Share:


Analysis of shear design recommendations for FRP reinforced concrete beams

    Marius Budvytis Affiliation
    ; Alfonso Cobo Escamilla Affiliation
    ; Linas Juknevičius Affiliation

Abstract

Research shows that most shear design models for concrete beams reinforced with FRP reinforcement provide conservative results that leads to excessive amounts of reinforcement and increased overall cost of such construction. This paper presents comparative analysis of current shear design models for concrete beams reinforced with longitudinal FRP reinforcement and FRP stirrups. New analytical shear design model, developed by Valivonis et al., has been included in the analysis. A database with 88 specimens reinforced with FRP reinforcement was compiled in order to verify the accuracy of the proposed model by Valivonis et al. It is shown that proposed shear design model yields quite accurate and consistent results as an average of Vexp / Vpred values is 0.98 and coefficient of variation is 26.0% for this model.

Keyword : shear strength, fiber reinforced polymer bar, stirrup, reinforced concrete

How to Cite
Budvytis, M., Cobo Escamilla, A., & Juknevičius, L. (2018). Analysis of shear design recommendations for FRP reinforced concrete beams. Engineering Structures and Technologies, 10(2), 46-57. https://doi.org/10.3846/est.2018.6478
Published in Issue
Nov 13, 2018
Abstract Views
166
PDF Downloads
102
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmed, E. A., El-Salakawy, E. F., & Benmokrane, B. (2010). Performance evaluation of glass fiber-reinforced polymer shear reinforcement for concrete beams. ACI Structural Journal, 107(1), 53-62.

Alam, M., & Hussein, A. (2012). Effect of member depth on shear strength of high-strength fiber-reinforced polymer-reinforced concrete beams. Journal of Composites for Construction, 16(2), 119-126. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000248

Alkhrdaji, T., Wideman, M., Belarbi, A., & Nanni, A. (2001, October 10-12). Shear strength of GFRP RC beams and slabs. In Proceedings of the International Conference, Composites in Construction-CCC (pp. 409-414). Porto, Portugal: A. A. Balkema.

Alsayed, S. H. (1998). Flexural behaviour of concrete beams reinforced with GFRP bars. Cement and Concrete Composites, 20(1), 1-11. https://doi.org/10.1016/S0958-9465(97)00061-9

American Concrete Institute (ACI). (2006). Guide for the design and construction of concrete reinforced with FRP bars (ACI 440.1R-06). Farmington Hills, MI: Author.

Ascione, L., Mancusi, G., & Spadea, S. (2010). Flexural behaviour of concrete beams reinforced with GFRP bars. Strain, 46(5), 460-469. https://doi.org/10.1111/j.1475-1305.2009.00662.x

Benmokrane, B., Ali, A. H., Mohamed, H. M., Robert, M., & ElSafty, A. (2016). Durability performance and service life of CFCC tendons exposed to elevated temperature and alkaline environments. Journal of Composites for Construction, 20(1), 1-13. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000606

Bentz, E. C., Massam, L., & Collins, M. P. (2010). Shear strength of large concrete members with FRP reinforcement. Journal of Composites for Construction, 14(6), 637-646. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000108

Canadian Standards Association (CSA). (2012). Design and construction of buildings components with fiber-reinforced polymers (CSA S806-12). Toronto, Canada: Author.

Canadian Standards Association (CSA). (2014). Canadian highway bridge design code (CSA S6-14). Rexdale, ON: Author.

Duranovic, N., Pilakoutas, K., & Waldron, P. (1997, October 14-16). Tests on concrete beams reinforced with glass fiber reinforced plastic bars. In Proceedings of the 3rd International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structure (FRPRCS-3) (pp. 479-486). Japan Concrete Institute, Sapporo, Japan.

El-Sayed, A. K., & Benmokrane, B. (2008). Evaluation of the new Canadian highway bridge design code shear provisions for concrete beams with fiber-reinforced polymer reinforcement. Canadian Journal of Civil Engineering, 35(6), 609-623. https://doi.org/10.1139/L08-009

El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear strength of FRP-reinforced concrete beams without transverse reinforcement. ACI Structural Journal, 103(2), 235-243.

El-Sayed, A. K., El-Salakawy, E., & Benmokrane, B. (2007). Mechanical and structural characterization of new carbon FRP stirrups for concrete members. Journal of Composites for Construction, 11(4), 352-362. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(352)

Fico, R., Prota, A., & Manfredi, G. (2008). Assessment of Eurocode-like design equations for the shear capacity of FRP RC members. Composites Part B: Engineering, 39(5), 792-806. https://doi.org/10.1016/j.compositesb.2007.10.007

Guadagnini, M., Pilakoutas, K., & Waldron, P. (2006). Shear resistance of FRP RC beams: Experimental study. Journal of Composites for Construction, 10(6), 464-473. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(464)

Hegger, J., Niewels, J., & Kurth, M. (2009). Shear analysis of concrete members with fiber-reinforced polymers (FRP) as internal reinforcement. In 9th International Symposium on Fibre-Reinforced Polymer Reinforcement for Conrete Structures, FRPRCS-9 (pp. 1-8). University of Adelaide, Sydney, Australia.

Hoult, N. A., Sherwood, E. G., Bentz, E. C., & Collins, M. P. (2008). Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs?, Journal of Composites for Construction, 12(2), 125-133. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(125)

Italian Research Council. (2007). Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars (CNR-DT 203/2006). Rome, Italy: Author.

Japan Society of Civil Engineering (JSCE). (1997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Tokyo, Japan: Author.

Maruyama, K., & Zhao, W. J. (1994, July 24-28). Flexural and shear behaviour of concrete beams reinforced with FRP rods. In Proceedings of the International Conference on Corrosion and Corrosion Protection of Steel in Concrete, (pp. 1330-1339). University of Sheffield, Sheffield, England.

Maruyama, K., & Zhao, W. J. (1996). Size effect in shear behavior of FRP reinforced concrete beams. In 2nd International Conference on Advanced Composite Materials in Bridges and Structures (pp. 227-234). Canadian Society for Civil Engineering, Montreal, Canada.

Mohamed, H. M., Afifi, M. Z., & Benmokrane, B. (2014). Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load. Journal of Bridge Engineering, 19(7), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590

Mohamed, H. M., & Benmokrane, B. (2013). Design and performance of reinforced concrete water chlorination tank totally reinforced with GFRP bars: case study. Journal of Composites for Construction, 18(1), 1-11.

Nagasaka, T., Fukuyama, H., & Tanigaki, M. (1993). Shear performance of concrete beams reinforced with FRP stirrups. Special Publication, FRPRCS-1, 138, 789-812.

Nakamura, H., & Higai, T. (1995). Evaluation of shear strength of concrete beams reinforced with FRP. Doboku Gakkai Ronbunshu, 1995(508), 89-100. https://doi.org/10.2208/jscej.1995.508_89

Nanni, A., & Faza, S. (2002). Designing and constructing with FRP bars: An emerging technology. ACI Concrete International, 24(11), 53-58.

Natural Sciences and Engineering Research Council of Canada. (2010). Bridging the gap: Composites extend infrastructure life. Retrieved from http://www.nserc-crsng.gc.ca/Media-Media/ImpactStory-ArticlesPercutant_eng.asp?ID=1047

Nehdi, M., El Chabib, H., & Aly Said, A. (2007). Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach. Journal of Materials in Civil Engineering, 19(12), 1033-1042. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1033)

Niewels, J. (2008). Zum tragverhalten von botonbauteilen mit faserverbundkunststoff-bewerhung (PhD Thesis). Aachen University, Germany.

Okamoto, T., Nagasaka, T., & Tanigaki, M. (1994). Shear capacity of concrete beams using FRP reinforcement. Journal of Structural and Construction Engineering, 455(59), 127-136. https://doi.org/10.3130/aijs.59.127_1

Oller, E., Mari, A., Bairan, J. M., & Cladera, A. (2015). Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement. Composites Part B: Engineering, 74, 104-122. https://doi.org/10.1016/j.compositesb.2014.12.031

Perera, R., Arteaga, A., & Diego, A. D. (2010). Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement. Composite Structures, 92(5), 1169-1175. https://doi.org/10.1016/j.compstruct.2009.10.027

Razaqpur, A., & Spadea, S. (2014). Shear strength of FRP reinforced concrete members with stirrups. Journal of Composites for Construction, 19(1), 1-15.

Shehata, E., Morphy, R., & Rizkalla, S. (2000). Fibre reinforced polymer shear reinforcement for concrete members: behaviour and design guidelines. Canadian Journal of Civil Engineering, 27(5), 859-872. https://doi.org/10.1139/l00-004

Tottori, S., & Wakui, H. (1993). Shear capacity of RC and PC beams using FRP reinforcement. ACI Structural Journal, 138, 615-632.

Tureyen, A. K., & Frosch, R. J. (2002). Shear tests of FRP-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 427-434.

Valivonis, J., Budvytis, M., Atutis, M., Atutis, E., & Juknevičius, L. (2015). Study on shear resistance of fiber-reinforced polymer-reinforced concrete beams. Advances in Mechanical Engineering, 7(7), 1-17. https://doi.org/10.1177/1687814015593873

Vijay, P. V., Kumar, S. V., & GangRao, H. V. S. (1996). Shear and ductility behavior of concrete beams reinforced with GFRP rebars. In 2nd International Conference on Advanced Composite Materials in Bridges and Structures, ACMBS (pp. 217-226). Canadian Society for Civil Engineering, Montreal, Canada.

Zhao, W. J., Maruyama, K., & Suzuky, H. (1995). Shear behavior of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement. In RILEM Proceedings, FRPRCS-2 (pp. 352-359). Ghent, Belgium: E. & F. N. Spon.