
Copyright © 2021 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

CREATIVITY IN COMPUTER SCIENCE

Piotr GIZA *

Department of Logic and Cognitive Science, Faculty of Philosophy and Sociology, Maria Curie-
Skłodowska University, Pl. Skłodowskiej 4, 20-854 Lublin, Poland

Received 5 April 2021; accepted 29 June 2021

Abstract. The aim of this paper is to briefly explore creative thinking in computer science, and com-
pare it to natural sciences, mathematics or engineering. It is also meant as polemics with some theses
of the pioneer work under the same title by Daniel Saunders and Paul Thagard because I point to
important motivations in computer science the authors do not mention, and give examples of the
origins of problems they explicitly deny.
Computer science is a very specific field for it relates the abstract, theoretical discipline – math-
ematics, on the one hand, and engineering, often concerned with very practical tasks of building
computers, on the other. It is like engineering in that it is concerned with solving practical prob-
lems or implementing solutions, often with strongly financial reasons, e.g. increasing a company’s
income. It is like mathematics in that is deals with abstract symbols, logical relations, algorithms,
computability problems, etc.
Saunders and Thagard analyse rich experimental material from historical and contemporary work in
computer science and argue that, as opposed to natural sciences, computer science is not concerned
with describing and explaining natural phenomena. Now, I argue that there is a field of research in
artificial intelligence (which, in turn, is a branch of computer science), called machine discovery,
where explanation of natural phenomena, finding experimental laws and explanatory models is
the primary goal. This goal is achieved by constructing computer systems whose job is to simulate
various processes involved in scientific discovery done by human researchers, and help them in
making new discoveries.
On the other hand, motivations that give rise to ingenious projects in computer science can be very
strange and include curiosity, fun or attempts to be famous out of boring, stable life of a successful
programmer in a big corporation. A good example is the phenomenon of open-source software,
especially the development of the Linux operating system and its applications when, from economi-
cal point of view, Microsoft absolutely dominated the software market of personal computers.

Keywords: artificial intelligence, automated discovery systems, communication analogy, com-
puter science, creative society, creativity, natural sciences, technology.

Introduction

Computer science is a very specific field for it relates the abstract, theoretical discipline –
mathematics, on the one hand, and engineering, often concerned with very practical tasks

*Corresponding author. E-mail: pgiza@bacon.umcs.lublin.pl

Creativity studies
ISSN 2345-0479 / eISSN 2345-0487

2021 Volume 14 Issue 2: 444–460

https://doi.org/10.3846/cs.2021.14699

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4193-0795
https://orcid.org/0000-0002-4193-0795*
https://doi.org/10.3846/cs.2021.14699

Creativity Studies, 2021, 14(2): 444–460 445

of building computers, on the other. It is like engineering in that it is concerned with solv-
ing practical problems or implementing solutions, often with strongly financial reasons, e.g.
increasing a company’s income. It is like mathematics in that is deals with abstract symbols
and logical relations.

The aim of this paper is to briefly explore creative thinking in computer science, and
compare it to natural sciences, mathematics or engineering. In the paper I draw on ideas
of the pioneering work with the same title, by Saunders and Thagard (2005) who analyse
rich experimental material from historical and contemporary work in computer science to
highlight various aspects of creative thinking in computer science. In section 1, I summarize
their considerations about the nature and origins of problems, motivations and methods
of computer science, and how they compare to those in engineering, natural science, and
mathematics.

The paper is also meant as polemics with some of their theses, because in section 3 I point
to important motivations, specific to computer science, the authors do not mention, and in
section 2 I give examples of the origins of problems they explicitly deny.

Saunders and Thagard argue that, as opposed to natural sciences, computer science “[...]
is not concerned with empirical questions involving naturally observed phenomena, nor
with theoretical why-questions aimed at providing explanations of such phenomena” (2005,
p. 171). Now, in section 2 I argue that there is a field of research in artificial intelligence (AI)
(which, in turn, is a branch of computer science), called machine discovery, where explana-
tion of natural phenomena, finding experimental laws and explanatory models is the primary
goal. This goal is achieved by constructing computer systems whose job is to simulate vari-
ous processes involved in scientific discovery done by human researchers, and help them in
making new discoveries.

On the other hand, in section 3 I argue that there are important motivations, specific to
computer science and absent in engineering and natural sciences, which Saunders and Tha-
gard do not mention. These, sometimes very strange, motivations may give rise to ingenious
projects in computer science and include curiosity, fun, or attempts to become famous out of
boring, stable life of a successful programmer in a big corporation. I argue with an extended
example of the phenomenon of open-source software, specifically, the development of the
Linux operating system and its applications when, from economical point of view, Microsoft
absolutely dominated the software market of personal computers (PCs).

Section "Conclusions" concludes and summarizes the main theses of the paper.

1. Computer science versus engineering, mathematics, and natural science

Saunders and Thagard (2005) claim that computer science similar to engineering because it
is often concerned with building machines and designing complex systems. Like engineers,
computer scientists use established techniques solve their problems, and the creativity mostly
consists in development of new techniques. Moreover, like engineering, computer science is
typically concerned with practical questions of how to accomplish certain technological tasks.

At the same time, computer science, like mathematics, and unlike engineering, is largely
concerned with manipulating abstract symbols, especially when software engineering rather

446 P. Giza. Creativity in computer science

than building new hardware is concerned. This, they say (Saunders & Thagard, 2005, p. 159),
distinguishes computer science from other engineering disciplines to the effect that the com-
plexity of the objects created is limited by the skill and imagination of the creator and not
by the properties of the raw materials. They even compare a programmer to a poet, who
“[…] builds castles in the air, from air, creating by exertion of the imagination” (Saunders &
Thagard, 2005, p. 162).

On the other hand, in other engineering disciplines and natural science, especially experi-
mental natural science, any serious research requires considerable funds. This lack of material
and financial limitations in computer science allows for “building castles in the air” and, as
I show in section 3, allows for the development of ingenious projects, on a large scale, which
would never have been possible in other areas of science or engineering.

Saunders and Thagard emphasize a strong mathematical component of computer science.
They illustrate it with an example of Alan Turing’s invention of a theoretical machine (now
known as Turing machine) to solve David Hilbert’s decidability problem, and the theory of
the class of NP-complete, computationally intractable problems, as areas of research which
belong both to mathematics and theoretical computer science (for an excellent discussion
of these issues, also from philosophical point of view, see e.g. Rapaport, 2020, ch. 3, 8, 10).

Using numerous examples, the authors identify the nature and typical origins of problems
and motivations in computer science. They argue that, like engineering, computer science
(except for theoretical computer science) is concerned with questions of how to accomplish
some technological tasks rather than why questions requiring explanation of natural phe-
nomena, typical to natural sciences. As I show in the next section, this is not always true since
the latter type of questions are also present in some highly creative branches of computer
science.

Among sources of problems and motivations they list frustration with ineffective, boring
and time-consuming existing solutions, both hardware and software, the pleasure of creating
new computer programs or building new computers and, finally, commercial motivations in
a company such as the desire to enter into a new market, to improve on an existing product
and increase the income. To all this I would add important motivations, specific to computer
science, like fun, curiosity, and boredom with monotonous life of a programmer in a corpo-
ration. I will illustrate it in section 3.

The authors also investigate, how computer scientists solve their problems and argue that,
like all problem solvers, computer scientists use standard cognitive mechanisms like means-
ends reasoning with rules, hypotheses formation, conceptual combination, and analogies to
generate solutions to their problems and devote much space to the role of creative analogies
in the development of computer science. They refer to another paper (Thagard & Croft,
1999) which investigates and compares problem-solving methods in scientific discovery and
technological innovation and argues that, despite different kind of questions asked by inven-
tors (also by computer scientists) and scientists, there is no reason to suppose that cognitive
process underlying their solutions are different in the two domains. Accordingly, creativity
in computer science seems very similar to creativity in the natural sciences and technol-
ogy. Certainly, Thagard has much more to say about scientific problem solving in support
of this thesis. Since the famous joint work written with other authors, Induction: Processes

Creativity Studies, 2021, 14(2): 444–460 447

of Inference, Learning, and Discovery (Holland et al., 1993), he investigates mechanisms of
creative problem solving by humans, from initial conceptual analysis to numerous computer
simulations and published the results in several books and numerous articles (see e.g. Tha-
gard, 1992, 1993; Thagard et al., 2014).

2. The origins of problems in computer science and natural science

When comparing creativity in computer science to that in natural science, Saunders and
Thagard (2005) observe that problems in natural sciences take the form of several kinds of
questions: questions concerning mathematical relations between variables with observed val-
ues (i.e., formulating empirical laws from data), more sophisticated, why-questions requiring
explanation of observed empirical relations or questions (especially in biology) concerning
explanation of the behaviour of complicated ecosystems.

They claim, that these sorts of problems do not occur in computer science:

“Computer science is not concerned with empirical questions involving naturally
observed phenomena, nor with theoretical why-questions aimed at providing expla-
nations of such phenomena. Nor does it study naturally occurring mechanisms, but
rather usually aims at producing new mechanisms, both hardware and software, that
can provide solutions to practical problems” (Saunders & Thagard, 2005, p. 171).

I argue, however, that the matter is not always so simple as that, because there is a field
of research called automated scientific discovery (or machine discovery), which is a branch
of AI (which, in turn, is a branch of computer science) concerned with:

 – Investigating natural phenomena;
 – Formulating empirical laws and finding explanatory models;
 – Postulating the micro-structure “hidden” behind observable phenomena.

These goals are achieved by constructing computer systems whose job is to simulate
various processes involved in scientific discovery done by human researchers, and help them
in making new discoveries. So in this highly creative area of research, the why questions
concerning explanation of natural phenomena, typical to natural sciences, are on a par with
questions (typical to engineering) of how to accomplish the task of creating successful ma-
chine discoverers.

A more thorough analysis of automated discovery systems would extend the scope of
the present paper, therefore below I will only very briefly discuss some aspects of discovery
systems to illustrate my point, redirecting the reader to my other publications on automated
discovery (e.g. Giza 2002, 2006, 2018, Forthcoming).

The most famous research programme aiming at computer simulation of scientific discov-
ery was developed by Herbert A. Simon and collaborators. The group created a number of
discovery systems in physics, chemistry, and biology which discovered (or, rather rediscov-
ered) many qualitative and quantitative empirical laws containing “theoretical terms”. They
also revealed the “hidden” structure of matter that could account for observable phenomena
and, recently, some new systems were created, capable of searching for explanatory process
models of complex phenomena, e.g. in ecosystems biology. Moreover, Simon’s programme is
the only one where researchers were interested in explicitly formulating deeper methodologi-
cal assumptions involved in their work.

448 P. Giza. Creativity in computer science

Although first publications of Simon on discovery systems go back to the 1960s, the
fundamental methodological assumptions and most important results were described in a
book he wrote with Langley, Bradshaw, and Zytkow (Langley et al., 1987). Philosophical and
methodological assumptions of the approach presented by authors are best summarized with
the following passage:

“A hypothesis that will be central to our inquiry is that the mechanisms of scientific
discovery are not peculiar to that activity but can be subsumed as special cases of the
general mechanisms of problem solving. [...] Our method of inquiry will be to build a
computer program (actually a succession of programs) that is capable of making non-
trivial scientific discoveries and whose method of operation is based on our knowl-
edge of human methods of solving problems” [...] (Langley et al., 1987, p. 5).

Using these methods, mentioned in section 1, and historical data about many discoveries
in natural sciences, the group conducted the conceptual analysis of various aspects of scien-
tific activity in several fields and created computer systems simulating processes, of discovery.
They include, among others, finding problems, conducting experiments, formulating empiri-
cal laws, or discovering the hidden structure of matter.

Formulating empirical laws from data is the most successful and most frequently dis-
cussed by the commentators, area of the group’s research. The most famous system of the
group, BACON, was designed just for this purpose. Among numerous empirical laws known
from the history of physics (re)discovered by BACON are: Kepler’s third law of planetary mo-
tion, Black’s law of temperature equilibrium including possible phase transitions, Ohm’s law
of electrical resistance, to mention only a few. The most famous of these, and most discussed

by the commentators, is Kepler’s third law of planetary motion:
3

2
R
T

= const, where R is the

average distance of the planet from the Sun and T its period of revolution, and the most
complicated one is the Black’s law of temperature equilibrium, because it involves functions
of many independent variables and the occurrence of nominal terms:

 (c1M1 + c2M2)Tf = c1M1T1 + c2M2T2,

where: c1M1T1 and c2M2T2 are specific heats, masses, and temperatures of two liquids (e.g.
water and mercury) mixed in a calorimeter, and Tf is the final temperature.

The successor of BACON, FAHRENHEIT (Zytkow, 1987), had improved procedures for
determining the scope of laws and generation of experiments. Fahrenheit was able to discover
more general forms of Black’s law with phase transitions as well as their scope of application.
It also postulated “theoretical terms” like melting heat, and had special algorithms for intel-
ligent data gathering. Several years later (Żytkow et al., 1992) the system was enriched with
new functions, such as the possibility of analysing the measurement error and its propaga-
tion, analysis of the repeatability of the results of experiments and finding maxima in the
measurement data set, and successfully used in the electrochemical laboratory.

This is about discovering empirical laws from data, the area most noticed (and most
criticized for inability of discovering new laws, previously not known by the scientists) by
the commentators of the Simon programme.

Creativity Studies, 2021, 14(2): 444–460 449

Another, much less known but conceptually even more important area of research of
Simon’s group is discovering the “hidden”, more fundamental, structure of matter that lies
behind the empirical laws and could explain the observable phenomena, It addresses the
second type of questions whose existence in computer science Saunders and Thagard (2005)
explicitly deny in the passage quoted at the beginning of this section.

Systems created in this area of research include, for example, Langley’s, Simon’s, Brad-
shaw’s and Zytkow’s (1987) STAHL and DALTON, Rose’s (1989) REVOLVER, or Fischer’s
and Żytkow’s (1991) GELL-MANN. All of them postulate the structures not available by
direct observation or measurement and, using mechanical, inductive methods, formulate,
compare and justify hypotheses about these structures.

As I argue elsewhere (Giza, 2002, 2018), the most advanced and conceptually important
of these systems is GELL-MANN. The program’s task was to analyse elementary particle data
available to physicists in 1964 and formulate a hypothesis (or hypotheses) about a “hidden”,
more simple structure of matter, or to put it in contemporary terms, to discover (or rather,
rediscover) hypothetical, sub-elementary particles, called quarks. Its task was to generate
quark models, which were to explain in the simplest way the huge and constantly growing
number of particles discovered in the mid-20th century, previously considered elementary.

GELL-MANN is the first system which introduces attributes for postulated sub-elemen-
tary particles and performs an exhaustive search of all possible quark models to find the
simplest model adequate to the data. Thus, we can talk not only about the search, but also
about the justification of the specific hypothesis about quarks. Moreover, it dealt with a rela-
tively new problem in theoretical elementary particle physics.

It must be emphasized that the system came up with a unique quark decomposition of
elementary particle groups accepted by the physicists, proceeding in a radically different way,
than human researchers actually did. As I argue in another paper (Giza, 2002) this coinci-
dence constitutes additional strong evidence for the quark hypotheses. Using the terminol-
ogy of an important distinction introduced by Cartwright (2002), scientists reasoned at the
level of highly general, explanatory theories involving relativistic quantum field theory, and
GELL-MANN came up with a quark model at the level of so called phenomenological laws,
which describe properties of elementary particles.

GELL-MANN’s successes encouraged further research in the field which resulted in new
systems analysing reactions between elementary particles, making discoveries in the field
of genetics, studying the structure of chemical reactions or studying, like GELL-MANN,
the quark structure of elementary particles (Giza, 2006). All these systems have some com-
mon features: they build discrete models of hidden structure, postulating new properties or
processes in various areas of research in physics, chemistry and genetics. Valdés-Pérez et al.
(1993) emphasized similarities between these systems and proposed a common mathemati-
cal model describing the operation of systems revealing the hidden structure using matrix
calculus, to represent discrete models and systematic analysis of the search space and the
methods to limit the search with the help of knowledge from a given field of research, for
example, conservation laws. The authors seemed to believe that their framework may in ef-
fect enable the creation of a unified discovery system capable of searching for many types
of discrete models.

450 P. Giza. Creativity in computer science

Langley, one of the authors of the joint book mentioned at the beginning of this section
(Langley et al., 1987), returned, after a break in working on discovery systems, to research
on a general system schema to model many aspects of the historical discovery process, but
this time not in the field of empirical discoveries, as in the case of the BACON system, but
in elementary particle physics. The BR-4 system (Kocabas & Langley, 2001) was created along
the lines described above.

An important proof of the practical value of systems discovering the hidden structure
is the fact that they appear more frequently in journals in specific fields of natural sciences
than journals in AI (see e.g. Giza, 2006, p. 48; Džeroski et al., 2007; Langley & Arvay, 2019).

After Simon’s and Żytkow’s death in 2001, Langley, who joined Simon’s group as a student
of computer science and was the actual author of the BACON systems, continues with his
collaborators, for almost two decades, work on discovery systems within a new framework
called inductive process modelling (Langley et al., 2002; Bridewell & Langley, 2010; Park
et al., 2010). This research falls under the third category of problems mentioned by Saun-
ders and Thagard as not dealt with by computer science, namely explaining the behaviour
of complex systems.

Inductive process modelling aims at modelling complex systems (like ecosystems in biol-
ogy) in terms of processes and entities that explain the behaviour of a dynamic system. The
authors illustrate their ideas with an example concerning formulating explanatory models of
complex phenomena on the basis of time series data concerning the level of phyto- and zoo-
plankton in aquatic ecosystems. Such process models consist of several processes described
by ordinary and (recently) partial differential equations to explain spatio-temporal dynamics
of the system (Langley & Arvay, 2019).

More specifically, the authors state the task of inductive process modelling in the follow-
ing way:

Given: generic entities that have properties relevant to the observed dynamics;
Given: generic processes that specify causal relations among entities using generalized

functional forms;
Given: a set of entities present in the modelled system;
Given: observations for the continuous properties of those entities as they change over

time;
Find: a process model that explains the observed data and predicts unseen data accurately.
In recent research, Langley and Arvay (2019) have reported a new approach to finding

explanatory models called rate-based process models which allows for more accurate and
more efficient model formulation.

To sum up: contrary to Saunders’ and Thagard’s claims cited at the beginning of this
section, questions concerning mathematical relations between variables with observed val-
ues (i.e., formulating empirical laws from data), more sophisticated, why-questions requir-
ing explanation of observed empirical relations or questions concerning explanation of the
behaviour of complicated ecosystems are addressed in computer science, because they are
fundamental in a branch of it, called automated discovery.

Finally, something has to be said about machine learning, which lies at the heart of con-
temporary AI research and applications, the more so, as the new research programme on

Creativity Studies, 2021, 14(2): 444–460 451

inductive process modelling was developed in cooperation with scholars involved in logical
programming, which has been the first machine learning research programme in the area
(Giza, Forthcoming). Before proceeding further we have to note the important difference
between automated discovery and machine learning: automated scientific discovery (or ma-
chine discovery) deals with discovering new knowledge formulated in language used by do-
main scientists. It is based on the general idea that heuristic search in problem spaces applies
also to discovery tasks. All systems of Simon’s group discussed in the previous section fall
into that category, although recent systems of Langley and collaborators, also use machine
learning techniques. On the other hand, the aim of machine learning is to train software in
order to induce rules from individual cases that can predict outcomes in future cases.

Machine learning systems are also used to discover regularities and tendencies in scientif-
ic data. Historically, the first such research programme has been the Turing tradition which,
according its important commentator of the programme, Gillies (1996), originates from his
own work on a theoretical concept of the famous machine (now known as Turing machine),
and the research on cryptography Turing conducted with Donald Michie, who later became
the most famous researcher in the field of AI in England, United Kingdom and contributed
to spreading out Turing ideas. The group was spread out geographically and mostly cooper-
ated using the Internet, creating as Gillies calls it, its own intellectual tradition, whose two
key features were the use of logic and the programming language Prolog and emphasis on
practical value of created systems in industry, medicine, and science.

The group managed to create a number of systems capable of inducing, mechanically, in-
ference rules for expert systems on the basis of training sets of individual cases qualified by ex-
perts. Some systems were directly applied to scientific investigations, specifically, formulating
laws from data. These laws, however were limited to very low level empirical generalizations of
statistical character without the component of “theory” or causal explanation (Giza, 2018). It
is worth mentioning, however, that since the first joint paper (Langley et al., 2002) written by
a prominent member of the Simon group, Langley, and two outstanding scholars from Jožef
Stefan Institute, Slovenia1, researchers of the two groups have, for almost two decades, been
collaborating in creating process-model systems in which Langley and his staff from Institute
for the Study of Learning and Expertise, California, United States (US) contribute advance
search algorithms and scholars from Slovenia, their logic-programming methods in the spirit
of the Turing tradition in machine learning briefly described in next section.

With time machine learning dominated research and applications of AI in many commer-
cial domains, the methods and their efficiency dramatically changed, and in addition to logic
programming they include numerous other algorithms like decision trees, Bayesian networks
and, most of all, neural networks, however the main idea remained the same: learning from
examples and generalizing to explore trends and tendencies in data.

As is well-known, machine learning techniques, especially deep neural networks, work
best on large amounts of data that contemporary experimental science abounds in (for a up-
to-date technical survey of deep learning methods and their actual and potential applications
in scientific research see e.g. Raghu & Schmidt, 2020). Last decades witness the phenomenon

1 An important research centre in Europe, where machine learning methods in the Turing tradition were developed
since the very beginning.

452 P. Giza. Creativity in computer science

of “data deluge” and gave rise to the advent of data science which deals with application of
machine learning techniques to explore trends in big data. This is also true in science, where
stress has moved from theory to data and some, like Jim Gray (Hey et al., 2009), a world-
famous data scientist involved in numerous first-rank scientific research projects in various
fields, described it as the new, “fourth paradigm” in science. Finally, he says, today we witness
rapid development of data exploration (Microsoft eScience Research Group) which unifies
theory, experiment, and simulation. Data is captured by instruments or generated by simu-
lator, then it is processed by software, information (knowledge) is stored in computer and,
finally, scientist analyse database files using data management and statistics. Scientists only
get to look at their data fairly late in this pipeline, says Gray. The way science is done has
changed, and there is no question about that. Machine learning systems are widely used to
analyse large datasets produced by complicated instruments to detect trends and anomalies.
However, this enthusiasm is a bit premature.

Already mentioned outstanding experts in both machine learning and discovery systems
Džeroski et al. (2007) argue that the output of a discovery system should be communicated
easily to domain scientists and that notations developed by machine learning researchers,
like decision trees or Bayesian networks, differ substantially from formalisms typical to the
natural sciences, such as numeric equations and reaction pathways. Most work on computa-
tional scientific discovery attempts to generate knowledge which is easily communicable to
domain scientists, but communicability is a significant issue for standard machine learning
methods, independently of their admitted successes.

Moreover, at the end of the 2010s some researchers started expressing their worries that
after decades of research, machine-learning systems so successful in various fields, in science
are still at best capable of managing large datasets and detect very low-level regularities in the
data deluge characteristic of the “fourth paradigm”. It turned out that in science, as opposed
to commercial domains, standard “black box” data science methods may easily lose their
predictive power in the face of new data.

Karpatne et al. (2017) distinguish two characteristics of knowledge discovery in science
that prevent standard machine learning methods from reaching the level of success com-
parable to other domains. One is related to the fact that problems in science are typically
ill-defined, or under-constrained and as such they typically do not provide many training
samples and involve many potential variables. Second characteristic of problem-solving in
scientific research, which obviously differs from problems in commercial applications, is
that in science the primary goal is searching for interpretable models and theories to explain
known phenomena and predict new ones while the standard black-box methods of data sci-
ence merely aim at generating actionable models.

The authors make an attempt to develop a general framework called theory-guided data
science which they consider an emerging paradigm in data science applications in scientific
discovery by introducing scientific consistency as an essential component (along with train-
ing accuracy and model simplicity) for learning generalizable and scientifically interpretable
models.

The problem seems to me reminiscent of problems encountered by early machine learn-
ing systems in the Turing tradition, despite the fact that contemporary systems and methods,

Creativity Studies, 2021, 14(2): 444–460 453

largely using deep neural networks, are way more advanced and effective. Results obtained
by such systems must be interpretable in terms of theories and domain knowledge, otherwise
they are not reliable and robust and do not defend themselves in the face of new data.

Coming back to Saunders’ and Thagard’s claims cited at the beginning of this section,
wide use of machine learning methods of data since for analysing massive amounts of data
in contemporary experimental sciences, seems to run counter their claim that computer
science is not concerned with empirical questions involving naturally observed phenomena.
However, much remains to be done in order for data science methods to provide better gen-
eralizability of models by anchoring data science algorithms with scientific knowledge and
by producing scientifically interpretable models.

3. Peculiar motivations and sources of problems in computer science

Motivations that give rise to ingenious large-scale projects in computer science, not men-
tioned by Saunders and Thagard (2005), can be very strange and include curiosity, fun or
boredom and attempts to be famous out of boring, stable life of a successful programmer in
a big corporation. A good example is the phenomenon of Open Source software, especially
the development of the Linux operating system and its applications at the time, when, from
economical point of view, Microsoft absolutely dominated the software market of PCs. To
explain this, I have to start with a very brief history of operating systems in order to highlight
the context in which highly creative work motivated by somewhat unusual reasons, specific
to computer science, may arise.

Operating system is the absolutely crucial piece of software without which hardware is
quite useless and whose tasks are so diverse as detecting and managing various pieces of
hardware, managing the running processes in random-access memory, resolving conflicts in
access to the resources, managing network connections, and creating an interface between
users’ programs and hardware (see e.g. fundamental work on operating systems, Silberschatz
et al., 2008).

When, at the turn the 1960s and 1970s Massachusetts Institute of Technology, Cambridge,
Massachusetts, US and Bell Labs, Murray Hill, New Jersey, US created a new operating sys-
tem, called Unix, it was soon run on an IBM PDP-11 machine. Simultaneously, the C pro-
gramming language was created and Unix was rewritten in the new language. The purpose
of the project was to create a unified (hence its name) operating system that could be run, at
least, on many types of IBM machines and, with time, also on different architectures. Before
that time each hardware architecture required its own operating systems laboriously written
mostly in assembly language. Soon Unix dominated the mainframe computers and, with
time, the Internet servers throughout the world and became the most complicated, stable,
reliable, and expensive operating system (Silberschatz et al., 2008).

On the other hand, within a few years after the advent of PCs in the 1980s the software
market for the new hardware platform was almost entirely dominated by products of Mi-
crosoft. The first operating system of Microsoft designed for PCs was, strangely enough, a
version of Unix, called Xenix (Allan, 2001). Soon, however, it was replaced with disk operat-
ing system, more suitable for the mass user, and then with subsequent versions of Microsoft

454 P. Giza. Creativity in computer science

Windows. Several important companies, like IBM with its OS/2, tried first to cooperate, then
to compete with Microsoft and finally gave up.2 Others, like Apple Inc. created its own ver-
sion of a Unix-like system on their Macintosh PCs, but they only managed to hold about
10% of the market. Moreover, with their New Technology File System and network functions
of subsequent Microsoft Windows editions, Microsoft managed to eliminate from the market
the ex-champion of local networks, Novel Writer RT with its NetWare system. Adding to
this the increasing popularity of Microsoft utility software with their OfficeSuite in the first
place, no reasonable company could even dream about competing with Microsoft on the PC
market, without the risk of loosing all invested money or, in the worst case, going down and
even bankrupting.

Nevertheless, in April 1991, a 21 years old programming genius, Linus Torvalds, a student
of computer science at the University of Helsinki (UH), Finland, created the first versions of
the Unix-like kernel for the i386 PC. He did it mostly for fun (see e.g. his autobiographical
book, Just for Fun: The Story of an Accidental Revolutionary, written jointly with David Dia-
mond (Torvalds & Diamond, 2001)) and, partly, because he was not entirely satisfied with a
minimal, academic version of Unix called Minix. Actually Torvalds first created a terminal
emulator for dialup connections from his home to the university main computer, then he
created the shell and ported the open source version of GNU Compiler Collection. This made
him relatively independent of the Minix installation in further work on the new system.

It must be emphasized that Torvalds was definitely not motivated by financial reasons and,
as he himself admits (Torvalds & Diamond, 2001, p. 91), he would probably have stopped his
project by the end of 19913 if it had not been for two things that happened around August,
1991: first, when experimenting with the newly created system, by chance, he seriously dam-
aged his Minix installation and instead of re-installing the system he did not like too much,
he decided to start writing a better Unix-like system, with its most important part, the kernel.

Second, people started to send him feedback as a reply to his first post from August, 1991
on Minix newsgroups, in which he informed that he had started to work on a new Unix-
like operating system a couple of months earlier, and that it was nearly ready. This feedback
essentially changed his attitude to the new system and was highly motivating: he realized
that he was creating something interesting and useful to hundreds of users throughout the
world (by the end of 1991) who downloaded it from the ftp server of the UH. But money,
was definitely of no concern to him, maybe just a little, to the extent to which his friends
announced on the Internet the collection of money to pay off Torvalds’ new PC i386 that
he bought in instalments on January 3, 1991, both as a Christmas and birthday gift. In fact,
instead of money he preferred postcards from people around the world, who started using
the new system and considered it valuable.

2 IBM, the original producer of PCs, at the beginning of the 1980s signed arrangement with Microsoft concerning a
new operating system for its hardware. Fortunately, IBM was one the leading computer hardware manufacturers
in the US so the defeat was not so severe.

3 For Torvalds, creating the elements of a new system which he needed, was a challenge and fun. However, when
the basic goals of a project were achieved, there remained laborious work of debugging the code, and Torvalds, at
least initially, lacked motivation for this sort of boring, mundane activity.

Creativity Studies, 2021, 14(2): 444–460 455

Coming back to Linux4, since from the very beginning, its source code was made avail-
able free on the Internet, its history has been one of collaboration by many programmers and
users from all around the world, cooperating almost exclusively over the Internet.

The first publicly released Linux kernel, version 0.01, dated May 14, 1991 had very limited
functionalities: it had no networking support and could run only on Minix filesystem.

However, the next milestone version, Linux 1.0, released on March 14, 1994 after three
years of rapid development of the Linux kernel code, was already much more matured: it had
full networking support (including device drivers for numerous Ethernet cards), it supported
its own filesystem, much enhanced compared to that of Minix, virtual memory support and
a wide range of hardware support.

As Silberschatz et al. (2008, p. 802) emphasize in a chapter devoted to the case study of
Linux: in its early days, Linux development revolved largely around the central operating
system kernel – the core, privileged executive that manages all system resources and that
interacts directly with the computer hardware. We need much more than this kernel to
produce a full operating system, of course. It is useful to make the distinction between the
Linux kernel and a Linux system. The Linux kernel is an entirely original piece of software
developed from scratch by the Linux community. The Linux system, as we know it today,
includes a multitude of components, some written from scratch, others borrowed from other
development projects, and still others created in collaboration with other teams.

Indeed, any Unix-like operating system has four basic components: kernel, shell, filesys-
tem, and utility programs, and, as I mentioned earlier, Torvalds originally created the shell
and started working on the kernel and (after crashing his Minix) the filesystem. With time,
he concentrated on the kernel (with other programmers of so called kernel group) and other
components of the system were developed in cooperation with numerous programmers from
the Internet. Starting from the first kernel which only implemented basic services, the Linux
system quickly developed to include most Unix functionalities.

This cooperation of many users and programmers gave rise to the advent of a completely
new phenomenon on an unprecedented scale: free, open source software which developed
into numerous projects like free operating system Linux with various distributions, its graphi-
cal desktops and windows managers, utility software, server software, web authoring tools
and many others.

Actually, the idea of free, open source software was invented already in the 1980s by
the founder of Free Software Foundation, Richard Stallman, who was also the author of the
free software copyright licence, the GNU General Public License (GPL), according to which
free software may be distributed. However, it was only with the advent of Linux and its GPL
licence (since 1994) that it really got its impetus.

The basic principles of open source, in the case of an operating system, say that the source
code, the programming instructions underlying the system, is free and available to the public.
Anyone can improve it or change it, but those changes have to be made freely available. When
a project is opened up, says Torvalds,

4 The name Linux was given to the new system by Torvalds’ friend, Ari Lemmke, who created for it the directory
tree pub/OS/Linux on the ftp.funet.fi server, before Torvalds decided to give it a name and to make it available to
the community.

456 P. Giza. Creativity in computer science

“[...] there is rapid and continual improvement. With teams of contributors working
in parallel, the results can happen far more speedily and successfully than if the work
were being conducted behind closed doors” (Torvalds & Diamond, 2001, p. 226).

In one of the final chapters of his book, under a significant title “Why Open Source
Makes Sense”, Torvalds calls this phenomenon the best method of creating and improving
the highest quality technology ((Torvalds & Diamond, 2001, pp. 225–234). The advantage
of open source over close, proprietary code methods used by software corporations is, as in
the case of Linux, that

“Instead of a tiny cloistered development team working in secret, you have a monster
on your side. Potentially millions of the brightest minds are contributing to a pro-
ject, and are supported by a peer-review process that has no, er, peer” (Torvalds &
Diamond, 2001, p. 227).

In section 1 of the present paper I mention an important point made by Saunders and
Thagard (2005) which should be restated here: like engineering, computer science is fre-
quently concerned with building machines and designing complex systems. However, unlike
engineering, the complexity of the objects created is limited by the skill and imagination of
the creator and not by the properties of the raw materials. To this I would add technological
facilities, housing base, and financial background without which projects of comparable im-
portance and scale as Linux and its accompanying software, would never have been possible
in engineering sciences, unless supported by large, innovative companies.

Having described the context in which peculiar motivations like fun and curiosity could
give rise to the open source movement which involved millions of users and developers
around the world, however, we must try to answer one important question: how is it possible
that so many good programmers are willing to contribute to the development of free software
for absolutely no money and what motivations could they have for their hard, creative work?

It is very interesting, how Torvalds himself tries to explain this phenomenon, which at
least at first sight, seems to run counter basic principles of psychology, economy and even
common sense: one of the least understood pieces of the open source puzzle is how so many
good programmers would deign to work for absolutely no money. A word about motivation
is in order. In a society where survival is more or less assured, money is not the greatest of
motivators. It is been well established that folks do their best work when they are driven by
a passion. When they are having fun. This is as true for playwrights and sculptors and entre-
preneurs as it is for software engineers. The open source model gives people the opportunity
to live their passion. To have fun. And to work with the world’s best programmers, not the
few who happen to be employed by their company (Torvalds & Diamond, 2001, p. 227).

He also claims that open source programmers are, to a large extent, motivated by the
esteem they can gain in the eyes of their peers by making solid contributions, that they want
to impress their peers, improve their reputation, elevate their social status. Open source de-
velopment gives programmers the chance (Torvalds & Diamond, 2001, p. 122).

Despite the fact that Torvalds remarks that money is not the greatest motivator for pro-
grammers, he notices that as a result of rapid development of high-quality open source
software, it gains momentum in the world economy, and its developers earn considerable
recognition as potential employees. Companies instruct their human resources departments

Creativity Studies, 2021, 14(2): 444–460 457

to search credit lists, typically included in open source software, to determine who is making
multiple contributions. So

“Open source hackers aren’t the high-tech counterparts of Mother Teresa. They do
get their names associated with their contributions in the form of the ‘credit list’ or
‘history file’ that is attached to each project. The most prolific contributors attract the
attention of employers who troll the code, hoping to spot, and hire, top programmers”
(Torvalds & Diamond, 2001, p. 122).

So dreams of doing interesting things and being a bit famous instead of boring, stable life
of a successful programmer in a big corporation may be truly motivating for many high-class
professional programmers with established career. No wonder that quite a lot of them, after
the Linux project matured in the mid of 1990s, joined the open source community.

To give a very short, typical example, which, at the same time is a sort of success story:5
Donald Becker was a programmer at National Aeronautics and Space Administration where
he worked on Beowulf high performance computing clusters. However, he became famous
in the 1990s, for creating Ethernet software for the new Linux operating system – kernel
drivers and utility software for numerous network cards (Sterling, 2001, pp. 69–70). In effect,
he became the Chief Technology Officer of Scyld Software, a private supplier of high per-
formance computing software based on Beowolf clusters, which became one of the leading
cluster solutions in the Linux world.

Conclusions

I conclude by summarizing the major theses of the paper. As stated in section 1, I agree
with Saunders and Thagard (2005) that problem solving methods in computer science do
not differ from those used in engineering and natural sciences – the authors support this
thesis with thorough investigation of numerous examples and, in addition, refer to research
on various aspects of creative problem solving Thagard has conducted for many years. I also
agree with their opinion that computer science resembles both engineering and mathematics:
it is like engineering in that it is concerned with solving practical problems or implementing
solutions, often with strongly financial reasons, it is like mathematics in that is deals with
abstract symbols and logical relations.

This is not to say that I completely agree with all of their theses. In section 2 I give
examples of the origins of problems the authors explicitly deny, and in section 3 I point to
important motivations in computer science the authors do not mention.

I do not completely agree with the authors’ thesis that, like engineering, computer science
(except for theoretical computer science) is concerned with questions of how to accomplish
some technological tasks rather than why questions requiring explanation of natural phe-
nomena, typical to natural sciences. In section 2 I show that the latter type of questions
is of the main concern in the field of automated discovery, a highly creative branch of AI
(which, in turn, is a branch of computer science). Automated discovery deals exactly with

5 The author of the present paper joined the Linux community in the mid of 1990s, as an application tester and pas-
sionate Linux server system administrator, starting to implement Linux-based, open source solutions on servers,
desktops, and terminals. He knows this example from his personal, professional experience.

458 P. Giza. Creativity in computer science

investigating natural phenomena, formulating empirical laws, finding explanatory models
and postulating the micro-structure “hidden” behind observable phenomena.

Saunders and Thagard investigate typical sources of problems and motivations in com-
puter science, like frustration with ineffective, boring and time-consuming existing solutions,
the pleasure of creating new computer programs or building new computers or commercial
motivations in a company to increase the income. In section 3 I discuss additional, rather
peculiar motivations, specific to computer science that they do not mention, like fun, curi-
osity, and boredom with monotonous life of a programmer in a corporation. These motiva-
tions, together with specific lack of material and financial limitations in computer science
which allows for “building castles in the air”, may result with the development of top-quality
projects on a large scale, which would never have been possible in other areas of science or
engineering. I illustrate my argument with an extended example concerning the development
of the Linux operating system and its applications.

References

Allan, R. A. (2001). A history of the personal computer: The people and the technology. Allan Publishing.
Bridewell, W., & Langley, P. (2010). Two kinds of knowledge in scientific discovery. Topics in Cognitive

Science, 2(1), 36–52. https://doi.org/10.1111/j.1756-8765.2009.01050.x
Cartwright, N. (2002). How the laws of physics lie. Clarendon Press/Oxford University Press.
Džeroski, S., Langley, P., & Todorovski, L. (2007). Computational discovery of scientific knowledge. In

S. Džeroski & L. Todorovski (Eds.), Lectures notes in computer science: Vol. 4660: State-of-the-Art-
Survey. Lecture notes in artificial intelligence. Computational discovery of scientific knowledge: Intro-
duction, techniques, and applications in environmental and life sciences (pp. 1–14). J. G. Carbonell
& J. Siekmann (Eds.). Springer-Verlag. https://doi.org/10.1007/978-3-540-73920-3

Fischer, P., & Żytkow, J. M. (1991, 25–27 October). Discovering quarks and hidden structure. In
Z. W. Ras, M. Zemankova, & M. L. Emrich (Eds.), Methodologies for intelligent systems, Vol. 5: Pro-
ceedings of the 5th International Symposium on Methodologies for Intelligent Systems (pp. 362–370).
Elsevier Science Publishing Co.

Gillies, D. (1996). Artificial intelligence and scientific method. Oxford University Press.
Giza, P. (2002). Automated discovery systems and scientific realism. Minds and Machines, 12, 105–117.

https://doi.org/10.1023/A:1013726012949
Giza, P. (2006). Filozoficzne i metodologiczne aspekty komputerowych systemów odkryć naukowych.

Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej w Lublinie.
Giza, P. (2018). Sign use and cognition in automated scientific discovery: Are computers only special

kinds of signs? International Journal of General Systems, 47(3), 193–207.
https://doi.org/10.1080/03081079.2017.1414209

Giza, P. (Forthcoming). Automated discovery systems, machine learning and data science: New devel-
opments, current issues and philosophical lessons. Philosophy Compass.

Hey, T., Tansley, S., & Tolle, K. (Eds.). (2009). The fourth paradigm: Data-intensive scientific discovery.
Microsoft Corporation.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1993). Computational models of cognition
and perception. Induction: Processes of inference, learning, and discovery. J. A. Feldman, P. J. Hayes,
& D. E. Rumelhart (Eds.). The Massachusetts Institute of Technology.

https://doi.org/10.1111/j.1756-8765.2009.01050.x
https://doi.org/10.1007/978-3-540-73920-3
https://doi.org/10.1023/A:1013726012949
https://doi.org/10.1080/03081079.2017.1414209

Creativity Studies, 2021, 14(2): 444–460 459

Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, Sh., Sama-
tova, N., & Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery
from data. Association for the Advancement of Artificial Intelligence Transactions on Knowledge and
Data Engineering, 29(10), 2318–2331. https://doi.org/10.1109/TKDE.2017.2720168

Kocabas, S., & Langley P. (2001). An Integrated framework for extended discovery in particle physics.
In K. P. Jantke & A. Shinohara (Eds.), Discovery Science. DS 2001. Lecture Notes in Computer Sci-
ence, vol. 2226. Springer. https://doi.org/10.1007/3-540-45650-3_18

Langley, P., & Arvay, A. (2019). Scientific discovery, process models, and the social sciences. In
M. Addis, P. C. R. Lane, P. D. Sozou, & F. Gobet (Eds.), Synthese library: Studies in epistemology,
logic, methodology, and philosphy of science. Scientific discovery in the social sciences, Vol. 413 (pp.
173–190). O. Bueno (Ed.-in-Chief). Springer Nature Switzerland AG.
https://doi.org/10.1007/978-3-030-23769-1_11

Langley, P., Sánchez, J. N. J., Todorovski, L., & Džeroski, S. (2002, 8–12 July). Inducing process mod-
els from continuous data. In C. Sammut & A. G. Hoffmann (Eds.), ICML ‘02: Proceedings of
the Nineteenth International Conference on Machine Learning (pp. 347–354). Sydney, Australia.
Morgan Kaufmann Publishers Inc.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery: Computational
explorations of the creative processes. The Massachusetts Institute of Technology.
https://doi.org/10.7551/mitpress/6090.001.0001

Park, Ch., Bridewell, W., & Langley, P. (2010, 11–15 July). Integrated systems for inducing spatio-
temporal process models. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, Vols. 1–3 (pp. 1555–1560). Atlanta, Georgia, United States. Association for the Advancement
of Artificial Intelligence Press.

Raghu, M., & Schmidt, E. (2020). A survey of deep learning for scientific discovery. https://arxiv.org/
pdf/2003.11755.pdf

Rapaport, W. J. (2020). Philosophy of computer science. University at Buffalo/The State University of
New York.

Rose, D. (1989, 26–27 June). Using domain knowledge to aid scientific theory revision. In A. Maria
Segre (Ed.), Proceedings of the 6th international Workshop on Machine Learning (pp. 272–277).
Ithaca, New York, United States. Morgan Kaufmann Publishers, Inc.
https://doi.org/10.1016/B978-1-55860-036-2.50076-X

Saunders, D., & Thagard, P. (2005). Creativity in computer science. In J. C. Kaufman & J. Baer (Eds.),
Creativity across Domains: Faces of the muse (pp. 153–168). Lawrence Erlbaum Associates, Inc.,
Publishers.

Silberschatz, A., Galvin, P., & Gagne, G. (2008). Operating system concepts. Wiley.
Sterling, Th. (2001). Scientific and engineering computation series. Beowulf Cluster Computing with

Linux. J. Kowalik (Ed.). The Massachusetts Institute of Technology Press.
https://doi.org/10.7551/mitpress/1556.001.0001

Thagard, P. (1993). Computational philosophy of science. The Massachusetts Institute of Technology.
Thagard, P. (1992). Conceptual revolutions. Princeton University Press.

https://doi.org/10.1515/9780691186672
Thagard, P., & Croft, D. (1999, 17–19 December). Scientific discovery and technological innovation:

Ulcers, dinosaur extinction, and the programming language Java. In L. Magnani, N. J. Nersessian, &
P. Thagard (Eds.), Model-based reasoning in scientific discovery. Proceedings of the International Con-
ference on Model-Based Reasoning in Scientific Discovery (pp. 125–138). Springer Science+Business
Media, LLC. https://doi.org/10.1007/978-1-4615-4813-3_8

Thagard, P., Findlay, S., Litt, A., Saunders, D., Stewart, T. C., & Zhu, J. (2014). The cognitive science of
science: Explanation, discovery, and conceptual change. The Massachusetts Institute of Technology.

https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1007/3-540-45650-3_18
https://doi.org/10.7551/mitpress/6090.001.0001
https://arxiv.org/pdf/2003.11755.pdf
https://arxiv.org/pdf/2003.11755.pdf
https://doi.org/10.1016/B978-1-55860-036-2.50076-X
https://doi.org/10.7551/mitpress/1556.001.0001
https://doi.org/10.1515/9780691186672
https://doi.org/10.1007/978-1-4615-4813-3_8

460 P. Giza. Creativity in computer science

Torvalds, L., & Diamond, D. (2001). Just for fun: The story of an accidental revolutionary. HarperCol-
lins Publishers.

Valdés-Pérez, R. E., Żytkow, J. M., & Simon, H. A. (1993, 11–15 July). Scientific model-building as
search in matrix spaces. In R. Fikes & W. G. Lehnert (Eds.), Proceedings of the Eleventh National
Conference on Artificial Intelligence (pp. 472–478). Washington, D.C., United States. Association for
the Advancement of Artificial Intelligence Press.

Zytkow, J. M. (1987, June 22–25). Combining many searches in the FAHRENHEIT discovery system. In
P. Langley (Ed.), Proceedings of the Fourth International Workshop on Machine Learning (pp. 281–287).
University of California, Irvine. Irvine, United States. Morgan Kauffman Publishers, Inc.
https://doi.org/10.1016/B978-0-934613-41-5.50032-5

Żytkow, J. M., Zhu, J., & Zembowicz, R. (1992, 12–16 July). Operational definition refinement:
A discovery process. In Proceedings of the Tenth National Conference on Artificial Intelligence
(pp. 76–81). San Jose, California, United States. Association for the Advancement of Artificial In-
telligence Press.

https://doi.org/10.1016/B978-0-934613-41-5.50032-5

