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Abstract. The latest technological advancements allow users to generate a large volume of data 
related to their experiences and needs. However, the absence of an advanced methodology that 
links the big data and the creative process prevents the effective use of the data and extracting all 
its potential and knowledge in this context, which is crucial in offering user-centred solutions. 
Incorporating data creatively and critically as design material can help us learn and understand 
user needs better. Therefore, design can bring deeper meaning to data, just as data can enhance 
design practice. Accordingly, this work raises a reflection on whether designers could appropriate 
the workflow of data science in order to integrate it into the research process in the creative process 
within a framework of user experience analysis. The proposed model: data-driven design model, 
enhances the exploratory design of problem space and assists in the creation of ideas during the 
conceptual design phase. In this way, this work offers an integrated vision, enhancing creativity in 
industrial design as an instrument for the achievement of the proper and necessary balance between 
intuition and reason, design, and science.

Keywords: big data, creative process, creativity, data-driven design, design, methodology, user 
experience.

Introduction

Data generation increases exponentially, and by 2025 (Reinsel et al., 2018), the worldwide 
data capacity is estimated at 175 zettabytes, with more than half of the data hosted in the 
cloud corresponding to connected devices. With the projections as of 2025, each person will 
interact with a connected device about 4800 times per day, which means one interaction 
every 18 seconds. Due to the increasing ubiquity of data and trends in data dissemination 
(Lycett, 2013), both third-generation new product development (NPD) (Bødker, 2006) and 
digital service designs are showing an upward influence by data (Mortier et al., 2014). Data 
are increasingly valuable but also more complex to understand and translate into knowledge. 
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This process of knowledge extraction is known as knowledge discovery in databases (Han 
et al., 2012; Zaki & Meira, 2014). Given the apparent evidence about data’s ability to con-
ceal valuable information, research into model identification techniques for data analysis is 
needed to extract their full potential. To this end, several data processing technologies are 
becoming increasingly widespread due to their effectiveness and success in everyday prod-
ucts and services; these include artificial intelligence, machine learning, deep learning, and 
data analysis, among others.

As the science of data advances as a field (Cao, 2017), its utilization using available data 
sources for application to real cases is often unclear. Most existing data analysis models 
are technological or business in nature, but non-existent in the creative realm, where they 
are going unnoticed, and designers need to consider this ever-growing flood of advances 
and data. The design has the opportunity to address data access by creatively and critically, 
incorporating it as design material into professional practice. Sanders and Stappers explain 
that traditional design methods are also changing (2008), but could still be advanced and 
adapted to the current context by developing into methods that can integrate and effectively 
use massive amounts of data to support creativity and knowledge discovery in the creative 
process. The use of the data during the design process can be found to explore particular 
phenomena remains an emerging and recent trend (e.g. Speed & Oberlander, 2016; Bogers 
et al., 2016; Giaccardi et al., 2016; Feinberg, 2017).

This study is a further exploration of that conducted by Quiñones-Gómez (2019). The 
purpose of the work presented is to provide a framework to use the data as design material 
in the NPD based on user experience attributes. In this sense, it is aimed at making value 
creation operational in the creative design process by increasing combined creativity, involv-
ing the creation of new ideas through the exploration of unknown combinations of known 
ideas (Boden, 2004), leading to an epistemic model that conceptualises the management 
of big data as a user-friendly system, where the workflow of data science can be adapted 
to a process of design research and development. The data-driven design model (DDDM) 
presented by Quiñones-Gómez (2017), can be applied as an advanced model in comparison 
with more traditional to obtain new visions and strategies in the NPD, services, and systems 
where data stimulate and support creativity. So, designers can appropriate the data to foster 
their creative capabilities in hypothesis formation, particularly at the earliest stages of the 
creative process with the generation of ideas.

The following sections are intended to explore and provide initial evidence to support 
the following research questions so that further studies can be planned if the initial results 
are promising:

1. Would it be possible to use the data, with the same competence as in other areas, to 
gather relevant information that can be included in the design process, i.e., could these 
data be correlated with typical behaviours of design cognition and design creativity to 
enhance the creative process?;

2. Can the data be integrated into the first stage of the creative process through a new 
methodology to obtain a richer understanding of the field under investigation and 
serve as an inspiration to encourage the generation of ideas that can be considered 
more creative and innovative?
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1. Research strategy and review of evidence in the field

In order to question traditional creative processes and data analysis methods and their pos-
sible integration into a common framework, we use an approach known as problematisation 
(Nicholson et al., 2018); through the development of research questions, questions the theo-
ries and concepts of existing literature. The specific objectives of this approach are to extend 
and challenge the current thinking in this field and thereby designing meaningful connec-
tions, which would lead to new ways of acquiring knowledge. Such an approach need not 
necessarily involve a revolutionary or innovative approach since in many cases, it is merely 
a matter of questioning specific hypotheses in intellectual theories or practices (Sandberg & 
Alvesson, 2011). Therefore, it is intended to highlight the gaps in traditional procedures and 
to develop our contributions in the area of the creative process and big data. For the study 
of the existing literature and the detection of gaps, the following databases were investigated: 
IEEE Xplore, Scopus, ScienceDirect, and Emerald Insight, identifying more than 100 method-
ologies and related processes to date. Understanding a problem and the requirements of the 
solution are necessary to form ideas and arrive at a solution (Wallas, 2015). It implies having 
greater comprehension of the domain of knowledge (Amabile, 1983). This strategy allows us 
to know the current panorama of the existing literature, allowing us to question it since it 
highlights the gap between the creative process and the science of data and the contribution 
to knowledge in this document by establishing a bridge between both concepts through a 
new model. As mentioned by Pérez et al. (2002), it is essential to implement new approaches 
in conducting the creative process.

Based on previous work and existing literature in 1994, it is described by Boden (1996, 
pp. 75–117) as a creative process “the exploration and transformation of conceptual spaces”. 
One conceptual space is a knowledge network, which is connected by associations between 
knowledge groups (Gabora, 2000). In the creative process, existing but unrelated knowledge 
structures are formed (Ward et al., 1997). The exploration of conceptual space is related to 
the investigation of knowledge groups. This exploration is initiated by some stimulus (e.g., 
visual, auditory, etc.), either consciously or subconsciously perceived, which activates one or 
more knowledge groups in the conceptual space (Santanen et al., 2002). When a knowledge 
group is activated, it simultaneously activates other related knowledge groups, and so the 
exploration process continues. Each activation of the knowledge groups differs according to 
an increasing gap from the originally activated knowledge group (Gabora, 2000). The process 
of transformation, or formation of new structures, takes place when two or more previously 
unrelated groups of knowledge give rise to a potential solution applicable to a new domain 
(Gabora, 2000; Santanen et al., 2002). Transformation involves setting up a new association, 
a new combination, creating a new knowledge structure, namely: a new idea. The creative 
act occurs when a connection is made between the space of the problem and that of the 
solution by identifying a key concept (Dorst, 2017), as defined in the DDDM and which we 
will see in the following sections, identifying in this work the big data as the bridge between 
these two spaces.



54 J. C. Quiñones-Gómez. Creativity forward: a framework that integrates data analysis techniques...

2. Creativity

The body of literature on creativity is too broad to discuss in depth. Many definitions of 
creativity can be found in the research literature; it is a multifaceted term with more than 
60 different definitions in the field of psychology alone (Taylor et al., 1974; Amabile, 1996). 
Boden (2004) has laid the foundation for many of the views on creativity. Creativity, as such, 
stands for one of the highest human cognitive skills (Taylor, 1959). Although the first defini-
tions of creativity generally considered this capacity as a specific attribute of the individual 
(Guilford, 1967), currently the concept of creativity has evolved and is defined as an interac-
tion between the capacity, the environment and the process of producing a tangible product 
that is both new (Shah et al., 2003; Sarkar & Chakrabarti, 2007, 2011) and useful (Lozano, 
2008; Sarkar & Chakrabarti, 2007, 2011; Srinivasan & Chakrabarti, 2010), and which is situ-
ated in a social context (Plucker et al., 2004). Since it is a complex and multidimensional 
concept, its understanding constantly changes according to the socio-cultural environment 
that surrounds us (Mellander et al., 2014, pp. 23–30). This means that definitions of creativity 
evolve and fluctuate over time. Part of the literature on creativity (Burnett & Haydon, 2016; 
Davies, 2006) is devoted to the modelling and representation of the creative thinking process 
on which the generation of ideas is based. Several researchers (Osborn, 1979; Chakrabarti & 
Bligh, 1994; Candy, 1996; Cross, 1996; Shah et al., 2003) pointed out that the generation of 
many ideas has the potential to produce more and even better ideas. This is a process made 
up of some mental activities that people do when they are creating something, from iden-
tifying a problem, through the acquisition of knowledge, to the generation of an idea and 
its application. In light of the research work conducted on creativity, here is an illustration 
of how bringing together both creative domain data sources and hedonic psychophysics in 
combination with strong data analysis techniques has the potential not only to overcome 
creative obstruction but also to stimulate it into a system that can produce high quality and 
innovative creative outcomes.

The diffusion and democratisation of digital technologies have had an impact on the 
dissemination of the creative act, generating an unprecedented number of elements in the 
digital realm available for creative action and reaction (Moran, 2010). From an industrial 
economy, which valued manufacturing work and standardised memorisation of procedures, 
the economy of developed societies is moving towards a creative economy, which values cre-
ativity at work (Pink, 2006; Mellander et al., 2014; Burnett & Haydon, 2016). It is, therefore, 
imperative to study and expand on new methods and new technologies specifically designed 
to stimulate creativity, constituting the foundation stone of this study.

3. Collaborative technologies for creativity

Today, the objects with the greatest design complexity are intelligent objects. We have a huge 
range of devices that have internal computer technology and are partially or totally connected 
through the Internet, making objects or people identifiable, locatable, addressable and/or 
controllable, allowing us to complete our tasks and generating huge amounts of data and 
changing the way people process information, behave and socialise. The ability to provide 
relevant and timely data involving the products can be used to generate a more holistic and 
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accurate perception of the usage environment and user experience. It is acknowledged that 
creativity in these times of digital transition represents potentially among the most valuable 
and distinctive human skills required to foster and promote strong human-machine col-
laboration to its full potential (Corazza, 2017). Indeed, in any given field, creativity allows 
humans by generating novel and useful ideas (Amabile, 1988), harnessing the opportunities 
raised by digital technologies. In this digital context, creative thinking is understood as a 
distributed phenomenon in an environment where digital technologies in the creative process 
exist as an integral basis (Literat & Glăveanu, 2018). The central question that emerges from 
these considerations is how technological evolution is influencing the design and creative 
capabilities of the next generation of designers and processes. Understanding how techno-
logical advancements impact the creative process is, therefore, essential to design research 
aimed at developing a suitable model for the next generation of designers representing key 
players over time.

In the field of creativity, technological developments are offering great opportunities 
(Frich et al., 2019). Indeed, creativity is the basis of disruptive innovation and continuous 
reinvention (Varshney et al., 2019). Given the limitations of human creativity resources, it is 
essential to develop technologies for greater creativity, whether operating autonomously or 
in collaboration with people or tools. Lubart (2005) envisions a collaborative environment 
with computers, where the computer is involved as a trainer: computers have the potential 
not only to assist the creative process of providing information in diverse manners so that 
individuals might give creative insights but also to be used as a catalyst in setting into mo-
tion the creative process. Based on this context, we understand a possible collaboration of 
technology with creativity in our work, allowing the support and management of informa-
tion to enhance the creative process. In previous research (Quiñones-Gómez, 2017, 2019), 
it has been established as a result of a designer’s cognitive activity as the processing of data 
as well as the processing of information related to it. Accordingly, having a computational 
data analysis system (which includes all available data) allows every potential solution to be 
identified quickly and reliably, enabling knowledge structures to be formed, i.e., new ideas, 
establishing a collaborative context between computer and designer.

4. Data in the design process

As data science evolved rapidly over the past few years, big data is currently in use across 
several sectors (health, agriculture, education, industry, finance, security, marketing, etc. ex-
cept for design). Using predictive analysis techniques based primarily on statistical methods, 
all data and information provided are used to foresee potential scenarios based primarily as 
a result of the use of broad samples of data reflecting mainly, if not the entire population 
(Gandomi & Haider, 2015). However, it is unclear whether the contribution of designers 
remains well-defined and a significant impact of technologies of comparable magnitude that 
result in substantial products and services (Yuan et al., 2018). Hence, the ongoing research 
brings us at the stage where data emerges as a valuable tool for creativity as designers’ means. 
Based on empirical analysis, subjecting individuals to a greater volume of information serves 
as a creative stimulus (Casakin & Goldschmidt, 1999; Goel, 1997).
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Moreover, unprecedented opportunities have also arisen for the modelling and analy-
sis of human behaviour through the methods of data science (Barlacchi et al., 2017; Lazer 
et al., 2009). In this way, data provides valuable information for designers, leading to bet-
ter outcomes by optimising timing and resources within the design process. According to 
Prendiville et al. (2017), through the application of processes of interpretation, visualisation 
and persuasion, the design ensures data turns the abstract and intangible aspects of data 
into human-centred services providing both social and economic significance. Data-based 
models are used in engineering both with the analytical objective of predicting the value of 
a variable and with the descriptive objective of understanding and discovering patterns in 
the available data (Anand & Buchner, 1998). Geng et al. (2012) have also made use of data in 
design engineering to extract information and include it in the development of new solutions 
(Wickel & Lindemann, 2015; Lützenberger et al., 2016; Agard & Kusiak, 2004; Ma et al., 2016; 
Song & Kusiak, 2009). More recently, Pajo et al. (2015) have proposed a method to extract 
information about current and future customer needs from social media.

Big data are fundamentally big datasets, made up of structured, semi-structured, and 
unstructured data that can be processed and analysed to reveal patterns and trends (Hazen 
et al., 2014). Growing levels of digitisation increase the demand for greater data evaluation in 
terms of velocity, efficiency, and accuracy (Cao et al., 2019; Xu et al., 2016). Moreover, with 
the evolving status of data and the merge of data sets, it will create more and more options in 
a variety of contexts and domains (Akhtar et al., 2016; Caputo et al., 2016). To address the in-
tegration of data into the creative process, it is possible to highlight the variation between two 
major types of data processing: batch processing (Affetti et al., 2017; Casado & Younas, 2015; 
Grolinger et al., 2014), and real-time processing (Casado & Younas, 2015; Li et al., 2018; Wan 
et al., 2017). Historical data from the past is accepted by batch processing of big data analysis 
to inform future actions, strategies, and plans (Chen et al., 2015; Kitchens et al., 2018; Nunan 
et al., 2018; Yang et al., 2020). The processing with these two scenarios corresponds to both 
structured data (batch processing) and unstructured data (real-time processing):

 – Structured and semi-structured (quantitative) data: For the data gathering, connected 
Internet of things (IoT) devices are highly valued, establishing a consistent framework 
merging virtual and physical data points (Uckelmann et al., 2011). In its condition as a 
data point, IoT can gather a range of user, transport, temperature, transaction, and global 
positioning system information, derived from a variety of sensors (Akhtar et al., 2019);

 – Unstructured (qualitative) data provides user insight hitherto unavailable through struc-
tured data sets, social media usage, and user clickstream data along with keyword search-
es on search engines are resources that provide real-time insight into consumer thinking.

Creativity is understood not only as of the result of information about learning but also 
as using knowledge to produce something that can combine prior knowledge with the cre-
ation of something else: from the solution of different kinds of problems to the presentation 
of innovative ideas. The “ideas” to be combined can be from arbitrary sources, such as text, 
image, audio, or video (Han et al., 2016). Consequently, the potential opportunities offered 
by exchange and collaboration with data science environments should be explored. Such 
opportunities can be an incentive and a guide for the creative process, making it more stimu-
lating and productive. Additionally, D’Ignazio’s and Bhargava’s research (2016), on creative 
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data literacy incorporates a range of tactics aiming towards supporting growth in creativity-
oriented data competence.

A research study by Sio et al. (2015) has well illustrated the use of data, with findings show-
ing that data stimulate creativity within the very first phases of the design process (it consisted 
of giving examples related to the objective of the research), permitting every individual a more 
in-depth exploration of the design problem. Speed and Oberlander (2016), provided a theo-
retical approach to categorise different data approaches by “designing from, with and by data” 
(Figure 1). In our study, we identified quantitative data as concrete data and qualitative data 
as abstract data. In the design process, theoretical data can aid the designer in developing new 
concepts, just as concrete data can be used to define, improve, or add value to design.

Figure 1. Data within the design process (source: created by author)

Figure 2. Big data and creative process and design process framework (source: created by author)

There are obvious similarities in both the creative and design processes, according to the 
research carried out these can be embodied in problem definition, idea generation, and idea 
evaluation. The creative and design processes will portray different realities. Based on prelimi-
nary work and existing literature, it is adopted the following statement: (1) Creative process: a 
cognitive process resulting in the formulation of an idea. (2) Design process: a work process 
resulting in a proposal for a product or process. Furthermore, the results of this research 
revealed that novelty and variety are directly related to the levels of abstraction of new con-
ceptual spaces because of the integration of big data into the creative process (Figure 2).
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The integration of big data, as shown in the Figure 2, is going to turn into a growing 
practice in design, transforming the way we design and promote knowledge discovery in 
databases. The generation of ideas and value creation from big data depends on supporting 
decisions with new knowledge generated from data analysis; however, data analysis is only 
possible with a set of data science knowledge.

The purpose of the idea generation phase is to devise as many creative solutions as pos-
sible that fit the requirements defined by the design problem. There are estimates that 70% of 
the cost of a product is, in fact, determined within the framework of the conceptual design 
(Pahl et al., 2007). Dealing with the first phase successfully is fundamental, and many have 
been the investigations that have studied the cognitive process during the idea generation 
phase during the creative design process (Chan, 1990; Christiaans & Dorst, 1992; Hybs & 
Gero, 1992; Adams & Atman, 1999; Dorst & Cross, 2001; Kruger & Cross, 2001). An exciting 
observation is the great influence of abduction in the initial phase of design (Kolko, 2010; 
Dorst, 2011). Therefore, after a period of the abduction of the senses, data becomes a source 
of inspiration, in order to explore and use data as a resource of generative design of ideas, 
where the abductive perception is necessary to create new appropriate connections, resulting 
in novelty and variety (Quiñones-Gómez, 2019). The resultant is that creativity increases and 
more chance to design an innovative concept.

Even considering the absence of relevant studies relating to creativity and big data, the 
results suggest that this crossroad will create a new scenario (Figure 3), where big data will be 
a tool to stimulate creativity, enhancing the creative process. Consequently, it was established 
that there might be five areas (Quiñones Gómez, 2018) where big data can be effectively ap-
plied in the creative process, firstly, during the phase of searching for inspiration and ideas, to 
obtain more classified information as well as to comprehend the contents better and facilitate 

Figure 3. Data-driven design model process (source: created by author)
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the creative process in the initial stage, secondly, by offering innovative and creative solutions 
allowing the process to feed back into itself constantly with those solutions and results which 
evolve through the DDDM to be attained and enables better and easier chance of the alterna-
tives selected to work with. Thirdly, this crossroads between creativity and science provides 
the creative class with a greater intelligent experience to evaluate which creative outcomes 
are most effective with the greatest degree of innovation. Fourth, data brings its qualities, 
volume, velocity, and variety to the creative process, by offering advances in agile design and 
simplifying the design process. Finally, bearing in mind that the creative process is the basis 
for the development of new solutions, it can be adopted in multidisciplinary sectors in order 
to reach innovative results.

5. Analysis based on data

Being digital means that we can easily track activities in our daily lives and our interactions 
with the physical world, thanks to digital interfaces that simplify the task of data collection, 
the biggest challenge being the interpretation of the data and the meaning derived from it. 
Poor quality, non-representative, or poorly analysed data can lead to erroneous conclusions. 
All decisions and results will be considered to be by quality as long as they are based on 
qualitative data.

The suggested design methodology integrates the theory of data mining (Zhu et  al., 
2016a, 2016b), an approach based on the systematic discovery and examination, by auto-
matic or semi-automatic systems, of huge volumes of data in order to discover significant 
trends and relationships, and then to introduce the results into the workflow of the creative 
process. Data mining tools allow designers to filter big data, discover hidden data, reveal 
new relationships and patterns, and extract anticipated, and useful information involved in 
large datasets. Data mining algorithms such as clustering and decision trees have been used 
in the design of numerous products. Data science allows you to explore the interrelationship 
of design variables and to establish design rules by applying the data-driven design method 
facilitating creative leapfrogging.

According to Kitchens et al. (2018), it is necessary to adopt a more holistic approach to 
further research, integrating multiple sources of structured, semi-structured, and unstruc-
tured data that will enhance competitiveness and decision-making, fostering creativity and 
innovative solutions. Big data has the potential to add value based upon the types of data 
collected; therefore, more volume means more possibility for comprehension (Targio Hashem 
et al., 2015). There are other characteristics that are based on this; for example, in the opinion 
of Targio Hashem et al. (2015), there are 4V’s of big data that describe as volume, variety, 
speed, and accuracy. Volume represents both the amount of data produced and the corre-
sponding mass quantities collected. Variety refers to both differing data forms received as 
well as the very diverse sources involved (Erevelles et al., 2016). IoT, in this context, plays a 
vital role, supplying data from a broad spectrum of interconnected artefacts (Akhtar et al., 
2016). Velocity refers directly to the speed of data generation and collection, influencing the 
promptness of data analysis for strategy development (Ahmed et al., 2017). Value is about 
insight and the process of discovery, focusing on the acquisition of hidden knowledge. By 
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collecting data from different sources, designers have the potential to improve the generation 
of data-driven insights in the context of data analysis (Ghasemaghaei et al., 2016).

In the tabled model, the data can be integrated into different ways resulting in different 
types of knowledge:

 – Descriptive knowledge focuses on understanding what happened in the past and is 
mainly related to structured and semi-structured data. Generalised descriptive knowl-
edge uses historical data to identify patterns of trend information. This is the most 
common type of knowledge generated in products and companies (Ghasemaghaei 
et al., 2016). An illustrative view helps the designer to understand the current situa-
tion better so that developments can be more evident;

 – Predictive knowledge contemplates future scenarios and can generate predictive and 
prescriptive visions that optimise designs and is related to unstructured data. Addi-
tionally, some companies have started using cloud-based services to obtain knowledge 
from large amounts of heterogeneous data quickly.

Thus, in this document, the main learning from the theory is used towards a better compre-
hension regarding the key role of big data in knowledge generation driven by the organisation 
in which the figure of the designer will need to be included to extract this knowledge as design 
material within the course of the creative process. For example, companies that collect a large 
amount of consumer data, both transactional information on the use of connected products 
and social media (structured, semi-structured and unstructured data), maybe more able to 
discover new patterns in relation to the needs and preferences of their consumers, compared to 
those who only consider a single source of data. Unlocking the hidden knowledge of consumers 
allows a better understanding and prediction of consumer behaviour and continuous response 
by consumers to changes in the market context (Erevelles et al., 2016). Thus, it is an opportunity 
for designers to enhance the learning process by tracking and monitoring new feeds from a 
variety of channels. On the other hand, it would be possible to use simple techniques such as 
drawing graphs to discover patterns in the data, use regression to understand the correlation 
between different variables, or visualise it to understand the data better (Pusala et al., 2016). 
Processing different types of data and their correlation is critical to the process, as it may help 
us in discovering new relationships and patterns in the data. In particular, the collection of 
various types of data (e.g., numerical data, measurements, photos, text, and images) increases 
the possibility of identifying new and non-obvious data patterns (Dong et al., 2018).

The generation of descriptive information can enhance the ability to develop new prod-
ucts or expand existing product lines properly. It would also be possible to generate predictive 
knowledge. For example, using data mining tools to predict the success of NPD after analys-
ing the historical experience of users, as well as online consumer opinions about products 
and services. As well as analysing the data in real-time, they enable a clear picture of con-
sumer preferences for specific product features to be generated promptly.

6. Unlocking methods for data

This research aims at providing pragmatic perspective on the DDDM with relevance to de-
sign professionals in terms of the user experience usability attributes. User experience is the 
key to unlocking great data. Sometimes it happens that we designers have nothing but our 
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own competition and, of course, a variety of inconclusive tests, interviews, and surveys to 
test our assumptions. A further factor is that the user’s actions are often substantially altered 
compared to the information that the users subsequently report. But as previously noted, 
in terms of design methods, traditional tools do need an evolution, because more in-depth 
knowledge of users’ feelings and perceptions cannot be obtained through generative methods 
of user experience research. Accepting that the old research methods are limited (Razmi, 
2018; Quiñones Gómez, 2018), the best alternative to evolve lies in data.

User experience design for NPD, services or systems that provide meaningful and rel-
evant user experiences; involves the design of the entire product acquisition and integration 
process, including branding, design, usability and function aspects (Interaction Design Foun-
dation, 2019), so far, this contribution has been mostly reduced to testing assumptions, but 
the big data extracted from the user experience can change everything. The major advantage 
of using big data is that the data is complete, diverse, and most importantly, generated by 
the users themselves, without interfering with their routine or influencing the experience. 
Today, data can be easily obtained on a wide variety of aspects; screen interaction views, av-
erage time spent on a single feature, clickable features are just a few of them (Everly, 2018). 
The involvement of big data in user experience research is enabling designers to see patterns 
and algorithms in large amounts of data because one of the crucial parts of user experience 
design work is predicting and helping users access desired goods or services when or even 
before they think they need them. We need to have hard empirical data to support our user 
experience solution proposal. Designers have the opportunity to see beyond the so-called 
big data in an Excel sheet; they can involve human intuition driven by elements such as psy-
chology, ethnographic studies, and user research, being able to explain big data with much 
more context.

7. Data-driven design model application framework for evaluating  
usability attributes

Connected to each individual, IoT’s personal data offers a valuable tool to inform and evalu-
ate the creative process. It changes the way research is conducted, relying increasingly on data 
as a starting point to help identify relevant needs and challenges (Apple.com, 2019; Bourgeois 
et al., 2014; Handte et al., 2016). There is a growing interest from the design research com-
munity in understanding how product and interaction designers can engage with sensor data 
and how sensor data can be incorporated into design processes, i.e., how data can be used as 
creative “design material” (Dove & Jones, 2014; Speed & Oberlander, 2016).

User performance metrics are an essential part of usability evaluation (Tullis & Albert, 
2013). Using big data, in this case, can help achieve more reliable results in measuring the 
performance of a product in a phygital environment (an environment where physical and 
digital coexist synergistically), due to the ability to gather the variety of usage parameters 
in the real environment. It is essential to add that the analysis of big data in the creative 
process is not intended to replace existing subjective methods for usability evaluation, but 
rather to augment them. This section proposes a pragmatic approach to understanding how 
analysis of actual user data can contribute to the evaluation of subjective usability attributes, 
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to encourage creativity in the design of new solutions by presenting a new framework sup-
ported by DDDM.

The correct selection of variables and attributes for the analysis is fundamental in using 
the data. In this case, the classification of attributes proposed by Orlovska et al. (2018) is 
expected to analyse the attributes and divide them into three main groups: User perfor-
mance, system performance, and user perception. The classification of the attributes is 
shown in Figure 4. Structured and semi-structured data can support user performance 
and system performance attributes. However, user perception attributes are supported by 
unstructured data, which allows measuring user emotions or similar cognitive feedback 
through the appropriate hardware. Via the analysis of structured and unstructured data 
users’ activities, including the corresponding individual affective reactions, can be identi-
fied and analysed.

We identified the extraction and analysis of data framed in two different scenarios (Fig-
ure 5): first, if it is a digitised product, the usability and performance record is recorded in 
a log file, and we can analyse and classify its information based on the attributes defined 
above.

Log files that map the user interaction can, therefore, also map and record the behaviour 
of the user and the machine in general. For example, Landauer et al. (2018), used log file data 
on user activity to facilitate the identification of repeated or sporadic actions. Within this 
development trend, the increasing dissemination of applications increased the importance of 
log files for troubleshooting code, as well as for monitoring user behaviour (Krieter & Breiter, 
2018), which is also an important factor in guiding the development of future features with 
less effort from developers (Ferre et al., 2017). Since each log refers to a product and a user, 
this allows for both individual quantitative analysis and analysis of the entire population by 
correlating data from the product as the whole pool, leading to improvements with a greater 

Figure 4. Usability attributes (source: created by author)
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overall impact. Log files have also been found to contain relevant data on the usefulness 
of new technologies and their effects on users. Secondly, it is possible to analyse this pre-
production experience in virtual augmented reality experimental environments, creating a 
virtual environment where the user and the product studied generate a huge amount of in-
formation interacting with the product. This environment can be formed by a product/user 
or by a virtual environment such as the digital twin.

After that, the classification of all the information extracted from logs, data mining tech-
niques can be applied in order to extract useful information from the data and its subsequent 
interpretation to integrate it as insights into the creative process. Either approach provides 
data that is generally unstructured, i.e., numerical, needed for quantitative analysis. However, 
for the study of the attributes related to the user’s perception, a qualitative analysis will be 
necessary based on unstructured or semi-structured data, which can be extracted from the 
affective reactions generated by users and their behaviour, from images, texts, etc. Unstruc-
tured data also offers real-time analysis, unlike structured data, which is mainly based on 
historical data from existing users and only reports on past events.

The ability to collect data on how users use a product helps to identify problems that 
can be improved, detect trends and patterns, define people, the most used functions, and 
the most stressed elements of the system, as well as opportunities for innovation. The con-
sideration of human aspects in the design process is vital in design. Only in this way can 
we understand how things work, the forces that cause particular conditions, and where to 
look to discover the underlying causes. The larger the sample and the more data obtained, 
the more representative the findings. Thus, since the data-driven design model (DDDM) is a 
process in continuous development, future system updates with considerable improvements 
or new functionalities are feasible based on the iterative analysis and design of the product. 
Moreover, considering digital environments, all these actions are easy to execute and scal-
able thanks to the use of cloud-based hosted systems that most of the connected products 
use today.

Figure 5. Data transformation flow into design material (source: created by author)
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Discussion

The digital transition in the current context of Fourth Industrial Revolution is creating new 
motivation for commitment and the need for further technical skills that can enhance cre-
ativity in the field of design. This information and the framework presented is fundamental 
for designers and the creative class in general in order to empower the next generation of 
creatives to enhance all stages of the design process by developing tools to master the changes 
brought by the digital transition and the creative economy.

In these circumstances, design research needs to understand the impact of digital tech-
nologies on the creative design process, to update the toolbox at the conceptual stage in 
order to facilitate the creative potential of individuals in achieving the best performance at 
each stage of the process, as well as to address new technological challenges that generate a 
positive impact and innovation. The ever-evolving digital landscape will constantly demand 
an increased awareness of the technological, as well as social and cultural opportunities that 
could enable or inhibit creativity.

Based on the research questions addressed initially, along with the research conducted, it 
is possible to summarise as follows: Can data support creativity? Based on both professional 
and research experience, and on the knowledge of experts, it can be said that it is possible. 
There are still many questions about how companies and designers can achieve that perfect 
mix to integrate new processes, but the benefits of doing so are clear, resulting in benefits for 
the creative class and for companies in addition to faster growth.

Contributions

The overall objectives for this work were three:
Firstly, through gap-finding and problematisation, we provided a general framework for 

the evolution of the creative process and the integration of big data into the creative design 
process. The development of related research and design methods that conform to these 
principles is under-explored and requires further attention. This is a research gap at the in-
tersection of design and research methods and data management and analysis.

In the second place, an attempt is made on identifying, extending, exploring, and un-
derstanding the involvement of structured, semi-structured, and unstructured data into the 
processing of big data in the framework of the proposed DDDM, where usability is studied.

The last contribution is to provide interdisciplinary literature that highlights the gap be-
tween the science of big data and the creative process, highlighting both the challenges of 
the industrial designer and the profession of design as a whole. Such contributions provide 
a valuable contribution to enhancing debate and understanding of the potential use of new 
technologies in creative activities today.

Our approach to problematisation and gap detection has significantly contributed to 
highlighting the main differences between traditional and more advanced methodologies, 
both in the creative and big data fields, and the nature of the data offering different pos-
sibilities in the extraction of knowledge related to the product, the user and the resulting 
opportunities.
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Conclusions

An approach based on the integration of real user data analysis techniques at the initial stage 
of the creative process during the exploratory design is presented in this article. We found 
that the data can feed into existing usability structures. In this proposed application environ-
ment, the method can increase the detection of usability problems, allowing the measure-
ment of their magnitude by grouping users with similar behaviour, thanks to big data. The 
data alone does not provide any value; the data analysis techniques will help us interpret 
the data to make better user-based design decisions to provide the best possible experience. 
As a final step in data analysis, data visualisation is critical to encourage creative thinking. 
When information is presented visually, it takes shape, allowing us to easily gain insights 
that would be difficult or impossible to extract from the same data presented textually or in 
other formats. In most of the current data interpretation systems, data representation, and 
algorithms are done in a way that is complex to interpret and extract information useful to 
the design process. An effective data representation can speed up and encourage the creative 
act by helping us to establish relationships, detect trends so that we can make the best design 
decisions. For example, using visual representation techniques such as data visualisation or 
data storytelling. By facilitating the recognition of user needs and behaviours. It is essential 
to mention that data visualisation itself in no way constitutes the objective, but only support.

In this research, it is illustrated how data science workflow can be adapted to a design 
research process. From the results, we observe the transfer of designers’ creative skills to 
hypothesis formation related to data collection and the use of their design perception skills 
to synthesise data exploration in design research. The DDDM framework presented in this 
document aims to clarify the role of this technologically advanced data-driven model by 
highlighting the involvement of data in the initial phase. A key element of designing with the 
data in this model is the ability to iterate in a continuous design process. The use of automatic 
learning and data mining algorithms allows the discovery of correlations in the data, the 
identification of trends and patterns, as well as the prediction of results in a relatively short 
time compared to human analysis, speeding up the process significantly. It is necessary to 
state the following about the integration of data in the creative process: the tendered model 
does not intend to compete with man in creativity, but to establish a collaborative design 
environment. New emerging data-driven models, including using data mining and machine 
learning, are therefore increasingly needed, according to the literature that increasingly ex-
amines them as enablers for product, service, and system innovation.

Based on these findings, the creative process can effectively be supported in terms of pro-
viding information to help designers produce creative ideas in a collaborative environment 
with computers and digital tools. Furthermore, the results suggest the need to develop novel 
concepts and frameworks to support new ways of understanding, describing, and working 
with “big data” as well as the technologies associated with it – the conclusions of this research 
shows how a design practice in this new technological context faces multiple challenges. Key 
points include the high level and sophistication in technology, lack of education/experience 
of the designer is working with it, insufficient frameworks and collaborative tools between 
data experts and designers, as well as the rather elusive properties in technology. The inten-
tion is to provide the designer with a knowledge base plus a knowledge management strategy.
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Data-driven design implies that the data being used determines design decisions. The 
outcome of the data analysis may not be clear or decisive, but it can contribute to the iteration 
of the design process and encourage creative leapfrogging. In this context, the creative class 
may offer a different perspective on interpretation and hypothesis formulation when inter-
preting the data. We believe that the variety of structured, semi-structured, or unstructured 
data from various sources feeds the creative design process by providing a variety of possible 
ways to address a problem, and in the context analysed, improve the end-user experience. 
The results of this work, therefore, support Manzini’s call (2015) for the generation of theo-
retical abstractions that can enable designers to work with increasingly complex and rapidly 
changing technologies such as those presented in the practice of this work.

Therefore, the results can be considered a formalisation of the empirical evidence on the 
use of data models in early design, framed in the current literature on creative processes 
and user experience analysis. This paper has not been aimed at providing an overview of all 
possible applications of the DDDM, but rather to establish a reference framework further to 
investigate this model’s potential contribution in product innovation and enhancing creative 
idea generation. Last but not least, to promote state of the art and the state of practice of 
data-based design, while providing guidelines for designers and the creative class generally, 
to gain an understanding with respect to the contribution of data in knowledge generation 
and a deeper understanding of user needs.

Further studies

Although it is necessary to transform user information and knowledge as part of globalisa-
tion and technological change, it is important that organisations effectively meet new and 
changing needs and stimulate consumer creativity using digital products. When addressing 
issues such as this, it is important for designers not only to evaluate the data generated by 
these products regarding the user experience but also to integrate it as part of the NPD pro-
cess. In subsequent studies, it is intended to evaluate, according to the proposed framework, 
the data generated in a digitised product for the evaluation of the user experience, and to 
identify the characteristics that would improve the final result, as well as those variables 
related to functionalities or improvements of the product, enhancing the innovation and 
creativity of the process.
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