Share:


The influence of plasticising admixtures on drying shrinkage of cementitious composites

    Gintautas Skripkiūnas Affiliation
    ; Mindaugas Macijauskas Affiliation
    ; Grigory Yakovlev Affiliation
    ; Anastasiia Ignatyeva Affiliation

Abstract

This article presents a research into the impact of plasticising admixtures on drying shrinkage of cementitious composites by evaluating the effectiveness of plasticising. Materials used in the study: Portland cement CEM I 42.5 R, plasticiser LS (modified lignosulphonates based), superplasticiser PCE (synthetic polycarboxylate esters based), superplasticiser MAP (modified acrylic polymers based), sand and water. The percentage change of plastic viscosity of cement paste indicates the effectiveness of plasticising of cementitious composites. The change of plastic viscosity has been tested by adding a specific amount of plasticising admixtures. The effectiveness of plasticising of pastes were tested using rotational viscometer. Chemical admixtures content in pastes varied from 0 to 1.2%. Drying shrinkage was tested based on length change of the specimens with fine aggregates. The method to minimise drying shrinkage of composites was established through use of plasticising admixtures. It has been found that by increasing plasticising admixture dosage from 0 to 1.2% the following changes occur: LS plasticising effectiveness increases by 35% while drying shrinkage decreases by 8%; MAP plasticising effectiveness increases by 70% while drying shrinkage decreases by 16%; PCE plasticising effectiveness increases by 80% while drying shrinkage decreases by 20%.

Keyword : cementitious composites, drying shrinkage, plastic viscosity, plasticisers, superplasticisers, the effectiveness of plasticising

How to Cite
Skripkiūnas, G., Macijauskas, M., Yakovlev, G., & Ignatyeva, A. (2018). The influence of plasticising admixtures on drying shrinkage of cementitious composites. Engineering Structures and Technologies, 10(2), 84-93. https://doi.org/10.3846/est.2018.6482
Published in Issue
Nov 13, 2018
Abstract Views
86
PDF Downloads
56
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bentz, D. P., Garboczi, E. J., & Quenard, D. A. (1998). Modelling drying shrinkage in reconstructed porous materials: Application to porous Vycor glass. Modelling and Simulation in Materials Science and Engineering, 6(3), 211-236. https://doi.org/10.1088/0965-0393/6/3/002

Biernacki, J. J., Bullard, J. W., Sant, G., Brown, K., Glasser, F. P., Jones, S., Ley, T., Livingston, R., Nicoleau, L., Olek, J., Sanchez, F., Shahsavari, R., Stutzman, P. E., Sobolev, K., & Prater, T. (2017). Cements in the 21st century: Challenges, perspectives, and opportunities. Journal of the American Ceramic Society, 100(7), 2746-2773. https://doi.org/10.1111/jace.14948

Gelardi, G., & Flatt, R. J. (2016). Working mechanisms of water reducers and superplasticizers. In P.-C. Aïtcin & R. J. Flatt (Eds.), Science and Technology of Concrete Admixtures (Chapter 11, pp. 257-278). Elsevier. https://doi.org/10.1016/B978-0-08-100693-1.00011-4

Gelardi, G., Mantellato, S., Marchon, D., Palacios, M., Eberhardt, A. B., & Flatt, R. J. (2016). Chemistry of chemical admixtures. In P.-C. Aïtcin & R. J. Flatt (Eds.), Science and technology of concrete admixtures (Chapter 9, pp. 149-218). Elsevier. https://doi.org/10.1016/B978-0-08-100693-1.00009-6

Hooton, R. D., & Bickley, J. A. (2014). Design for durability: The key to improving concrete sustainability. Construction and Building Materials, 67, part C, 422-430. https://doi.org/10.1016/j.conbuildmat.2013.12.016

Lietuvos standartizacijos departamentas. (2002a). Mūro skiedinio bandymo metodai. 3 dalis. Šviežio skiedinio konsistencijos nustatymas (sklidumo metodu) (LST EN 1015-3:2002). Retrieved from https://eshop.lsd.lt/public#/product/info/0a640324-60b6-1fee-8160-b6551edb2443

Lietuvos standartizacijos departamentas. (2002b). Mūro skiedinio bandymo metodai. 6 dalis. Šviežio skiedinio tūrinio tankio nustatymas (LST EN 1015-6:2002). Retrieved from https://eshop.lsd.lt/public#/product/info/0a640324-60b6-1fee-8160-b6551edc244a

Lietuvos standartizacijos departamentas. (2008). Betono užpildai (LST EN 12620:2003+A1:2008). Retrieved from https://eshop.lsd.lt/public#/product/info/0a640324-60b6-1fee-8160-b6588cfc7f7a

Lietuvos standartizacijos departamentas. (2011). Cementas. 1 dalis. Įprastinių cementų sudėtis, techniniai reikalavimai ir atitikties kriterijai (LST EN 197-1:2011). Retrieved from https://eshop.lsd.lt/public#/product/info/0a640324-60b6-1fee-8160-b65838e6784b

Lietuvos standartizacijos departamentas. (2012). Bandymai užpildų geometrinėms savybėms nustatyti. 1 dalis. Granuliometrinės sudėties nustatymas. Sijojimo metodas (LST EN 933-1:2012). Retrieved from https://eshop.lsd.lt/public#/product/info/0a640324-60b6-1fee-8160-b6594b761058

Lietuvos standartizacijos departamentas. (2017). Cemento bandymų metodai. 3 dalis. Rišimosi trukmių ir tūrio pastovumo nustatymas (LST EN 196-3:2017). Retrieved from https://eshop.lsd.lt/public#/product/info/0a640324-60b6-1fee-8160-b65abff53356

Macijauskas, M., & Girskas, G. (2017). The influence of commonly used plasticizing admixtures on the plasticizing effect of cement paste. Construction Science, 20(1), 26-32. https://doi.org/10.2478/cons-2017-0004

Meschke, G., Pichler, B., & Rots, J. G. (2018). Computational modelling of concrete structures: Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), 26 February – 1 March 2018, Bad Hofgastein, Austria. CRC Press. 1034 p.

Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). New Jersey: Prentice Hall. 644 p.

Qian, C., Zhang, Y., Huang, H., Qu, J., & Guo, J. (2016). Influences of superplasticizers on the basic and drying creep of concrete. Structural Concrete, 17(5), 729-735. https://doi.org/10.1002/suco.201500185

Tattersall, G. H., & Banfill, P. F. G. (1986). Rheology of fresh concrete. Cement and Concrete Research, 16(1), p. 125. https://doi.org/10.1016/0008-8846(86)90081-5

Ulm, F. J., Constantinides, G., & Heukamp, F. H. (2004). Is concrete a poromechanics materials? – A multiscale investigation of poroelastic properties. Materials and Structures, 37(1), 43-58. https://doi.org/10.1007/BF02481626

Wallevik, O. H., Feys, D., Wallevik, J. E., & Khayat, K. H. (2015). Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cement and Concrete Research, 78, Part A, 100-109. https://doi.org/10.1016/j.cemconres.2015.05.003

Yates, D. J. C. (1954). The expansion of porous glass on the adsorption of non-polar gases. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, 224(1159), 526-544.