Air traffic forecast in post-liberalization context: a Dynamic Linear Models approach


The process of air transport liberalization in Colombia began in 1991. Liberalization entailed the entry of private capital into the airport sector which subsequently led, in several temporary phases, to the privatization of the country’s main airports. Simultaneously, new air operators entered the market. This new market situation, supported by the complete deregulation of airfares, generated a dynamic and sustained growth of air transport in Colombia for two decades. Within the context of post-liberalization, this article presents a forecast (medium-term – 5 years period) of air traffic in the country’s main airport using DLMs (Dynamic Linear Models). It has the following advantages vs. the usual forecast calculation methodologies: it detects stochastic tendencies that are hidden in the time series. It also detects structural changes that allow estimating the variable effect of exogenous shocks over time without increasing the number of parameters. From the results obtained, it should be noted that the application of DLMs presents MAPE (Mean Absolute Percentage Error) values below 1%, which guarantees predictions of higher accuracy and thus introduces a new alternative model to develop reliable forecasts in air transport, at least in the medium-term.

Keyword : air traffic forecast, liberalization, Dynamic Linear Models, airport, air transport, Colombia

How to Cite
Rodriguez, Y., Pineda, W. and Diaz Olariaga, O. 2020. Air traffic forecast in post-liberalization context: a Dynamic Linear Models approach. Aviation. 24, 1 (Apr. 2020), 10-19. DOI:
Published in Issue
Apr 10, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abate, M.A. (2016). Economic effects of air transport market liberalization in Africa. Transportation Research Part A, 92, 326–337.

Abed, S. Y., Ba-Fail, A. O., & Jasimuddin, S. M. (2001). An econometric analysis of international air travel demand in Saudi Arabia. Journal of Air Transport Management, 7, 143–148.

ACI. (2016). Guide to World Airport Traffic Forecasts. Montreal: Airports Council International.

Aerocivil. (2019). Statistics.

Ahn, S., & Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. Journal of Econometrics, 68, 5–27.

Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297.

Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of Error-Components Models. Journal of Econometrics, 68, 29–51.

Asparouhov, T., Hamaker, E., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388.

Aston, J. A. D. & Koopman, S. J. (2006). A non-Gaussian generalization of the airline model for robust seasonal adjustment. Journal of Forecasting, 25, 325–349.

Banco de la República de Colombia. (2019). Estadísticas.

Bolstad, W. (2007). Introduction to Bayesian statistics. Wiley.

Box, G., Jenkins, G., Reinsel, G., & Ljung, G. (2016). Time series analysis: forecasting and control. John Wiley & Sons.

Bowen, J. (2002). Network change, deregulation, and access in the global airline industry. Economic Geography, 78(4), 425–439.

Bowen, J. (2000). Airline hubs in Southeast Asia: national economic development and nodal accessibility. Journal of Transport Geography, 8(1), 25–41.

Bowen, J., & Leinbach, T. (1995). The state and liberalization: the airline industry in the East Asian NICs. Annals of the Association of American Geographers, 85(3), 468–493.

Brooks, C. (2008). Introductory econometrics for finance. Cambridge (UK): Cambridge University Press.

Chin, A. T. H., & Tay, J. H. (2001). Developments in air transport: implications on investment decisions, profitability and survival of Asian airlines. Journal of Air Transport Management, 7, 319–330.

Chou, Y. H. (1993). Airline deregulation and nodal accessibility. Journal of Transport Geography, 1(1), 36–46.

DANE – Departamento Administrativo Nacional de Estadística. (2019).

Dantas, T., Oliveira, F., & Repolho, H. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116–123.

Daramola, A., & Jaja, C. (2011). Liberalization and changing spatial configurations in Nigeria’s domestic air transport network. Journal of Transport Geography, 19, 1198–1209.

de Neufville, R., & Odoni, A. (2013). Airport systems, planning, design, and management. McGrawHill.

Debbage, K. (1993). U.S. airport market concentration and deconcentration. Transportation Journal, 47(1), 115–136.

Dennis, N. (1994). Airline hub operations in Europe. Journal of Transport Geography, 2(4), 219–223.

Derudder, B., & Witlox, F. (2009). The impact of progressive liberalization on the spatiality of airline networks: a measurement framework based on the assessment of hierarchical differentiation. Journal of Transport Geography, 17, 276–284.

Díaz Olariaga, O., & Zea, J. F. (2018). Influence of the liberalization of the air transport industry on configuration of the traffic in the airport network. Transportation Research Procedia, 33, 43–50.

Díaz Olariaga, O. (2017). Políticas de privatización de aeropuertos. El caso de Colombia. Documentos y Aportes en Administración Pública y Gestión Estatal, 29, 7–35.

Díaz Olariaga, O., Girón Amaya, E., & Mora-Camino, F. (2017, 10–12 octubre). Pronóstico de la demanda de pasajeros en aeropuertos privatizados. VI Congreso Internacional de la Red Iberoamericana de Investigación en Transporte Aéreo. Santiago de Chile.

Díaz Olariaga, O., & Carvajal, A. F. (2016). Efectos de la liberalización en la geografía del transporte aéreo en Colombia. Cuadernos Geográficos, 55(2), 344–364.

Díaz Olariaga, O., & Ávila, J. (2015). Evolution of the airport and air transport industry in Colombia and its impact on the economy. Journal of Airline and Airport Management, 5(1), 39–66.

Dobruszkes, F., Mondou, V., & Ghedira, A. (2016). Assessing the impacts of aviation liberalisation on tourism: some methodological considerations derived from the Moroccan and Tunisian cases. Journal of Transport Geography, 50, 115–127.

Dobruszkes, F. (2009). Does liberalisation of air transport imply increasing competition? Lessons from the European case. Transport Policy, 16, 29–39.

Durbin, J. & Koopman, S. (2012). Time series analysis by state space methods. Oxford University Press.

Eriksson, M., & Pettersson, T. (2012). Adapting to liberalization: government procurement of interregional passenger transports in Sweden, 1989–2008. Journal of Transport Geography, 24, 182–188.

Fan, T. (2006). Improvements in intra-Europe inter-city flight connectivity, 1996–2004. Journal of Transport Geography, 14(4), 273–286.

Fan, T., Vigeant-Langlois, L., Geissler, C., Bosler, B., & Wilmaking, J. (2001). Evolution of global airline strategic alliance and consolidation in the twenty-first century. Journal of Air Transport Management, 7(6), 349–360.

Fernandes, E., & Pacheco, R. R. (2010). The causal relationship between GDP and domestic air passenger traffic in Brazil. Transportation Planning and Technology, 33, 569–581.

Forsyth, P. (1991). The regulation and deregulation of Australia’s domestic airline industry. In K. Button (Ed.), Airline deregulation: international experiences (pp. 48–84). David Fulton Publishers, London.

Garrow, L. A., & Koppelman, F. S. (2004). Predicting air travelers’ no-show and standby behavior using passenger and directional itinerary information. Journal of Air Transport Management, 10, 401–411.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman & Hall/CRC Press.

Glynn, C., Tokdar, S. T., Howard, B., & Banks, D. L. (2019). Bayesian analysis of dynamic linear topic models. Bayesian Analysis, 14(1), 53–80.

Goetz, A. & Graham, B. (2004). Air transport globalization, liberalization and sustainability: post-2001 policy dynamics in the United States and Europe. Journal of Transport Geography, 12(4), 265–276.

Goetz, A. (2002). Deregulation, competition, and antitrust implications in the US airline industry. Journal of Transport Geography, 10(1), 1–19.

Goetz, A., & Sutton, C. (1998). The geography of deregulation in the U.S. airline industry. Annals of the Association of American Geographers, 87(2), 238–263.

Graham, B. (1998). Liberalization, regional economic development and the geography of demand for air transport in the European Union. Journal of Transport Geography, 6(2), 87–104.

Graham, B. (1997). Regional airline services in the liberalized European Union single aviation market. Journal of Air Transport Management, 3(4), 227–238.

Graham, B. (1993). The regulation of deregulation: a comment on the liberalization of the U.K’.s scheduled airline industry. Journal of Transport Geography, 1(2), 125–131.

Grosche, T., Rothlauf, F., & Heinzl, A. (2007). Gravity models for airline passenger volume estimation. Journal of Air Transport Management, 13, 175–183.

Halpern, N. (2011). Measuring seasonal demand for Spanish airports: implications for counter-seasonal marketing. Research in Transportation Business & Management, 1(1), 47–54.

Honjo, K.; Shiraki, H., & Ashina, S. (2018). Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect. PloS ONE, 13(4), e0196331.

Hooper, P. (1998). Airline competition and deregulation in developed and developing country contexts – Australia and India. Journal of Transport Geography, 6(2), 105–116.

Horonjeff, R., McKelvey, F., Sproule, W., & Young, S. (2010). Planning and design of airports. McGrawHill.

ICAO. (2006). Manual of air traffic forecasting. Montreal: ICAO.

Ismaila, D. A. I., Warnock-Smith, D., & Hubbard, N. (2014). The impact of air service agreement liberalisation: the case of Nigeria. Journal of Air Transport Managament, 37, 69–75.

Ivy, R. (1995). The restructuring of air transport linkages in the new Europe. Professional Geographer, 47(3), 280–288.

Jin, F., Li, Y., Sun, S., & Li, H. (2020). Forecasting air passenger demand with a new hybrid ensemble approach. Journal of Air Transport Management, 83, 1–18.

Jankiewicz, J., & Huderek-Glapska, S. (2015). The air transport market in Central and Eastern Europe after a decade of liberalisation – Different paths of growth. Journal of Transport Geography, 50, 45–56.

Kazda, A., & Caves, R. (2015). Airport design and operations. Emerald.

Kenkel, J. (2018). Dynamic linear economic models. London: Routledge.

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679.

Koo, T., & Lohmann, G. (2013). The spatial effects of domestic aviation deregulation: a comparative study of Australian and Brazilian seat capacity, 1986–2010. Journal of Transport Geography, 29, 52–62.

Koo, T., Tan, S., & Duval, D. (2013). Direct air transport and demand interaction: A vector error-correction model approach. Journal of Air Transport Management, 28, 14–19.

Laine, M. (2019). Introduction to dynamic linear models for time series analysis. arXiv:1903.11309v2 [stat.ME], 21 May 2019.

McAlinn, K., & West, M. (2019). Dynamic Bayesian predictive synthesis in time series forecasting. Journal of Econometrics, 210(1), 155–169.

Njoya, E., Christidis, P., & Nikitas, A. (2018). Understanding the impact of liberalisation in the EU-Africa aviation market. Journal of Transport Geography, 71, 161–171.

Njoya, E. T. (2015). Africa’s single aviation market: The progress so far. Journal of Transport Geography, 50, 4–11.

O’Connor, K. (2003). Global air travel: toward concentration or dispersal? Journal of Transport Geography, 11(2), 83–92.

O’Kelly, M. (1998). A geographer’s analysis of hub-and-spoke networks. Journal of Transport Geography, 6(3), 171–186.

Oliveira, A. V. M., Lohmann, G., & Costa, T. G. (2016). Network concentration and airport congestion in a post de-regulation context: A case study of Brazil 2000–2010. Journal of Transport Geography, 50, 33–44.

Oum, T.,Yu, C., & Zhang, A. (2001). Global airline alliances: international regulatory issues. Journal of Air Transport Management, 7(1), 57–62.

Oum, T., Zhang, A., & Zhang, Y. (1996). Optimal airport pricing in the hub-and-spoke network. Transportation Research B, 30(1), 11–18.

Oum, T. (1991). Airline deregulation in Canada. In K. Button (Ed.), Airline deregulation: international experiences (pp. 124–187). David Fulton Publishers.

Papatheodorou, A., & Arvanitis, P. (2009). Spatial evolution of airport traffic and air transport liberalisation: the case of Greece. Journal of Transport Geography, 17, 402–412.

Plummer, M. (2003, March 20–22). JAGS: A program for analysis of Bayesian graphical model using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna, Austria.

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6(1), 7–11.

Petris, G., Petrone, S., & Campagnoli, P. (2009). Dynamic linear models with R. Springer.

Pole, A., West, M., & Harrison, J. (2018). Applied Bayesian forecasting and time series analysis. Chapman and Hall/CRC.

Ren, L., & Glasure, Y. (2009). Applicability of the revised mean absolute percentage errors (mape) approach to some popular normal and non-normal independent time series. International Advances in Economic Research, 15(4), 409.

Rolim, P. S. W., Bettini, H. F. A. J., & Oliveira, A.V. M. (2016). Estimating the impact of airport privatization on airline demand: A regression-based event study. Journal of Air Transport Management, 54, 31–41.

Samagaio, A., & Wolters, M. (2010). Comparative analysis of government forecasts for the Lisbon Airport. Journal of Air Transport Management, 16, 213–217.

Sargan, J., & Bhargava, A. (1983). Testing residuals from least squares regression for being generated by the Gaussian Random Walk. Econometrica, 51, 153–174.

Shaw, S. L., & Ivy, R. (1994). Airline mergers and their effect on network structure. Journal of Transport Geography, 2(4), 234–246.

Shaw, S. L. (1993). Hub structures of major U.S. passenger airlines. Journal of Transport Geography, 1(1), 47–58.

Stavins, J. (2001). Price determination in the airline market: the effect of market concentration. The Review of Economics and Statistics, 83(1), 200–202.

Surovitskikh, S., & Lubbe, B. (2015). The Air Liberalisation Index as a tool in measuring the impact of South Africa’s aviation policy in Africa on air passenger traffic flows. Journal of Air Transport Management, 42, 159–166.

Thompson, I. (2002). Air transport liberalization and the development of third level airports in France. Journal of Transport Geography, 10(4), 273–285.

Tsui, W. H. K., Ozer Balli, H., Gilbey, A., & Gow, H. (2014). Forecasting of Hong Kong airport’s passenger throughput. Tourism Management, 42, 62–76.

Valencia, M., & Correa, J. (2013). Un Modelo Dinámico Bayesiano para el Pronóstico de Energía Diaria. Revista Ingeniería Industrial, 12(2), 7–17.

Vowles, T. (2006). Airfare pricing determinants in hub-to-hub markets. Journal of Transport Geography, 14(1), 15–22.

Vowles, T. (2000). The geographic effects of US airline alliances. Journal of Transport Geography, 8(4), 277–285.

Wei, W. (2006). Time series analysis univariate and multivariate methods. Pearson Addison Wesley.

West, M., & Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer Science & Business Media.

Xiao, Y., Liu, J. J., Hu, Y., Wang, Y., Lai, K. K., & Wang, S. (2014). A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting. Journal of Air Transport Management, 39, 1–11.

Youssef, W., & Hansen, M. (1994). Consequences of strategic alliances between international airlines: the case of Swissair and SAS. Transportation Research A, 28(5), 415–431.