasonable assurance that the requirements of customers 
for reservations will be met under most circumstances. On 
the other hand, one is confronted with the limitation of the 
capacity of the cabin, as well as with a host of other less 
important constraints. The problem is normally solved by 
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the application of judgment based on past experience. 
The question arises whether it is possible to construct a 
simple mathematical theory of this problem, which will 
allow one to better use the available data based upon 
airline statistics. Two models (dynamic and static) of 
airline data are proposed here. In the dynamic model, the 
problem is formulated as a sequential decision process. 
We present an optimal dynamic reservation policy that is 
used at each stage prior to departure time for multi-leg 
flights with several classes of passenger service. The 
essence of determining the optimal dynamic reservation 
policy is the maximization of the expected gain of the 
flight, which is carried out at each stage prior to departure 
time using the available data. The term dynamic 
reservation policy is used in this paper to mean a rule, 
based on available data, to determine whether to accept a 
given reservation request made at a particular time for 
some future date. An optimal static reservation policy is 
based on the static model. The models proposed here 
contain a simple and natural treatment of the airline 
reservation process and may be appropriate in practice. 

1. Multi-leg flight model for static seat 
inventory control  

In order to obtain the multi-leg flight model for 
static seat inventory control, denote an origin-destination 
and fare class combination by ODF. The goal of seat 
inventory control for multi-leg flight is to maximize the 
expected revenue from its supply of ODF combinations, 
using estimated demand distributions. Each ODF in a 
multi-leg flight consists of one or more flight legs. The 
limited capacity on each flight leg has to be used in the 
most profitable way. This can be achieved by limiting the 
number of seats available to the less profitable classes. 
Therefore, let uOD denote the number of seats reserved for 
each separate OD and )(F

ODu  denote the number of seats 
protected for each separate ODF from all lower classes of 
the same OD. This definition implies that each seat on 
each flight leg is available for only one particular OD. 
Through this partitioned approach, passengers are divided 
into homogeneous groups that have a clear contribution to 
multi-leg flight revenue, which is essential for the 
definition of the objective function. Let L be the total 
number of flight legs in the ODF multi-leg flight. SOD;l 
denotes the set of OD combinations available on flight leg 
l. Let FOD be the number of fare classes for each separate 
OD. The probabilistic demand for each ODF is denoted 
by )(F

ODX . Although demand is in fact a discrete variable, 
continuous approximations of the demand distributions 
are generally used. Furthermore, let )(F

ODc  be the fare 

required for an ODF, where )1(
ODc > )2(

ODc > … > )( ODF
ODc , i.e. 

)1(
ODc  and )( ODF

ODc are the highest and lowest fare levels 
respectively, and let U denote the seat capacity of the 
airplane. Both uOD and )(F

ODu  are integer decision 
variables, that should be chosen to maximize the expected 
profit of the multi-leg flight.   

For each separate OD, if uOD is given, the problem is 
to find an optimal vector of individual protection levels 
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Theorem 1. The optimal protection levels can be 
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where F∈{2, …, FOD−1}. 
 
Proof. The proof is a simple application of the 

Lagrange multipliers technique.   
One can see that the above equations are solved 
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It follows from the above that, in general, an optimal 
set of individual protection levels (in general, non-
integer) must satisfy the following conditions: 
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where F∈{2, …, FOD-1}. Thus, the protection level 
for the two highest fare classes is obtained by summing 
two individual protection levels, )( )2()1(

ODOD uu + , and so on. 
There is no protection level for the lowest fare class, FOD; 

)(F
ODu  is the booking limit, or number of seats available, 

for class FOD at time prior to flight departure; class FOD is 
open as long as the number of bookings in class FOD 
remains less than this limit. Thus, ) ... ( )()( ODF

OD
F

OD uu ++  is 
the booking limit, or number of seats available, for class 
F,  F∈{1, …, FOD}.  Class F is open as long as the 
number of bookings in class F and lower classes remain 
less than this limit. It is possible, depending on the 
airplane capacity, fares, and demand distributions that 
some fare classes will not be opened at all. 

 
Now the general problem can be formulated as: 
Maximize 

∑OD
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ODOD
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Note that (10)-(13) are a non-linear optimization 
problem with a concave and separable objective function. 
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first stage, an optimal vector )...,  ,( )()1( ODF
ODOD uu ∗∗  will be 

obtained for each OD and uOD. 
At the second stage, all uOD must be chosen such 

that  
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Subject to 
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0≥ODu  integer for all OD. (17) 

This problem can be treated by the functional 
equation method of dynamic programming. 

2. Multi-leg flight model for dynamic seat 
inventory control  

It will be noted that the information on the actual 
demand process can reduce the uncertainty associated 
with the estimates of demand. Hence, repetitive use of a 
static policy over the booking period, based on the most 
recent demand and capacity information, is the general 
way to proceed and leads to a dynamic policy. 

In this section, we consider a multi-leg flight for a 
single departure date with T predefined reading dates at 
which the dynamic policy is to be updated, i.e., the 
booking period before departure is divided into T 
readings periods determined by T reading dates. These 

reading dates are indexed in decreasing order, t=T, …, 1, 
0, where t=1 denotes the first interval immediately 
preceding departure, and t=0 is at departure. The T-th 
reading period begins at the initial reading date at the 
beginning of the booking period, and the t-th reading 
period begins at t-th reading date furthest from the 
departure date. Thus, the indexing of the reading periods 
counts downwards as time moves closer to the departure 
date. Typically, the reading periods that are closer to 
departure cover much shorter periods of time than those 
further from departure. For example, the reading period 
immediately preceding departure may last one day 
whereas the reading period one-month from departure 
may last one week. 

Let us suppose that the total seat demand for fare 
class F and each separate OD at the t-th reading date 
(time t) prior to flight departure is tF

ODX )(  (F∈{1, 2, … , 

FOD}), where t
ODX )1(  corresponds to the highest fare class; 

);( )()()( tF
OD

tF
OD

tF
OD xf θ  is the probability density function of 

tF
ODX )( , where tF

OD
)(θ  is a parameter (in general, vector). 

We assume that these demands are stochastically 
independent. The vector of demands is t

ODX =( t
ODX )1( , … 

tF
OD

ODX )( ). Each booking of a fare class F seat generates 

average revenue of )(F
ODc , where )1(

ODc > )2(
ODc > … > )( ODF

ODc . 

Let tF
ODu )( , F∈{1, …, FOD} be an individual protection 

level for fare class F at time t prior to flight departure. 
This many seats are protected for class F from all lower 
classes. The protection for the two highest fare classes is 
obtained by summing two individual protection levels, 
( t

ODu )1( + t
ODu )2( ), and so on. There is no protection level for 

the lowest fare class, FOD; tF
OD

ODu )(  is the booking limit, or 
number of seats available, for class FOD at time t prior to 
flight departure; class FOD is open as long as the number 
of bookings in class FOD remains less than this limit. 
Thus, ( t

ODu )1( + … + tF
OD

ODu )( ) is the booking limit, or number 
of seats available, for class F, F∈{1, … FOD}. Class F is 
open as long as the number of bookings in class F and 
lower classes remain less than this limit. The maximum 
number of seats that may be booked by fare classes in the 
next period at time t prior to flight departure is the 
number of unsold seats Ut. Demands for the lowest fare 
class arrive first, and seats are booked for this class until a 
fixed time limit is reached, bookings have reached some 
limit, or the demand is exhausted. Sales to this fare class 
are then closed, and sales to the class with the next lowest 
fare are begun, and so on for all fare classes. It is assumed 
that any time limits on bookings for fare classes are 
prespecified. That is, the setting of such time limits is not 
part of the problem considered here. It is possible, 
depending on the airplane capacity, fares, and demand 
distributions that some fare classes will not be opened at 
all.  

Now the general problem at the t-th reading date 
(time t, t∈{T, … 1}) prior to flight departure can be 
formulated as: 
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Maximize 
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This problem can be treated in the same way as it is 
described in Section 2. 

Conclusions  

The mathematical models described in this paper 
attempt to provide a consistent and valid approach to 
optimization of airline booking levels. Simulations and 
comparisons with existing simpler models from airline 
companies seem to indicate that the decision rules 
obtained from the aforementioned models form an 
efficient operational tool in the planning of an airline’s 
booking policy. 
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