
*Mathematical Statistics Department, University of Latvia, Raina Blvd 19, LV-1050 Riga, Latvia.
**Computer Science Department, Institute of Transport and Telecommunication, Lomonosov Street 1, LV-1019 Riga, Latvia. E-mail: nechval@junik.lv
Received 01 10 2004, accepted 13 12 2004

Edgars K. VASERMANIS received the PhD degree in automatic control and systems engineering from the Riga Civil Aviation Engineers Institute (RCAEI) in June, 1974, and the DSc degree in economics and management at the Tallinn University in September, 1989. He is now a Dean of the Faculty of Economics and Management at the University of Latvia. His interests include economics and management, operations research, statistical decision theory, and adaptive control. Professor Vasermanis is a professional member of the Latvian Statistical Association, the Institute of Mathematical Statistics. He is a member of the Latvian Association of Professors.

Nicholas A. NECHVAL received the PhD degree in automatic control and systems engineering from the Riga Civil Aviation Engineers Institute (RCAEI) in June, 1969, and the DSc degree in radio engineering from the Riga Aviation University (RAU) in June, 1993. Dr. Nechval was Professor of Applied Mathematics at the RAU, from 1993 to 1999. At present, he is Professor of Mathematics and Computer Science at the University of Latvia, Riga, Latvia. In 1992, Dr. Nechval was awarded a Silver Medal of the Exhibition Committee (Moscow, Russia) in connection with research on the problem of Prevention of Collisions between Aircraft and Birds. He is the holder of several patents in this field. His interests include mathematics, stochastic processes, pattern recognition, multidimensional statistic detection and estimation, multiresolution stochastic signal analysis, digital radar signal processing, operations research, statistical decision theory, and adaptive control. Professor Nechval is a professional member of the Latvian Statistical Association, the Institute of Mathematical Statistics, and CHAOS asbl (the Institute of Mathematics, based in Liege, Belgium). Dr. Nechval is also a member of the Latvian Association of Professors.

Konstantin N. NECHVAL was born in Riga, Latvia, on March 5, 1975. He received the MS degree from the Aviation University of Riga, Latvia, in 1998. At present, he is a PhD Student in automatic control and systems engineering at the Riga Technical University. His research interests include stochastic processes, pattern recognition, operations research, statistical decision theory, and adaptive control.

Kristine ROZITE was born on May 18, 1972 in Riga, Latvia. She studied the production management and management information’s systems at University of Latvia and received a master degree in business administration in June 1996. Since 2000 she is working as lecturer at University of Latvia at faculty of Economics and Management. Her interests include application of mathematical methods to business processes, statistical optimization, decision making.

Abstract. Airline seat inventory control is about "selling the right seats to the right people at the right time". In this paper, the problem of determining optimal booking policy for multiple fare classes in a pool of identical seats for multi-leg flights is considered. During the time prior to departure of a multi-leg flight, decisions must be made concerning the allocation of reserved seats to passengers requesting space on the full or partial spans of the flight. It will be noted that in the case of multi-leg flights the long-haul passengers are often unable to obtain seats because the shorter-haul passengers block them. For large commercial airlines, efficiently setting and updating seat allocation targets for each passenger category on each multi-leg flight is an extremely difficult problem. This paper presents static and dynamic models of airline seat inventory control for multi-leg flights with multiple fare classes, which
allow one to maximize the expected contribution to profit. The dynamic model uses the most recent demand and capacity information and allows one to allocate seats dynamically and anticipatorily over time.

Keywords: aircraft, transportation, data, model-based control, optimization.

Introduction

It is common practice for airlines to sell a pool of identical seats at different prices according to different booking classes to improve revenues in a very competitive market. In other words, airlines sell the same seat at different prices according to different types of travelers (first class, business, and economy) and other conditions. The question then arises whether to offer seats at a relatively low price at a given time with a given number of seats remaining or to wait for the possible arrival of a higher paying customer. Assigning seats in the same compartment to different fare classes of passengers in order to improve revenues is a major problem of airline seat inventory control. This problem has been considered in numerous papers. For details, the reader is referred to a review of yield management and perishable asset revenue management by Weatherford et al. and a review of relevant mathematical models by Belobaba [17, 3]. For a comprehensive and up-to-date overview of the area we refer to McGill and van Ryzin, which contains a bibliography of over 190 references [13].

A common approach to dealing with the aforementioned problem is to assume that lower-fare customers book before higher-fare customers (cf. Belobaba; Brumelle; Brumelle; Curry and Wollmer). Since customers from different fare classes do not necessarily arrive in the order of increasing fares, Robinson considered a somewhat more general case in which the customers of any given fare class remain clustered but the order of such clusters may not match that of the increasing fares [15]. In practice, customers from different fare classes arrive concurrently rather than sequentially. Therefore, this case cannot be ignored. By using a dynamic programming approach, Gerchak et al. dealt with a dynamic model of two fare classes in which customer demand is assumed to follow a discrete time stochastic process [8]. The assumption allows concurrent arrivals of customers requesting different fare classes. Gerchak et al. show that the optimal decision policies can be reduced to a moderate set of critical values. This result plays an important role in eliminating the need for storing a large amount of data. Alstrup et al. developed an overbooking model for two fare classes at SAS and demonstrated an optimal booking policy [1]. Hersh and Ladany studied an intermediate stop problem and showed that the booking policy can be represented using either a set of critical booking capacities, or critical decision periods [11].

The problem described here is usually considered in three stages according to increasing difficulty. First is the one-leg problem, which deals with one airplane for one takeoff and landing and ignores the potential revenue impact of other links of the passengers' itineraries. Second is the multi-leg problem, which deals with one airplane having multiple takeoffs and landings (still ignoring the impact of other links). The third is the origin-destination network (OD network) problem, which considers many airplanes having many takeoffs and landings on a routing network.

This paper deals with the problem of optimal airline seat inventory control under the following assumptions: (i) Multi-leg flight: In multi-leg flight seat inventory control, the complete flight offered by the airline is optimized simultaneously. One way to do this is to distribute the revenue of a multi-leg flight over its passenger origin-destination (OD) combinations and apply seat inventory control to the individual OD combinations. Seats for each OD combination are reserved and offered at several fares according to different types of travelers (first class, business, and economy). Assigning seats in the multi-leg flight to different passenger OD and fare class combinations is a major problem of multi-leg flight seat allocation. We seek an optimal policy that maximizes total expected revenue; (ii) Independent demands: The demands for the different passenger OD and fare class combinations are stochastically independent; (iii) Low before high demands: The lowest fare reservations requests arrive first, followed by the next lowest, etc., for each passenger OD combination; (iv) No cancellations: Cancellations, no-shows, and overbooking are not considered; (v) Nested fare classes: Any fare class can be booked into seats not taken by bookings in lower fare classes (for the same OD combination).

Thus, the problem of finding an optimal airline seat inventory control policy for multi-leg flight with multiple fare classes, which allows one to maximize the expected profit of this flight, is one of the most difficult problems of air transport logistics. On the one hand, one must have reasonable assurance that the requirements of customers for reservations will be met under most circumstances. On the other hand, one is confronted with the limitation of the capacity of the cabin, as well as with a host of other less important constraints. The problem is normally solved by
the application of judgment based on past experience. The question arises whether it is possible to construct a simple mathematical theory of this problem, which will allow one to better use the available data based upon airline statistics. Two models (dynamic and static) of airline data are proposed here. In the dynamic model, the problem is formulated as a sequential decision process. We present an optimal dynamic reservation policy that is used at each stage prior to departure time for multi-leg flights with several classes of passenger service. The essence of determining the optimal dynamic reservation policy is the maximization of the expected gain of the flight, which is carried out at each stage prior to departure time using the available data. The term dynamic reservation policy is used in this paper to mean a rule, based on available data, to determine whether to accept a given reservation request made at a particular time for some future date. An optimal static reservation policy is used in this paper to mean a rule, time using the available data. The term dynamic.

1. Multi-leg flight model for static seat inventory control

In order to obtain the multi-leg flight model for static seat inventory control, denote an origin-destination flight in a multi-leg flight consists of one or more flight legs. The limited capacity on each flight leg has to be used in the most profitable way. This can be achieved by limiting the number of seats available to the least profitable classes. Therefore, let \(u_{0d} \) denote the number of seats reserved for each separate OD and \(u_{0d}^{(F)} \) denote the number of seats protected for each separate OD from all lower classes of the same OD. This definition implies that each seat on each flight leg is available for only one particular OD. Through this partitioned approach, passengers are divided into homogeneous groups that have a clear contribution to each flight leg available for only one particular OD. Therefore, let \(u_{0d} \) be the total number of flight legs in the ODF multi-leg flight. \(S_{0d,l} \) denotes the set of OD combinations available on flight leg \(l \). Let \(F_{0d} \) be the number of fare classes for each separate OD. The probabilistic demand for each OD is denoted by \(X_{0d}^{(F)} \). Although demand is in fact a discrete variable, continuous approximations of the demand distributions are generally used. Furthermore, let \(c_{0d}^{(F)} \) be the fare required for an ODF, where \(c_{0d}^{(1)} > c_{0d}^{(2)} > \ldots > c_{0d}^{(F_{0d})} \), i.e., \(c_{0d}^{(1)} \) and \(c_{0d}^{(F_{0d})} \) are the highest and lowest fare levels respectively, and \(u_{0d}^{(F)} \) denote the seat capacity of the airplane. Both \(u_{0d} \) and \(u_{0d}^{(F)} \) are integer decision variables, that should be chosen to maximize the expected profit of the multi-leg flight.

For each separate OD, if \(u_{0d} \) is given, the problem is to find an optimal vector of individual protection levels \((u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})}) \) for fare classes 1, \ldots, \(F_{0d} \) and booking limit \(u_{0d}^{(F_{0d})} \) for the lowest fare class,

\[
(u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})})
\]

\[
= \arg \max_{(u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})})} R^{(0d)} (u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})}), \quad (1)
\]

where

\[
R^{(0d)} (u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})}) = \int_{0}^{u_{0d}^{(1)}} c_{0d}^{(1)} \cdot X_{0d}^{(1)} \cdot \theta_{0d}^{(1)} \cdot dx_{0d}^{(1)} + \ldots + \int_{0}^{u_{0d}^{(F_{0d})}} c_{0d}^{(F_{0d})} \cdot X_{0d}^{(F_{0d})} \cdot \theta_{0d}^{(F_{0d})} \cdot dx_{0d}^{(F_{0d})},
\]

is the expected revenue, with \(R^{(0d)} (u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})}) \) is the probability density function of \(X_{0d}^{(F_{0d})} \) and \(\theta_{0d}^{(F_{0d})} \) is a parameter (in general, vector)

\[
D = \left\{ u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})} : \sum_{F=1}^{F_{0d}} u_{0d}^{(F)} = u_{0d}, u_{0d}^{(F)} \geq 0, \forall F = 1(1)F_{0d} \right\}. \quad (3)
\]

Theorem 1. The optimal protection levels can be obtained by finding \(u_{0d}^{(1)}, \ldots, u_{0d}^{(F_{0d})} \) that satisfy

\[
c_{0d}^{(2)} = c_{0d}^{(1)} \int_{0}^{u_{0d}^{(1)}} f_{0d}^{(1)} (x_{0d}^{(1)}; \theta_{0d}^{(1)}) \cdot dx_{0d}^{(1)},
\]

\[
c_{0d}^{(3)} = c_{0d}^{(2)} \int_{0}^{u_{0d}^{(2)}} f_{0d}^{(2)} (x_{0d}^{(2)}; \theta_{0d}^{(2)}) \cdot dx_{0d}^{(2)}
\]

\[
+ c_{0d}^{(1)} \int_{0}^{u_{0d}^{(1)}} f_{0d}^{(1)} (x_{0d}^{(1)}; \theta_{0d}^{(1)}) \cdot dx_{0d}^{(1)}
\]

\[
c_{0d}^{(4)} = c_{0d}^{(3)} \int_{0}^{u_{0d}^{(3)}} f_{0d}^{(3)} (x_{0d}^{(3)}; \theta_{0d}^{(3)}) \cdot dx_{0d}^{(3)}
\]

- 12 -
\begin{align*}
&+ c_{OD}^{(2)} \int_0^{\infty} (x_{OD}^{(2)} \theta_{OD}^{(2)}) dx_{OD}^{(2)} \int f_{OD}^{(2)}(x_{OD}^{(2)}, \theta_{OD}^{(2)}) dx_{OD}^{(2)} \\
&+ c_{OD}^{(3)} \int_0^{\infty} (x_{OD}^{(3)} \theta_{OD}^{(3)}) dx_{OD}^{(3)} \int f_{OD}^{(3)}(x_{OD}^{(3)}, \theta_{OD}^{(3)}) dx_{OD}^{(3)} \\
&\vdots \\
&+ c_{OD}^{(F-2)} \int_0^{\infty} (x_{OD}^{(F-2)} \theta_{OD}^{(F-2)}) dx_{OD}^{(F-2)} \int f_{OD}^{(F-2)}(x_{OD}^{(F-2)}, \theta_{OD}^{(F-2)}) dx_{OD}^{(F-2)} \\
&+ \cdots + c_{OD}^{(F-1)} \int_0^{\infty} (x_{OD}^{(F-1)} \theta_{OD}^{(F-1)}) dx_{OD}^{(F-1)} \int f_{OD}^{(F-1)}(x_{OD}^{(F-1)}, \theta_{OD}^{(F-1)}) dx_{OD}^{(F-1)} \\
&+ \ \cdots + c_{OD}^{(F-2)} \int_0^{\infty} (x_{OD}^{(2)} \theta_{OD}^{(2)}) dx_{OD}^{(2)} \int f_{OD}^{(2)}(x_{OD}^{(2)}, \theta_{OD}^{(2)}) dx_{OD}^{(2)} \\
&+ \cdots + c_{OD}^{(1)} \int_0^{\infty} (x_{OD}^{(1)} \theta_{OD}^{(1)}) dx_{OD}^{(1)} \int f_{OD}^{(1)}(x_{OD}^{(1)}, \theta_{OD}^{(1)}) dx_{OD}^{(1)} \int f_{OD}^{(1)}(x_{OD}, \theta_{OD}) dx_{OD}, \quad (4)
\end{align*}

where $F \in \{2, \ldots, F_{OD}-1\}$.

Proof. The proof is a simple application of the Lagrange multipliers technique.

One can see that the above equations are solved recursively for each fare class starting with the first fare class. This process is continued until we have the first F such that

\[\sum_{F=1}^{F_{OD}-1} u_{OD}^{(F)} \leq u_{OD} \]

and

\[\sum_{F=1}^{F_{OD}-1} u_{OD}^{(F)} > u_{OD}, \quad u_{OD}^{(F)} > 0, \quad F \in \{2, \ldots, F_{OD}-1\}. \quad (5) \]

Then

\[u_{OD}^{(F)} = \max \left\{ 0, u_{OD} - \sum_{F=1}^{F_{OD}-1} u_{OD}^{(F)} \right\}, \quad F' \in \{2, \ldots, F_{OD}-1\}, \quad (6) \]

and \(u_{OD}^{(F)} = 0 \) for all $F > F'$. Otherwise, if

\[\sum_{F=1}^{F_{OD}-1} u_{OD}^{(F)} \leq u_{OD}, \quad (7) \]

then the optimal booking limit for the lowest fare class, F_{OD}, is

\[u_{OD}^{(F_{OD})} = \max \left\{ 0, u_{OD} - \sum_{F=1}^{F_{OD}-1} u_{OD}^{(F)} \right\}. \quad (8) \]

It follows from the above that, in general, an optimal set of individual protection levels (in general, non-integer) must satisfy the following conditions:

\[c_{OD}^{(2)} = c_{OD}^{(1)} \Pr \{ X^{(i)} > u_{OD}^{(i)} \}, \]

\[c_{OD}^{(3)} = c_{OD}^{(1)} \Pr \{ (X^{(i)} > u_{OD}^{(i)}) \cap (X^{(i)} > u_{OD}^{(i)} + u_{OD}^{(i)}) \}], \]

\[c_{OD}^{(4)} = c_{OD}^{(1)} \Pr \{ (X^{(i)} > u_{OD}^{(i)}) \cap (X^{(i)} > u_{OD}^{(i)} + u_{OD}^{(i)} + u_{OD}^{(i)}) \} \]

\[\vdots \]

\[c_{OD}^{(F)} = c_{OD}^{(1)} \Pr \{ (X^{(i)} > u_{OD}^{(i)}) \cap (X^{(i)} > u_{OD}^{(i)} + u_{OD}^{(i)} + u_{OD}^{(i)}) \} \]

\[> \cdots > u_{OD}^{(i)} + u_{OD}^{(i)} + \cdots + u_{OD}^{(i)} \}, \quad (9) \]

where $F \in \{2, \ldots, F_{OD}-1\}$. Thus, the protection level for the two highest fare classes is obtained by summing two individual protection levels, $(u_{OD}^{(i)} + u_{OD}^{(i)})$, and so on. There is no protection level for the lowest fare class, F_{OD}; $u_{OD}^{(F_{OD})}$ is the booking limit, or number of seats available, for class F_{OD} at time prior to flight departure; class F_{OD} is open as long as the number of bookings in class F_{OD} remains less than this limit. Thus, $(u_{OD}^{(F_{OD})})$ is the booking limit, or number of seats available, for class F, $F \in \{1, \ldots, F_{OD}\}$. Class F is open as long as the number of bookings in class F and lower classes remain less than F_{OD}. It is possible, depending on the airplane capacity, fares, and demand distributions that some fare classes will not be opened at all.

Now the general problem can be formulated as:

Maximize

\[\sum_{F=0}^{F_{OD}} P_{F_{OD}}^{(u_{OD}^{(1)}, \ldots, u_{OD}^{(F_{OD})})} \]

Subject to
\[
q_{
\sum_{F=1}^{F_{\text{OD}}} u_{\text{OD}}^{(F)} = u_{\text{OD}} \text{ for all OD}, \quad (11)
\]

\[
\sum_{\text{OD}=1}^{\text{X}_{\text{OD}}} u_{\text{OD}} = U \text{ for all flight legs } l=1, \ldots, L, \quad (12)
\]

\[
u_{\text{OD}} \geq 0, \quad u_{\text{OD}}^{(F)} \geq 0 \text{ integer for all OD and } F. \quad (13)
\]

Note that (10)-(13) are a non-linear optimization problem with a concave and separable objective function. In general, the solution to this problem can be found in the following manner. For each integer value of \(u_{\text{OD}} \leq U\) maximize (2) with respect to \(u_{\text{OD}}^{(1)}, \ldots, u_{\text{OD}}^{(F_{\text{OD}})}\) for all OD in order to obtain the expressions

\[
R_{\text{OD}}^{(\text{OPT})}(u_{\text{OD}}^{(1)}, \ldots, u_{\text{OD}}^{(F_{\text{OD}})}) = \sum_{t=1}^{t_{\text{OD}}} \left[F_{\text{OD}}(u_{\text{OD}}^{(1)}, \ldots, u_{\text{OD}}^{(F_{\text{OD}})}) + \sum_{F=1}^{F_{\text{OD}}} u_{\text{OD}}^{(F)} \right] \quad \text{for all } u_{\text{OD}} \leq U \text{ and } \text{OD}, \quad (14)
\]

At the first stage, an optimal vector \((u_{\text{OD}}^{(1)}, \ldots, u_{\text{OD}}^{(F_{\text{OD}})})\) will be obtained for each OD and \(u_{\text{OD}}^{(F)}\).

At the second stage, all \(u_{\text{OD}}^{(F)}\) must be chosen such that

\[
\sum_{\text{OD}=1}^{\text{X}_{\text{OD}}} R_{\text{OD}}^{(\text{OPT})}(u_{\text{OD}}^{(1)}, \ldots, u_{\text{OD}}^{(F_{\text{OD}})}) = \text{OPT}
\]

Subject to

\[
\sum_{\text{OD}=1}^{\text{X}_{\text{OD}}} u_{\text{OD}} = U \text{ for all flight legs } l=1, \ldots, L, \quad (16)
\]

\[
u_{\text{OD}} \geq 0 \text{ integer for all OD.} \quad (17)
\]

This problem can be treated by the functional equation method of dynamic programming.

2. Multi-leg flight model for dynamic seat inventory control

It will be noted that the information on the actual demand process can reduce the uncertainty associated with the estimates of demand. Hence, repetitive use of a static policy over the booking period, based on the most recent demand and capacity information, is the general way to proceed and leads to a dynamic policy.

In this section, we consider a multi-leg flight for a single departure date with \(T\) predefined reading dates at which the dynamic policy is to be updated, i.e., the booking period before departure is divided into \(T\) readings periods determined by \(T\) reading dates. These reading dates are indexed in decreasing order, \(t=T, \ldots, 1, 0\), where \(t=1\) denotes the first interval immediately preceding departure, and \(t=0\) is at departure. The \(T\)-th reading period begins at the initial reading date at the beginning of the booking period, and the \(t\)-th reading period begins at \(t\)-th reading date furthest from the departure date. Thus, the indexing of the reading periods counts downwards as time moves closer to the departure date. Typically, the reading periods that are closer to departure cover much shorter periods of time than those further from departure. For example, the reading period immediately preceding departure may last one day whereas the reading period one-month from departure may last one week.

Let us suppose that the total seat demand for fare class \(F\) and each separate OD at the \(t\)-th reading date (time \(t\)) prior to flight departure is \(X_{\text{OD}}^{(T)}(F)\) \((F \in \{1, 2, \ldots, F_{\text{OD}}\})\), where \(X_{\text{OD}}^{(T)}(F)\) corresponds to the highest fare class; \(f_{\text{OD}}^{(T)}(x_{\text{OD}}, \theta_{\text{OD}}^{(T)})\) is the probability density function of \(X_{\text{OD}}^{(T)}(F)\), where \(\theta_{\text{OD}}^{(T)}\) is a parameter (in general, vector).

We assume that these demands are stochastically independent. The vector of demands is \(X_{\text{OD}}^{(T)}=(X_{\text{OD}}^{(T)}(1), \ldots, X_{\text{OD}}^{(T)}(F_{\text{OD}}))\). Each booking of a fare class \(F\) seat generates average revenue of \(c_{\text{OD}}^{(F)}\), where \(c_{\text{OD}}^{(F)} > \cdots > c_{\text{OD}}^{(1)}\). Let \(u_{\text{OD}}^{(F)} \in \{1, \ldots, F_{\text{OD}}\}\) be an individual protection level for fare class \(F\) at time \(t\) prior to flight departure. This many seats are protected for fare class \(F\) and \(\text{OD}\) to be opened at time \(t\).

Now the general problem at the \(t\)-th reading date (time \(t\), \(t \in \{T, \ldots, 1\}\)) prior to flight departure can be formulated as:

\[
\sum_{\text{OD}=1}^{\text{X}_{\text{OD}}} u_{\text{OD}}^{(F)} = U \text{ for all flight legs } l=1, \ldots, L, \quad (12)
\]
Maximize
\[
\sum_{OD} R^{(i)}_{OD}(u^{(i)}_{OD}, \ldots, u^{(F)}_{OD})
\]

Subject to
\[
\sum_{f=1}^{F} u^{(f)}_{OD} = u_{OD} \quad \text{for all OD},
\]
\[
\sum_{OD \in X_{OD}} u^{(f)}_{OD} = U_{f} \quad \text{for all flight legs } f=1, \ldots, F,
\]
\[
u^{(f)}_{OD} \geq 0, \quad u^{(f)}_{OD} \geq 0 \quad \text{integer for all OD and } F,
\]

where
\[
R^{(i)}_{OD}(u^{(i)}_{OD}, \ldots, u^{(F)}_{OD}) = \int_{S_{OD}} \frac{1}{S_{OD}} \left[\prod_{f=1}^{F} s_{OD}(x_{OD}^{(f)}) \right]
\]
\[
\times \left[f^{(i)}_{OD}(x_{OD}^{(i)}), \ldots, f^{(F)}_{OD}(x_{OD}^{(F)}) \right]
\]
\[
\times \left[\prod_{f=1}^{F} s^{(f)}_{OD}(x_{OD}^{(f)}) \right]
\]
\[
\times \left[\prod_{f=1}^{F} f^{(f)}_{OD}(x_{OD}^{(f)}), \ldots, f^{(F)}_{OD}(x_{OD}^{(F)}) \right]
\]
\[
\times \left[\prod_{f=1}^{F} s^{(f)}_{OD}(x_{OD}^{(f)}) \right]
\]
\[
\times \left[\prod_{f=1}^{F} f^{(f)}_{OD}(x_{OD}^{(f)}), \ldots, f^{(F)}_{OD}(x_{OD}^{(F)}) \right]
\]
\[
\times \left[\prod_{f=1}^{F} s^{(f)}_{OD}(x_{OD}^{(f)}) \right].
\]

This problem can be treated in the same way as it is described in Section 2.

Conclusions

The mathematical models described in this paper attempt to provide a consistent and valid approach to optimization of airline booking levels. Simulations and comparisons with existing simpler models from airline companies seem to indicate that the decision rules obtained from the aforementioned models form an efficient operational tool in the planning of an airline’s booking policy.

Acknowledgements

The authors wish to acknowledge partial support of this research by the Latvian Council of Science and the National Institute of Mathematics and Informatics of Latvia under Grant No. 02.0918 and Grant No. 01.0031.

References