Share:


Features of transition modes of friction surfaces with partially regular microrelief

Abstract

Textured surfaces with partially regular micro relief (PRMR) are reported to be an effective means to control lublication. It was found they are good wear debris trap and suppliers of lubricant directly to the actual friction area. Their tribological properties depend on the clearance between mating surfaces, relative slip speed, direction of motion. These parameters change the lubrication regime, and vice versa changing geometry of PRMR it is possible to predict and control lubrication regime for given conditions. Application of micro textured surface is prospective for high precision sliding units – valve slides of oil and hydraulic systems, faces of gear pump gears, ring-to-cylinder interface of aircraft reciprocating engines etc. providing high service life. On other side, changing texture parameters it is possible to stop the leakage of fluid through the gap, what may be efficiently utilized in aircraft non-contacting mechanical (hydrodynamic and hydrostatic) seals of gas compressors and gear mechanisms. This paper discloses some peculiarities of transition lubrication regimes for textured surfaces in lubricated contact.

Keyword : partially regular micro relief, lubrication regime, friction coefficient, rate of temperature change, hysteresis, precision aircraft equipment, oil pump

How to Cite
Radionenko, O., M. Kindrachuk, O. Tisov, and A. Kryzhanovskyi. “Features of Transition Modes of Friction Surfaces With Partially Regular Microrelief”. Aviation, Vol. 22, no. 3, Nov. 2018, pp. 86-92, doi:10.3846/aviation.2018.6204.
Published in Issue
Nov 13, 2018
Abstract Views
8
PDF Downloads
7
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Baranov, V. L., Dronov, E. A., Lavrukhyn, V. N., & Tretiakov, N. V. (2016). Fynyshnaia obrabotka vnutrennei poverkhnosty tsylyndrov dvyhatelei vnutrenneho shoranyia. In Yzvestyia Tulskoho hosudarstvennoho unyversyteta (pp. 15-19). Tekhnycheskye nauky.

Bolutife, O., Cinta, L. M., Oyelayo, O. A., & Ezekiel, O. A. (2015). Effect of laser surface texturing (LST) on tribochemical films dynamics and friction and wear performance. Wear, 332-333, 1225-1230.

Chernyshev, V. P., Shatokhyn, B. C., & Khaibullyn, P. P. (2010). Povуshenye dolhovechnosty hylz tsylyndrov DVS obrazovanyem rehuliarnoho mykrorelefa. In Trudyi GOSNITI / Vserosiiskaya nauchno-issledovatelskaya tehnologicheskaya institutt remonta i ekspluatatsii mashynno-traktornogo parka (Vol. 105, pp. 91-94). Moskva.

Cong, S., & Khonsari, M. M. (2016). Texture shape optimization for seal-like parallel surfaces: theory and experiment. Journal Tribology Transactions, 59(4), 698-706. https://doi.org/10.1080/10402004.2015.1110220

Galda, L., Koszela, W., & Pawlus, P. (2007). Surface geometry of slide bearings after percussive burnishing. Tribology International, 40, (10-12), 1516-1525. https://doi.org/10.1016/j.triboint.2007.01.010

Golubchikov, M. A., & Kuzmin, Y. P. (2010). Modelirovanie protsessa vibronakatyivaniya. Izvestiya vuzov. Priborostroenie, 53(8), 26-29.

Guo, K. W. (2009). Effect of sliding speed on tribological characteristics of different surface textures on AISI O1 steel irradiated by Nd: YAG pulsed laser. Ironmaking & Steelmaking, 36, 63-74. https://doi.org/10.1179/174328108X335131

Hakan, A., & Sofuoglu, H. (2013). An investigation of tribological behaviors of dynamically loaded non-grooved and microgrooved journal bearings. Tribology International, 58, 12-19. https://doi.org/10.1016/j.triboint.2012.09.009

Hao, L., Meng, Y., & Chen, C. (2014). Experimental investigation on effects of surface texturing on lubrication of initial line contacts. Lubrication Science, 26(5), 363-373. https://doi.org/10.1002/ls.1265

Ibatan, T., Uddin, M. S., & Chowdhury, M. A. K. (2015). Recent development on surface texturing in enhancing tribological performance of bearing sliders. Surface and Coatings Technology, 272, 102-120. https://doi.org/10.1016/j.surfcoat.2015.04.017

Kragelskiy, I. V., Dobyichin, M. P., & Kombalov, V. S. (1977). Osnovyi raschetov na trenie i iznos. M.: Mashinostroenie.

Kindrachuk, M., Radionenko, O., Kryzhanovskyi, A., & Marchuk, V. (2014). The friction mechanism between surfaces with regular microgrooves under boundary lubrication. Aviation, 18(2), 64-71. https://doi.org/10.3846/16487788.2014.926642

Lu, P., Wood, R. J. K., Gee, M. G., Wang, L., & Pfleging, W. (2016). The friction reducing effect of square-shaped surface textures under lubricated line-contacts − an experimental study. Lubricants, 4(3), 26. https://doi.org/10.3390/lubricants4030026

Morgunov, A. P., Pogodaev, V. P., & Masyagin, V. B. (2004). Otnositelnaya ploschad poverhnosti chastichno regulyarnogo mikrorelefa pri obkatyivanii vraschayuschimsya instrumentom. In Novyie materialyi i tehnologii: Tezisyi vserossiyskoy nauchno-tehnicheskoi konferencyi (pp. 34-36). Rubtsovsk: RII.

Okamoto, M., Jibiki, T., Ito, S., & Motoda, T. (2016). Role of cross-grooved type texturing in acceleration of initial running-in under lubricated fretting. Tribology International, 100, 126-131. https://doi.org/10.1016/j.triboint.2015.12.012

Pashechko, M., Kindrachuk, M., & Radionenko, O. (2016). The mechanism of friction between surfaces with regular microgrooves under boundary lubrication. Advances in Science and Technology Research Journal, 10(32), 82-85. https://doi.org/10.12913/22998624/65137

Pettersson, U., & Jacobson, S. (2006). Tribological texturing of steel surfaces with a novel diamond embossing tool technique. Tribology International, 39(7), 695-700. https://doi.org/10.1016/j.triboint.2005.06.004

Pettersson, U., & Jacobson, S. (2007). Textured surfaces for improved lubrication at high pressure and low sliding speed of roller-piston in hydraulic motors. Tribology International, 40(2), 355-359. https://doi.org/10.1371/journal.pone.0152100

Radionenko, A. V. (1988). Tokos᾽emnik priborov pretsizionnogo kontrolya sostoyaniya smazochnoy plenki v uzlah treniya. Izmeritelnaya Tehnika, 12, 20-21.

Radionenko, A. V. (1987). Tribometr dlya issledovaniya vliyaniya kachestva poverhnostey na sostoyanie smazochnoy plenki. Mashinovedenie, 6, 93-97.

Saeidi, F., Meylan, B., Hoffmann, P., & Wasmer, K. (2016). Effect of surface texturing on cast iron reciprocating against steel under starved lubrication conditions: a parametric study. Wear, 348-349, 17-26. https://doi.org/10.1016/j.wear.2015.10.020

Shneyder, Y. G. (1982). Ekspluatatsionnyie svoystva detaley s regulyarnyim mikrorelefom. L.: Mashinostroenie.

Wos, S., Koszela, W., & Pawlus, P. (2017). The effect of both surfaces textured on improvement of tribological properties of sliding elements. Tribology International, 113, 182-188. https://doi.org/10.1016/j.triboint.2016.10.044

Wu, W., Chen, G., Fan, B., & Liu, J. (2016). Effect of groove surface texture on tribological characteristics and energy consumption under high temperature friction. PLoS ONE, 11(4), e0152100. https://doi.org/10.1371/journal.pone.0152100

Yuan, S., Huang, W., & Wang, X. (2011). Orientation effects of micro-grooves on sliding surfaces. Tribology International, 44(9), 1047-1054. https://doi.org/10.1016/j.triboint.2011.04.007